QR Exam Algebra
May 2, 2018
Morning

Justify your answers.

(1)

Classify all finite groups G (up to isomorphism) that have only one automorphism.

Solution. Suppose that the finite group G has only 1 automorphism. For g € G, we
have an automorphism ¢, : G — G defined by ¢,(h) = ghg™!. From the assumption
on G follows that ¢, is the identity, and ghg™' = h for all g,h € G. So G is commu-
tative. Let ¢ : G — G be defined by 1(g) = ¢g~!. Since ¢ is the identity, we have
g* = 1for all g € G. This shows that G is isomorphic to the group (Z/2Z)". If r > 2
then we can permute the factors. So r < 1 and G is either trivial or isomorphic to
Z./27. Clearly these two groups have no non-trivial automorphisms.

Suppose that I is a field, p(z) € F[z] is a separable, irreducible polynomial of degree

3 with roots ay, as, as.

(a) Show that if the characteristic of F is not 2 or 3, then F'(aq, aq, a3) = F(a;—az).

(b) Show that if F' has characteristic 3, then it is possible that F(oy,as, a3) #
F(Oél — 062).

Solution.

(a) Since p(z) is separable, oy, as, ag are distinct. Let K = F(aq, ag, a3) be the split-
ting field of p(x). Since K/F is a splitting field of a separable polynomial, it is a Galois
extension. Let GG be the Galois group. Suppose that ¢ is a nontrivial automorphism
with o(a; —ag) = ag —ag. If 0 = (1 2), then we have ay —a; = o(a; —ag) = a3 —ag,
so 2a1 = 2ay and ag = ag. Contradiction. If o = (1 3) then a3 — ay = a3 — ay. So
az = 2a;. If 0 = (2 3) we get a similar contradiction. If o = (1 2 3) then we have
s — a3 = a1 — . By symmetry (using the transitive action of the Galois group) we
must also have 2a; = as + ag. Taking the sum of the two equations we get 3a; = 3as
and a; = ag. Contradiction. And the case o = (1 3 2) is similar. We conclude that
o is the identity. By the Galois correspondence, F'(a; — o) must be the splitting
field K.

(b) Note that x®> — z — 1 is irreducible in F3[x] because it has no root. Let Fy; =
Fs[z]/(x® — x — 1) be the field with 27 element, and let o = x + (23 — 2 — 1) € Foy.
The Frobenius map ¢ acts by ¢(a) = a® = a+1 and ¢*(a) = p(a+1) = a+2, and
¢*(a) = a. Since {ay, @z, a3} = {a,a + 1,a + 2} we have that a3 — ay € F3, but
ay € F3. We conclude that K # F(a; — ).

(3) Suppose that A is a 2 x 2 matrix with real entries that is conjugate to its square A2.

What are the possible rational canonical forms for A?
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Solution. Suppose that )\ is an eigenvalue and not equal to 0 or 1. Then A\? an
eigenvalue of A? and therefore of A. Now A is another eigenvalue so A\* € {\, A\?}. If
At = A2 then A = —1. In that case A has eigenvalues —1,1 and A? has eigenvalues
1,1 which is not possible. So M = X and M* =1 = (A —-1)(A2+ X+ 1) =0, so
A2+ X+ 1=0. We conclude that A € {0, 1, ¢, ¢(?} where ¢ = €**/3 is a primitive 3rd
root of unity. The possible pairs of eigenvalues are (0,0), (1,0), (1,1), (¢, ¢?).

Case (0,0). If the invariant factors are z%, then the rational canonical form is

(o)

and A% = 0 is not conjugate to A. Contradiction. So the invariant factors are x, x.
So A = 0 and the rational canonical form is

0 0
w6 o)

Case (0,1). The invariant factors are z(x — 1) = 2% — z, the rational canonical

form is
00
m= (1)

Case (1,1). The invariant factors are (z — 1), (x —1) or (x —1)*> = 2> — 2z +1 and
the possible rational canonical forms are

10 0 —1
w=(or) m= (03

Case (¢,¢?). In this case, the minimum polynomial must be (z — {)(z — ¢?) =
2?4+ x + 1 and the rational canonical form is

0 -1
=i 5)
For each i we verify that the rational canonical form of R? is equal to R;.

Let R be the ring

ZIV2] = {a+bV2+ V4| a,b,c € L}
and I = (5) be the ideal of R generated by 5. Write R/(5) as a product of fields.
Solution. We have R = Z[z]/(2* — 2) and R/(5) = Fs[z]/ (2 — 2). Now 2* — 2 has a

root, namely 3 = —2, so 2° — 2 = (x + 2)(2? — 2z — 1). We verify that 2> — 3z — 1
does not have a root in in F5. So we have

R/(5) = Fslx]/(x 4+ 2) x Fs[x]/(2* — 22 — 1) 2 F5 x Fys.

Suppose that p, g, r are distinct prime numbers, and ®,,.(z) € Z[z] is the gr-th cy-
clotomic polynomial. For which p, g, r is ®,,(x) irreducible as a polynomial in [F,|x]
after reducing its coefficients modulo p?
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Solution. Let ¢ : K — K be the Frobenius automorphism a + aP that generates
the Galois group K/F,. Let d be the order of the congruence class p + (¢r) in
Z/(qr)* =7Z/(q)* X Z/(r)* =7Z/(q—1) x Z/(r — 1). The polynomial

fl&) = (2 - )z — ) - (a — @)
is invariant under ¢, so it lies in F,[z]. Also, f(z) is irreducible because the Galois
group acts transitively on the roots. So f(z) is the minimum polynomial of «, and
must divide ®,,.(z). Now ®,,.(x) is irreducible if and only if f(x) = &, () and this is
true if and only if d = (¢ —1)(r—1). If d=(¢—1)(r—1) then Z/(q¢—1) x Z/(r — 1)
is cyclic, and ¢ — 1 and r — 1 are relatively prime. In particular, ¢ = 2 or r = 2.
Suppose ¢ = 2. Then d = (¢ — 1)(r — 1) = (r — 1) if and only if p + (r) generates

Z/(r)*.
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Justify your answers.

(1)

Let K/Q be a field extension, and suppose that «, 5 € K satisfy K = Q(«, ) and
a? = 33,

(a) Show that if 5 € Q(«) then [K : Q] < oo.

(b) If [K : Q] = oo, show that Q(a) NQ(B) = Q(a?).

Solution: If f =0 then a = 0 so K = Q, whence the conclusion of (a) holds and the
hypothesis of (b) does not hold. Henceforth assume 5 # 0, and put v := o/f € K.
Then v = 3 and 7* = a, so K = Q(v). Suppose that [K : Q] = co, or equivalently
that v is transcendental over Q. For any rational function f(X) € Q[X] of degree
n > 0, write f(X) = a(X)/b(X) where a,b are coprime polynomials in Q[X]| with
max(deg a,degb) = n, and put ¢t := f(v), which is transcendental over Q. Then ~
is a root of the degree-n polynomial m(X) := a(X) —t-b(X) in (Q(¢))[X]. This
polynomial is irreducible in (Q[t])[X] since its t-degree is 1 and ged(a,b) = 1, so
by Gauss’s lemma it is irreducible in (Q(¢))[X]. Thus [Q(y) : Q(¢)] = degm = n.
Plainly L := Q(a) N Q(8) contains Q(a?), so that [K : L] < [K : Q(a?)] = [Q(v) :
Q%)) = 6. But [K : L] is divisible by both [K : Q(a)] = [Q(y) : Q(7?)] = 3 and
[K:Q(B) = [Q(7) : Q(»*)] = 2, and hence by 6, so [K : L] = 6 and thus L = Q(a?).
This proves (b). Moreover, since [K : L] =6 # 3 = [K : Q(«)], we have 8 ¢ Q(«),
yielding the contrapositive of (a).

Let G be a finite subgroup of the group GL,(Q) of invertible n-by-n matrices with
rational coefficients. Prove that every prime p which divides the order of G must
satisfy p < n + 1.

Solution. By Cauchy’s theorem, G contains an element A of order p. By Cayley—
Hamilton, A is killed by its characteristic polynomial f4(z), which is a degree-n
polynomial in Q[z]. Thus the minimal polynomial ma(x) of A is a nonconstant
monic polynomial in Q[x] which divides fa(z). But ma(z) also divides 27 — 1, and is
not « — 1, so it must be either 27 — 1 or (2 — 1)/(x — 1) (since the latter polynomial
is irreducible in Q[z]). Therefore p — 1 < degma < deg fa = n.

Let R := K[X,Y] be the polynomial ring in two variables over the field K. Show
that the ideal M := (X,Y) of R can be written as the union of prime ideals of R
which are properly contained in M.

Solution. Here M consists of all elements of R having zero constant term. For any
nonzero f € M, we may write f as the product of irreducible polynomials in R, at

least one of which must have zero constant term and hence must be in M. Since R is a
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unique factorization domain, the ideal generated by any such irreducible polynomial
p is a prime ideal, and this prime ideal contains f and must be properly contained
in M since it cannot contain both X and Y because p cannot divide both X and Y.
Thus R is the union of the collection of all such prime ideals (p).

(4) Let H and J be subgroups of the finite group G such that the indices [G : H] and
|G : J] are coprime. Show that every element of G can be written as hj for some
h e H and j € J.

Solution. Since [G : HNJ| =[G : H]-[H : HNJ], in particular [G : H N J] is
divisible by [G : H], and similarly by [G : J], so [G : H N J] is divisible by the lem
of [G: H] and [G : J], which is [G : H] - [G : J] since these indices are coprime. The
subset HJ :={hj: h € H,j € J} of G has cardinality

#H-#J  #G-[G:HNJ]

#HNJ) G:H]-[G:J]’
which is a multiple of #G and hence must equal #G, so HJ = G.

(5) Show that the tensor product of Z-modules Q/Z ®z Q/Z = 0.

Solution. For any a,b € Q, we can write a = m/n with m,n € Z and n # 0, so that
(a+Z)@(b+Z)=n-((a+Z)® (b/n+7Z)) = ((na) +Z) ® (b/n+Z) =
=(m+2Z)®@b/n+2)=0+2)® (b/n+7Z)=0.
Because the module (Q/Z) ®7 (Q/Z) is generated by such elements, it is equal to 0.



