QR Exam Algebra May 2, 2018 Morning

Justify your answers.

(1) Classify all finite groups G (up to isomorphism) that have only one automorphism.

Solution. Suppose that the finite group G has only 1 automorphism. For $g \in G$, we have an automorphism $\varphi_g : G \to G$ defined by $\varphi_g(h) = ghg^{-1}$. From the assumption on G follows that φ_g is the identity, and $ghg^{-1} = h$ for all $g, h \in G$. So G is commutative. Let $\psi : G \to G$ be defined by $\psi(g) = g^{-1}$. Since ψ is the identity, we have $g^2 = 1$ for all $g \in G$. This shows that G is isomorphic to the group $(\mathbb{Z}/2\mathbb{Z})^r$. If $r \geq 2$ then we can permute the factors. So $r \leq 1$ and G is either trivial or isomorphic to $\mathbb{Z}/2\mathbb{Z}$. Clearly these two groups have no non-trivial automorphisms.

- (2) Suppose that F is a field, $p(x) \in F[x]$ is a separable, irreducible polynomial of degree 3 with roots $\alpha_1, \alpha_2, \alpha_3$.
 - (a) Show that if the characteristic of F is not 2 or 3, then $F(\alpha_1, \alpha_2, \alpha_3) = F(\alpha_1 \alpha_2)$.
 - (b) Show that if F has characteristic 3, then it is possible that $F(\alpha_1, \alpha_2, \alpha_3) \neq F(\alpha_1 \alpha_2)$.

Solution.

(a) Since p(x) is separable, $\alpha_1, \alpha_2, \alpha_3$ are distinct. Let $K = F(\alpha_1, \alpha_2, \alpha_3)$ be the splitting field of p(x). Since K/F is a splitting field of a separable polynomial, it is a Galois extension. Let G be the Galois group. Suppose that σ is a nontrivial automorphism with $\sigma(\alpha_1 - \alpha_2) = \alpha_1 - \alpha_2$. If $\sigma = (1 \ 2)$, then we have $\alpha_2 - \alpha_1 = \sigma(\alpha_1 - \alpha_2) = \alpha_1 - \alpha_2$, so $2\alpha_1 = 2\alpha_2$ and $\alpha_1 = \alpha_2$. Contradiction. If $\sigma = (1 \ 3)$ then $\alpha_3 - \alpha_2 = \alpha_1 - \alpha_2$. So $\alpha_3 = 2\alpha_1$. If $\sigma = (2 \ 3)$ we get a similar contradiction. If $\sigma = (1 \ 2 \ 3)$ then we have $\alpha_2 - \alpha_3 = \alpha_1 - \alpha_2$. By symmetry (using the transitive action of the Galois group) we must also have $2\alpha_1 = \alpha_2 + \alpha_3$. Taking the sum of the two equations we get $3\alpha_1 = 3\alpha_3$ and $\alpha_1 = \alpha_3$. Contradiction. And the case $\sigma = (1 \ 3 \ 2)$ is similar. We conclude that σ is the identity. By the Galois correspondence, $F(\alpha_1 - \alpha_2)$ must be the splitting field K.

(b) Note that $x^3 - x - 1$ is irreducible in $\mathbb{F}_3[x]$ because it has no root. Let $\mathbb{F}_{27} = \mathbb{F}_3[x]/(x^3 - x - 1)$ be the field with 27 element, and let $\alpha = x + (x^3 - x - 1) \in \mathbb{F}_{27}$. The Frobenius map ϕ acts by $\phi(\alpha) = \alpha^3 = \alpha + 1$ and $\phi^2(\alpha) = \phi(\alpha + 1) = \alpha + 2$, and $\phi^3(\alpha) = \alpha$. Since $\{\alpha_1, \alpha_2, \alpha_3\} = \{\alpha, \alpha + 1, \alpha + 2\}$ we have that $\alpha_1 - \alpha_2 \in \mathbb{F}_3$, but $\alpha_1 \notin \mathbb{F}_3$. We conclude that $K \neq F(\alpha_1 - \alpha_2)$.

(3) Suppose that A is a 2×2 matrix with real entries that is conjugate to its square A^2 . What are the possible rational canonical forms for A? Solution. Suppose that λ is an eigenvalue and not equal to 0 or 1. Then λ^2 an eigenvalue of A^2 and therefore of A. Now λ^4 is another eigenvalue so $\lambda^4 \in \{\lambda, \lambda^2\}$. If $\lambda^4 = \lambda^2$ then $\lambda = -1$. In that case A has eigenvalues -1, 1 and A^2 has eigenvalues 1, 1 which is not possible. So $\lambda^4 = \lambda$ and $\lambda^3 - 1 = (\lambda - 1)(\lambda^2 + \lambda + 1) = 0$, so $\lambda^2 + \lambda + 1 = 0$. We conclude that $\lambda \in \{0, 1, \zeta, \zeta^2\}$ where $\zeta = e^{2\pi/3}$ is a primitive 3rd root of unity. The possible pairs of eigenvalues are $(0, 0), (1, 0), (1, 1), (\zeta, \zeta^2)$.

Case (0,0). If the invariant factors are x^2 , then the rational canonical form is

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

and $A^2 = 0$ is not conjugate to A. Contradiction. So the invariant factors are x, x. So A = 0 and the rational canonical form is

$$R_1 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Case (0,1). The invariant factors are $x(x-1) = x^2 - x$, the rational canonical form is

$$R_2 = \begin{pmatrix} 0 & 0\\ 1 & 1 \end{pmatrix}$$

Case (1, 1). The invariant factors are (x - 1), (x - 1) or $(x - 1)^2 = x^2 - 2x + 1$ and the possible rational canonical forms are

$$R_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad R_4 = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$$

Case (ζ, ζ^2) . In this case, the minimum polynomial must be $(x - \zeta)(x - \zeta^2) = x^2 + x + 1$ and the rational canonical form is

$$R_5 = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$$

For each *i* we verify that the rational canonical form of R_i^2 is equal to R_i .

(4) Let R be the ring

$$\mathbb{Z}[\sqrt[3]{2}] = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} \mid a, b, c \in \mathbb{Z}\}$$

and I = (5) be the ideal of R generated by 5. Write R/(5) as a product of fields.

Solution. We have $R \cong \mathbb{Z}[x]/(x^3-2)$ and $R/(5) \cong \mathbb{F}_5[x]/(x^3-2)$. Now x^3-2 has a root, namely 3 = -2, so $x^3-2 = (x+2)(x^2-2x-1)$. We verify that x^2-3x-1 does not have a root in in \mathbb{F}_5 . So we have

$$R/(5) \cong \mathbb{F}_5[x]/(x+2) \times \mathbb{F}_5[x]/(x^2-2x-1) \cong \mathbb{F}_5 \times \mathbb{F}_{25}.$$

(5) Suppose that p, q, r are distinct prime numbers, and $\Phi_{qr}(x) \in \mathbb{Z}[x]$ is the qr-th cyclotomic polynomial. For which p, q, r is $\Phi_{qr}(x)$ irreducible as a polynomial in $\mathbb{F}_p[x]$ after reducing its coefficients modulo p?

Solution. Let $\phi : K \to K$ be the Frobenius automorphism $\alpha \mapsto \alpha^p$ that generates the Galois group K/\mathbb{F}_p . Let d be the order of the congruence class p + (qr) in $\mathbb{Z}/(qr)^{\times} = \mathbb{Z}/(q)^{\times} \times \mathbb{Z}/(r)^{\times} = \mathbb{Z}/(q-1) \times \mathbb{Z}/(r-1)$. The polynomial

$$f(x) = (x - \alpha)(x - \alpha^p) \cdots (x - \alpha^{p^{d-1}})$$

is invariant under ϕ , so it lies in $\mathbb{F}_p[x]$. Also, f(x) is irreducible because the Galois group acts transitively on the roots. So f(x) is the minimum polynomial of α , and must divide $\Phi_{qr}(x)$. Now $\Phi_{qr}(x)$ is irreducible if and only if $f(x) = \Phi_{qr}(x)$ and this is true if and only if d = (q-1)(r-1). If d = (q-1)(r-1) then $\mathbb{Z}/(q-1) \times \mathbb{Z}/(r-1)$ is cyclic, and q-1 and r-1 are relatively prime. In particular, q = 2 or r = 2. Suppose q = 2. Then d = (q-1)(r-1) = (r-1) if and only if p + (r) generates $\mathbb{Z}/(r)^{\times}$.

QR Exam Algebra May 2, 2018 Afternoon

Justify your answers.

- (1) Let K/\mathbb{Q} be a field extension, and suppose that $\alpha, \beta \in K$ satisfy $K = \mathbb{Q}(\alpha, \beta)$ and $\alpha^2 = \beta^3$.
 - (a) Show that if $\beta \in \mathbb{Q}(\alpha)$ then $[K : \mathbb{Q}] < \infty$.
 - (b) If $[K : \mathbb{Q}] = \infty$, show that $\mathbb{Q}(\alpha) \cap \mathbb{Q}(\beta) = \mathbb{Q}(\alpha^2)$.

Solution: If $\beta = 0$ then $\alpha = 0$ so $K = \mathbb{Q}$, whence the conclusion of (a) holds and the hypothesis of (b) does not hold. Henceforth assume $\beta \neq 0$, and put $\gamma := \alpha/\beta \in K$. Then $\gamma^2 = \beta$ and $\gamma^3 = \alpha$, so $K = \mathbb{Q}(\gamma)$. Suppose that $[K : \mathbb{Q}] = \infty$, or equivalently that γ is transcendental over \mathbb{Q} . For any rational function $f(X) \in \mathbb{Q}[X]$ of degree n > 0, write f(X) = a(X)/b(X) where a, b are coprime polynomials in $\mathbb{Q}[X]$ with max(deg a, deg b) = n, and put $t := f(\gamma)$, which is transcendental over \mathbb{Q} . Then γ is a root of the degree-n polynomial $m(X) := a(X) - t \cdot b(X)$ in $(\mathbb{Q}(t))[X]$. This polynomial is irreducible in $(\mathbb{Q}[t])[X]$ since its t-degree is 1 and gcd(a, b) = 1, so by Gauss's lemma it is irreducible in $(\mathbb{Q}(t))[X]$. Thus $[\mathbb{Q}(\gamma) : \mathbb{Q}(t)] = \deg m = n$. Plainly $L := \mathbb{Q}(\alpha) \cap \mathbb{Q}(\beta)$ contains $\mathbb{Q}(\alpha^2)$, so that $[K : L] \leq [K : \mathbb{Q}(\alpha^2)] = [\mathbb{Q}(\gamma) : \mathbb{Q}(\gamma^6)] = 6$. But [K : L] is divisible by both $[K : \mathbb{Q}(\alpha)] = [\mathbb{Q}(\gamma) : \mathbb{Q}(\gamma^3)] = 3$ and $[K : \mathbb{Q}(\beta) = [\mathbb{Q}(\gamma) : \mathbb{Q}(\gamma^2)] = 2$, and hence by 6, so [K : L] = 6 and thus $L = \mathbb{Q}(\alpha^2)$. This proves (b). Moreover, since $[K : L] = 6 \neq 3 = [K : \mathbb{Q}(\alpha)]$, we have $\beta \notin \mathbb{Q}(\alpha)$, yielding the contrapositive of (a).

(2) Let G be a finite subgroup of the group $\operatorname{GL}_n(\mathbb{Q})$ of invertible *n*-by-*n* matrices with rational coefficients. Prove that every prime p which divides the order of G must satisfy $p \leq n+1$.

Solution. By Cauchy's theorem, G contains an element A of order p. By Cayley– Hamilton, A is killed by its characteristic polynomial $f_A(x)$, which is a degree-n polynomial in $\mathbb{Q}[x]$. Thus the minimal polynomial $m_A(x)$ of A is a nonconstant monic polynomial in $\mathbb{Q}[x]$ which divides $f_A(x)$. But $m_A(x)$ also divides $x^p - 1$, and is not x - 1, so it must be either $x^p - 1$ or $(x^p - 1)/(x - 1)$ (since the latter polynomial is irreducible in $\mathbb{Q}[x]$). Therefore $p - 1 \leq \deg m_A \leq \deg f_A = n$.

(3) Let R := K[X, Y] be the polynomial ring in two variables over the field K. Show that the ideal $M := \langle X, Y \rangle$ of R can be written as the union of prime ideals of R which are properly contained in M.

Solution. Here M consists of all elements of R having zero constant term. For any nonzero $f \in M$, we may write f as the product of irreducible polynomials in R, at least one of which must have zero constant term and hence must be in M. Since R is a

unique factorization domain, the ideal generated by any such irreducible polynomial p is a prime ideal, and this prime ideal contains f and must be properly contained in M since it cannot contain both X and Y because p cannot divide both X and Y. Thus R is the union of the collection of all such prime ideals $\langle p \rangle$.

(4) Let H and J be subgroups of the finite group G such that the indices [G : H] and [G : J] are coprime. Show that every element of G can be written as hj for some $h \in H$ and $j \in J$.

Solution. Since $[G : H \cap J] = [G : H] \cdot [H : H \cap J]$, in particular $[G : H \cap J]$ is divisible by [G : H], and similarly by [G : J], so $[G : H \cap J]$ is divisible by the lcm of [G : H] and [G : J], which is $[G : H] \cdot [G : J]$ since these indices are coprime. The subset $HJ := \{hj : h \in H, j \in J\}$ of G has cardinality

$$\frac{\#H\cdot\#J}{\#(H\cap J)} = \frac{\#G\cdot[G:H\cap J]}{[G:H]\cdot[G:J]},$$

which is a multiple of #G and hence must equal #G, so HJ = G.

(5) Show that the tensor product of \mathbb{Z} -modules $\mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z} = 0$.

Solution. For any $a, b \in \mathbb{Q}$, we can write a = m/n with $m, n \in \mathbb{Z}$ and $n \neq 0$, so that $(a + \mathbb{Z}) \otimes (b + \mathbb{Z}) = n \cdot ((a + \mathbb{Z}) \otimes (b/n + \mathbb{Z})) = ((na) + \mathbb{Z}) \otimes (b/n + \mathbb{Z}) =$ $= (m + \mathbb{Z}) \otimes (b/n + \mathbb{Z}) = (0 + \mathbb{Z}) \otimes (b/n + \mathbb{Z}) = 0.$

Because the module $(\mathbb{Q}/\mathbb{Z}) \otimes_Z (\mathbb{Q}/\mathbb{Z})$ is generated by such elements, it is equal to 0.