QR Exam Algebra January 7, 2019 Morning

Justify your answers.

- (1) Let \mathbb{F} be a field and V be a finite dimensional \mathbb{F} -vector space with bilinear form $b: V \times V \to \mathbb{F}$. Prove that the following statements are equivalent
 - (a) b is nondegenerate (i.e., if $x \in V$ and b(x, y) = 0 for all y, then x = 0).
 - (b) For every subspace W of V and every linear functional $g: W \to \mathbb{F}$, there exists $v \in V$ so that g(x) = b(x, v) for all $x \in W$.
- (2) Suppose that K, L and M are fields with $K \subseteq L \subseteq M$ such that M/K is a Galois extension of degree 1000 and L/K is a field extension of degree 8. Show that L/K is also a Galois extension.
- (3) Suppose that V is an n dimensional \mathbb{C} -vector space and $A: V \to V$ is a linear map. (a) Show that there exists a unique linear map $\varphi_A: \bigwedge^2 V \to \bigwedge^2 V$ such that

$$\varphi_A(v \wedge w) = Av \wedge w + v \wedge Aw$$

for all $v, w \in V$.

(b) Assume that n = 4 and the Jordan normal form of A is

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

What is the Jordan normal form of φ_A ?

- (4) Suppose that \mathbb{F} is a field, V is an n-dimensional \mathbb{F} -vector space, $R \subseteq \text{End}(V)$ is a commutative subalgebra and $v \in V$ is a vector with $Rv = \{Av \mid A \in R\} = V$. Show that dim R = n.
- (5) Let G be a finite solvable group.
 - (a) Let K be a minimal normal subgroup of G. Prove that K is an abelian p-group for some prime number p and that K is elementary abelian $(x^p = 1 \text{ for all } x \in K)$.
 - (b) Let M be a maximal subgroup of G. Prove that the index |G:M| is a prime-power.

QR Exam Algebra January 7 Afternoon

Justify your answers.

- (1) Suppose that H, K are subgroups of an infinite group G. Suppose that their indices m := |G : H| and n := |G : K| are finite. Prove that G = HK if m, n are relatively prime.
- (2) Suppose that R is a unique factorization domain (UFD) for which every nonzero prime ideal is maximal.
 - (a) Show that every prime ideal is generated by one element.
 - (b) Show that R is a principal ideal domain (PID).
- (3) Let \mathbb{F}_p be the field with p elements. Suppose that $a(x) \in \mathbb{F}_p[x]$ is a polynomial of degree 5. Show that a(x) is irreducible if and only if $gcd(a(x), x^{p^2} x) = 1$.
- (4) Recall that the nilpotence class of a nilpotent group is the minimum length of a central series. Suppose that G is a nilpotent group and not abelian. Let G' be the commutator subgroup and let $x \in G$. Prove that $\langle G', x \rangle$ is a proper subgroup of G. Hint: show that the nilpotence class of $\langle G', x \rangle$ is less than then the nilpotence class of G.
- (5) Let V be an n-dimensional vector space over a subfield \mathbb{F} of the reals, and let $b: V \times V \to \mathbb{F}$ be a positive definite symmetric bilinear form. An *isometry* of b is a linear transformation $T: V \to V$ which preserves b, i.e., b(Tx, Ty) = b(x, y) for all $x, y \in V$. A reflection on V is a linear transformation of the form $r_v: x \mapsto x 2\frac{b(x,v)}{b(v,v)}v$ for some nonzero vector $v \in V$. A reflection is an isometry of b (you do not have to verify this). Prove that T is a product of k reflections on V, for some $k \leq n$.