
QR Exam Algebra
May 2, 2018
Morning

Justify your answers.

(1) Classify all finite groups G (up to isomorphism) that have only one automorphism.

Solution. Suppose that the finite group G has only 1 automorphism. For g ∈ G, we
have an automorphism ϕg : G→ G defined by ϕg(h) = ghg−1. From the assumption
on G follows that ϕg is the identity, and ghg−1 = h for all g, h ∈ G. So G is commu-
tative. Let ψ : G → G be defined by ψ(g) = g−1. Since ψ is the identity, we have
g2 = 1 for all g ∈ G. This shows that G is isomorphic to the group (Z/2Z)r. If r ≥ 2
then we can permute the factors. So r ≤ 1 and G is either trivial or isomorphic to
Z/2Z. Clearly these two groups have no non-trivial automorphisms.

(2) Suppose that F is a field, p(x) ∈ F [x] is a separable, irreducible polynomial of degree
3 with roots α1, α2, α3.
(a) Show that if the characteristic of F is not 2 or 3, then F (α1, α2, α3) = F (α1−α2).
(b) Show that if F has characteristic 3, then it is possible that F (α1, α2, α3) 6=

F (α1 − α2).

Solution.
(a) Since p(x) is separable, α1, α2, α3 are distinct. Let K = F (α1, α2, α3) be the split-
ting field of p(x). Since K/F is a splitting field of a separable polynomial, it is a Galois
extension. Let G be the Galois group. Suppose that σ is a nontrivial automorphism
with σ(α1−α2) = α1−α2. If σ = (1 2), then we have α2−α1 = σ(α1−α2) = α1−α2,
so 2α1 = 2α2 and α1 = α2. Contradiction. If σ = (1 3) then α3 − α2 = α1 − α2. So
α3 = 2α1. If σ = (2 3) we get a similar contradiction. If σ = (1 2 3) then we have
α2−α3 = α1−α2. By symmetry (using the transitive action of the Galois group) we
must also have 2α1 = α2 +α3. Taking the sum of the two equations we get 3α1 = 3α3

and α1 = α3. Contradiction. And the case σ = (1 3 2) is similar. We conclude that
σ is the identity. By the Galois correspondence, F (α1 − α2) must be the splitting
field K.
(b) Note that x3 − x − 1 is irreducible in F3[x] because it has no root. Let F27 =
F3[x]/(x3 − x− 1) be the field with 27 element, and let α = x + (x3 − x− 1) ∈ F27.
The Frobenius map φ acts by φ(α) = α3 = α+ 1 and φ2(α) = φ(α+ 1) = α+ 2, and
φ3(α) = α. Since {α1, α2, α3} = {α, α + 1, α + 2} we have that α1 − α2 ∈ F3, but
α1 6∈ F3. We conclude that K 6= F (α1 − α2).

(3) Suppose that A is a 2× 2 matrix with real entries that is conjugate to its square A2.
What are the possible rational canonical forms for A?
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Solution. Suppose that λ is an eigenvalue and not equal to 0 or 1. Then λ2 an
eigenvalue of A2 and therefore of A. Now λ4 is another eigenvalue so λ4 ∈ {λ, λ2}. If
λ4 = λ2 then λ = −1. In that case A has eigenvalues −1, 1 and A2 has eigenvalues
1, 1 which is not possible. So λ4 = λ and λ3 − 1 = (λ − 1)(λ2 + λ + 1) = 0, so
λ2 + λ+ 1 = 0. We conclude that λ ∈ {0, 1, ζ, ζ2} where ζ = e2π/3 is a primitive 3rd
root of unity. The possible pairs of eigenvalues are (0, 0), (1, 0), (1, 1), (ζ, ζ2).

Case (0, 0). If the invariant factors are x2, then the rational canonical form is(
0 1
0 0

)
and A2 = 0 is not conjugate to A. Contradiction. So the invariant factors are x, x.
So A = 0 and the rational canonical form is

R1 =

(
0 0
0 0

)
Case (0, 1). The invariant factors are x(x − 1) = x2 − x, the rational canonical

form is

R2 =

(
0 0
1 1

)
Case (1, 1). The invariant factors are (x− 1), (x− 1) or (x− 1)2 = x2− 2x+ 1 and

the possible rational canonical forms are

R3 =

(
1 0
0 1

)
, R4 =

(
0 −1
1 2

)
Case (ζ, ζ2). In this case, the minimum polynomial must be (x − ζ)(x − ζ2) =

x2 + x+ 1 and the rational canonical form is

R5 =

(
0 −1
1 −1

)
For each i we verify that the rational canonical form of R2

i is equal to Ri.

(4) Let R be the ring

Z[
3
√

2] = {a+ b
3
√

2 + c
3
√

4 | a, b, c ∈ Z}

and I = (5) be the ideal of R generated by 5. Write R/(5) as a product of fields.

Solution. We have R ∼= Z[x]/(x3 − 2) and R/(5) ∼= F5[x]/(x3 − 2). Now x3 − 2 has a
root, namely 3 = −2, so x3 − 2 = (x + 2)(x2 − 2x − 1). We verify that x2 − 3x − 1
does not have a root in in F5. So we have

R/(5) ∼= F5[x]/(x+ 2)× F5[x]/(x2 − 2x− 1) ∼= F5 × F25.

(5) Suppose that p, q, r are distinct prime numbers, and Φqr(x) ∈ Z[x] is the qr-th cy-
clotomic polynomial. For which p, q, r is Φqr(x) irreducible as a polynomial in Fp[x]
after reducing its coefficients modulo p?
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Solution. Let φ : K → K be the Frobenius automorphism α 7→ αp that generates
the Galois group K/Fp. Let d be the order of the congruence class p + (qr) in
Z/(qr)× = Z/(q)× × Z/(r)× = Z/(q − 1)× Z/(r − 1). The polynomial

f(x) = (x− α)(x− αp) · · · (x− αpd−1

)

is invariant under φ, so it lies in Fp[x]. Also, f(x) is irreducible because the Galois
group acts transitively on the roots. So f(x) is the minimum polynomial of α, and
must divide Φqr(x). Now Φqr(x) is irreducible if and only if f(x) = Φqr(x) and this is
true if and only if d = (q− 1)(r− 1). If d = (q− 1)(r− 1) then Z/(q− 1)×Z/(r− 1)
is cyclic, and q − 1 and r − 1 are relatively prime. In particular, q = 2 or r = 2.
Suppose q = 2. Then d = (q − 1)(r − 1) = (r − 1) if and only if p + (r) generates
Z/(r)×.
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Justify your answers.

(1) Let K/Q be a field extension, and suppose that α, β ∈ K satisfy K = Q(α, β) and
α2 = β3.
(a) Show that if β ∈ Q(α) then [K : Q] <∞.
(b) If [K : Q] =∞, show that Q(α) ∩Q(β) = Q(α2).

Solution: If β = 0 then α = 0 so K = Q, whence the conclusion of (a) holds and the
hypothesis of (b) does not hold. Henceforth assume β 6= 0, and put γ := α/β ∈ K.
Then γ2 = β and γ3 = α, so K = Q(γ). Suppose that [K : Q] =∞, or equivalently
that γ is transcendental over Q. For any rational function f(X) ∈ Q[X] of degree
n > 0, write f(X) = a(X)/b(X) where a, b are coprime polynomials in Q[X] with
max(deg a, deg b) = n, and put t := f(γ), which is transcendental over Q. Then γ
is a root of the degree-n polynomial m(X) := a(X) − t · b(X) in (Q(t))[X]. This
polynomial is irreducible in (Q[t])[X] since its t-degree is 1 and gcd(a, b) = 1, so
by Gauss’s lemma it is irreducible in (Q(t))[X]. Thus [Q(γ) : Q(t)] = degm = n.
Plainly L := Q(α) ∩ Q(β) contains Q(α2), so that [K : L] ≤ [K : Q(α2)] = [Q(γ) :
Q(γ6)] = 6. But [K : L] is divisible by both [K : Q(α)] = [Q(γ) : Q(γ3)] = 3 and
[K : Q(β) = [Q(γ) : Q(γ2)] = 2, and hence by 6, so [K : L] = 6 and thus L = Q(α2).
This proves (b). Moreover, since [K : L] = 6 6= 3 = [K : Q(α)], we have β /∈ Q(α),
yielding the contrapositive of (a).

(2) Let G be a finite subgroup of the group GLn(Q) of invertible n-by-n matrices with
rational coefficients. Prove that every prime p which divides the order of G must
satisfy p ≤ n+ 1.

Solution. By Cauchy’s theorem, G contains an element A of order p. By Cayley–
Hamilton, A is killed by its characteristic polynomial fA(x), which is a degree-n
polynomial in Q[x]. Thus the minimal polynomial mA(x) of A is a nonconstant
monic polynomial in Q[x] which divides fA(x). But mA(x) also divides xp− 1, and is
not x− 1, so it must be either xp− 1 or (xp− 1)/(x− 1) (since the latter polynomial
is irreducible in Q[x]). Therefore p− 1 ≤ degmA ≤ deg fA = n.

(3) Let R := K[X, Y ] be the polynomial ring in two variables over the field K. Show
that the ideal M := 〈X, Y 〉 of R can be written as the union of prime ideals of R
which are properly contained in M .

Solution. Here M consists of all elements of R having zero constant term. For any
nonzero f ∈ M , we may write f as the product of irreducible polynomials in R, at
least one of which must have zero constant term and hence must be in M . Since R is a

4



unique factorization domain, the ideal generated by any such irreducible polynomial
p is a prime ideal, and this prime ideal contains f and must be properly contained
in M since it cannot contain both X and Y because p cannot divide both X and Y .
Thus R is the union of the collection of all such prime ideals 〈p〉.

(4) Let H and J be subgroups of the finite group G such that the indices [G : H] and
[G : J ] are coprime. Show that every element of G can be written as hj for some
h ∈ H and j ∈ J .

Solution. Since [G : H ∩ J ] = [G : H] · [H : H ∩ J ], in particular [G : H ∩ J ] is
divisible by [G : H], and similarly by [G : J ], so [G : H ∩ J ] is divisible by the lcm
of [G : H] and [G : J ], which is [G : H] · [G : J ] since these indices are coprime. The
subset HJ := {hj : h ∈ H, j ∈ J} of G has cardinality

#H ·#J
#(H ∩ J)

=
#G · [G : H ∩ J ]

[G : H] · [G : J ]
,

which is a multiple of #G and hence must equal #G, so HJ = G.

(5) Show that the tensor product of Z-modules Q/Z⊗Z Q/Z = 0.

Solution. For any a, b ∈ Q, we can write a = m/n with m,n ∈ Z and n 6= 0, so that

(a+ Z)⊗ (b+ Z) = n · ((a+ Z)⊗ (b/n+ Z)) = ((na) + Z)⊗ (b/n+ Z) =

= (m+ Z)⊗ (b/n+ Z) = (0 + Z)⊗ (b/n+ Z) = 0.

Because the module (Q/Z)⊗Z (Q/Z) is generated by such elements, it is equal to 0.
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