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HARM

(1) Suppose that G is a finite group and

G0 = {e} ⊂ G1 ⊂ · · · ⊂ Gn−1 ⊂ Gn = G

is a chain of subgroups such that the set Gi/Gi−1 has at most 4 elements for i =
1, 2 . . . , n. Prove that G is solvable.

(2) Suppose that q is a prime power, Fq is the field with q elements and A is an invertible
n × n matrix with entries in Fq. If the minimal polynomial of A is multiplicity free
(i.e., it is not divisible by the square of an irreducible polynomial), show that A and
Aq are conjugate.

(3) Suppose that V1, V2 . . . , Vr are nonzero subspaces of the R-vector space V such that
V1+V2+· · ·+Vr = V . Let d1, d2, . . . , dr be the dimensions of V1, V2, . . . , Vr respectively.
Let W be the subspace of

∧r V spanned by all w1 ∧ w2 ∧ · · · ∧ wr with wi ∈ Vi for
all i. Show that

dimV = d1 + d2 + · · ·+ dr

if and only if
dimW = d1d2 · · · dr.

(4) (a) Let ζ12 = e2πi/12 be a primitive 12-th root of unity. Show that ζ1112 − ζ712 =
√

3.
(b) Let K be the splitting field of X12−3 over Q. What is the degree of the extension

K/Q?
(c) What is the Galois group of K/Q and how does it act on the roots of X12 − 3?

(5) Suppose that R is an integral domain in which every ideal is finitely generated (i.e.,
R is noetherian), and for every a ∈ R there exists an element b ∈ R with b2 = a.
Show that R is a field.

(6) Let H be the subgroup of the symmetric group S8 generated by the 3 elements
σ1 = (1 2), σ2 = (1 3)(2 4) and σ3 = (1 5)(2 6)(3 7)(4 8). Show that H is a 2-Sylow
subgroup.

(7) Suppose that V is an R-vector space of dimension 5, and 〈·, ·〉 is a symmetric bilinear
form on V . A subspace W of V is called totally isotropic if the restriction of 〈·, ·〉 to
W is equal to 0. Suppose that the largest possible dimension of a totally isotropic
subspace is 2. What are the possibilities for the signature of 〈·, ·〉?

(8) Suppose that R is a finite commutative ring with identity. Show that there exists a
ring isomorphism between R and a product R1 × R2 × · · · × Rd of rings, such that
the number of elements in Ri is a prime power for every i.

(9) Assume that L is a Galois extension of the field K with an abelian Galois group G
of order 216 = 2333. Suppose that there are exactly 28 subfields M of L such that
M is a field extension of K of degree 2232 = 36. Determine G.

(10) Suppose that F is a field, V is an F -vector space and v1, v2, v3, v4 ∈ V such that

v1 ⊗ v1 ⊗ v1, v2 ⊗ v2 ⊗ v2, v3 ⊗ v3 ⊗ v3, v4 ⊗ v4 ⊗ v4 ∈ V ⊗ V ⊗ V
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are linearly dependent. Show that vj = λvi for some λ ∈ F and some i, j with i 6= j.

2



(1) We prove the statement by induction on n. The case n = 0 is clear. The group Gn

acts on Gn/Gn−1. Let H be the kernel of this action. Then Gn/H is a subgroup of S4.
The group S4 is solvable, so Gn/H is solvable as well. By the induction hypothesis,
Gn−1 is solvable. So H is solvable because it is contained in Gn−1. Since Gn/H and
H are solvable, Gn is solvable.

(2) Suppose that the characteristic polynomial c(X) of A is irreducible. Then we have
c(Aq) = c(A)q = 0 So the minimal polynomial of Aq divides c(X) and must therefore
be c(X). So A and Aq have the same invariant factors, namely just c(X). This shows
that A and Aq are conjugate. More generally, if the minimal polynomial of A does
not have multiplicities, then the elementary divisors are all irreducible. With respect
to some basis, A has a block diagonal form with diagonal blocks A1, A2, . . . , Ar each
with an irreducible characteristic polynomial. Now Ai and Aqi are conjugate for all i,
so A and Aq are conjugate.

(3) We have a surjective linear map

ϕ : V1 ⊕ V2 ⊕ · · · ⊕ Vr → V

defined by ϕ(v1, . . . , vr) = v1 + · · ·+ vr and a surjective linear map

ψ : V1 ⊗ V2 ⊗ · · · ⊗ Vr → W

with the property ψ(v1 ⊗ v2 ⊗ · · · ⊗ vr) = v1 ∧ v2 ∧ · · · ∧ vr.
We have to show that ϕ is injective if and only if ψ is injective.
Suppose ϕ is not injective. Choose (v1, v2, . . . , vr) in the kernel. Then v1+v2+· · ·+

vr = 0, After permuting V1, . . . , Vr we may assume without loss of generality v1, . . . , vs
are nonzero, and vs+1 = · · · = vr = 0. Choose v′j ∈ Vj nonzero for j = s + 1, . . . , r.
We have v1 + · · ·+ vs = 0, so

ψ(v1 ⊗ · · · ⊗ vs ⊗ v′s+1 ⊗ · · · ⊗ v′r) = v1 ∧ · · · ∧ vs ∧ v′s+1 ∧ · · · ∧ v′r = 0

so ψ is not injective.
Suppose that ϕ is injective (and hence an isomorphism). We can choose a basis

vi,1, vi,2, . . . , vi,di of Vi for all i. Then vi,1, . . . , vi,d1 , v2,1, . . . , v2,d2 , . . . , vr,dr is a basis of
V , and

ϕ(v1,j1 ⊗ v2,j2 ⊗ · · · ⊗ vr,jr) = v1,j1 ∧ v2,j2 ∧ · · · ∧ vr,jr
is a basis of W if jk ranges from 1 to dk for all i. This shows that ϕ is injective.

(4) (a) Note that ζ312 = ζ4 = i, ζ412 = ζ3 = −1
2

+ 1
2

√
3i and ζ812 = ζ23 = −1

2
− 1

2

√
3i. So we

have

ζ1112 − ζ712 = ζ812ζ
3
12 − ζ412ζ312 = (−1

2
− 1

2

√
3i)i− (−1

2
+ 1

2

√
3i)i =

√
3.

(b) The splitting field is K = Q( 12
√

3, ζ12). Let M = Q(ζ12). Then we have
√

3 ∈M ,
so 12
√

3 satisfies the equation X6−
√

3 = 0 over M . This shows that [K : M ] ≤ 6.
Also [M : Q] = φ(12) = 4. It follows that

[K : Q] = [K : M ][M : Q] ≤ 6 · 4 = 24.

On the other hand, let L = Q( 12
√

3). Because of Eisenstein’s criterion, X12 − 3
is irreducible over Q, so [L : Q] = 12. Since ζ12 is not real, it does not lie in L,
so [K : L] ≥ 2 and [K : Q] = [K : L][L : Q] ≥ 2 · 12 = 24. We conclude that
[K : Q] = 12.
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(c) Let us order the roots as 12
√

3, ζ12
12
√

3, . . . , , ζ1112
12
√

3. Then the Galois group
is generated by a 12-cycle (1 2 3 · · · 12) and complex conjugation, which is
(2 12)(3 11)(4 10)(5 9)(6 8). So the Galois group is the dihedral group of order
24.

(5) Suppose that a ∈ R is nonzero. We construct a sequence a0, a1, a2, . . . by a0 = a,
a2n+1 = an for all n ≥ 0. Let I = (a0, a1, a2, . . . ). Then I is finitely generated and for
some k, I is generated by a0, a1, . . . , ak. But then I is generated by ak. In particular,
we have ak+1 = bak for some b ∈ R and ak = a2k+1 = b2a2k. Since ak is nonzero, we
can cancel and get 1 = b2ak. This shows that ak is a unit, and therefore a is a unit
because it is a power of ak. Every nonzero element in R is a unit, so R is a field.

(6) we have 8! = 27 ·(7·3·5·3). So a 2-Sylow subgroup is a subgroup with 27 elements. We
have σ′1 = σ2σ1σ2 = (3 4). The group generated by σ1, σ

′
1 has order 4 and does not

contain σ2, and σ2 normalizeds the subgroup of order 4. So the group H1 generated
by σ1 and σ2 has 23 = 8 elements. Let H2 = σ3H1σ3. Then H1 ×H2 is a subgroup
of 26 elemetns. Now σ3 does not lie in H1 ×H2, so H/(H1 ×H2) has order 2, and H
has order 27 elements.

(7) Suppose that the signature is (a, b, 5−a−b). There exists a subspace A of dimension a
on which 〈·, ·〉 is positive definite. Suppose that the restriction of 〈·, ·〉 to W is trivial.
If A ∩W contains a nonzero vector, then 〈v, v〉 = 0 because v ∈ W and 〈v, v〉 > 0
because v ∈ A. Contradiction, so A ∩ W = 0, and dimW ≤ 5 − a. Similarly
dimW ≤ 5− b so 2 = dimW ≤ 5−max{a, b}. This shows that max{a, b} ≤ 3. On
the other hand, the matrix of 〈·, ·〉 with respect to some basis v1, . . . , vn isIa 0 0

0 −Ib 0
0 0 0


If s = min{a, b}, and U is the span of v1 + va+1, . . . , vs + va+s, va+b+1, . . . , v5 then the
restriction of 〈·, ·〉 to U is trivial, and 2 ≥ dimU = s + 5 − a − b = 5 − max{a, b}.
This shows that max{a, b} ≥ 3. We conclude that max{a, b} = 3.

We have the following possibilities. (3, 0, 2), (0, 3, 2), (3, 1, 1), (1, 3, 1), (3, 2, 0), (0, 3, 0).
(8) Consider the ring homomorphism ϕ : Z → R with ϕ(1) = 1R. Then the kernel is a

principal ideal (n) where n is a positive integer. We can write n = pk11 · · · pkrr where
p1, . . . , pr are distinct (positive) primes and k1, . . . , kr are positive integers. Let pi be
the ideal in R generated by pkii . Then we have pi + pj = R for i 6= j. By the Chinese
Remainder Theorem, we get:

R ∼= R/(0) ∼= R/(p1 · · · pr) ∼= R/p1 × · · · ×R/pr.

The ring Ri = R/pi is a finite Z/(pkii )-module. Moreover, we have a chain

0 ⊂ pki−1i Ri ⊂ pki−2i Ri ⊂ · · · ⊂ piRi ⊂ Ri

such that pj−1i Ri/p
j
iRi is an R/pi-module for all j. It follows that pj−1i Ri/p

j
iRi is a

finite dimensional Fpi-vector space, hence its cardinality is a power of pi. We conclude
that

|Ri| =
ki∏
j=1

|pj−1i Ri/p
j
iRi|
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is a power of pi as well.
(9) Let G be the Galois Group. Then G = G2×G3 where G2 and G3 are abelian groups

of order 23 = 8 and 33 = 27. There are 3 possiblities for G2, namely Z/8, Z/4×Z/2
and Z/2×Z/2×Z/2. There are 3 possibilities for G3, namely Z/27, Z/9×Z/3 and
Z/3× Z/3× Z/3. A field M corresponds to a subgroup H of G of order 6. We can
write H = H2×H3 where H2 ⊂ G2 has order 2 and H3×G3 has order 3. The number
of choices for H2 are

Z/8 1
Z/4× Z/2 3

Z/2× Z/2× Z/2 7

The number of choices for H3 are

Z/27 1
Z/9× Z/3 4

Z/3× Z/3× Z/3 13

To count the number of subgroups, note that H2 and H3 are cyclic. For example, to
count the number of possibilities of H3 ⊆ Z/9×Z/3, we see that there are 3 elements
a in Z/9 with 3a = 0, and 3 elements b in Z/3 with 3b = 0. So there are 9 pairs
(a, b) with 3(a, b) = 0. If we exclude the identity, then there are 9 − 1 choices. But
for every subgroup isomorphic to Z/3 there are 2 choices for a generator, so there are
8/2 = 4 subgroups of Z/9× Z/3 of order 3.

If there are 28 = 7 · 4 choices for H, then the group must be

Z/2× Z/2× Z/2× Z/9× Z/3 ∼= Z/18× Z/6× Z/2.
(10) Suppose that

λ1v1 ⊗ v1 ⊗ v1 + λ2v2 ⊗ v2 ⊗ v2 + λ3v3 ⊗ v3 ⊗ v3 + λ4v4 ⊗ v4 ⊗ v4 = 0.

If v4 is not a multiple of v1, v2, v3 then there exist f1, f2, f3 ∈ V ? with fi(vi) = 0 and
fi(v4) = 1. If we apply f1 ⊗ f2 ⊗ f3 we get λ4 = 0. By symmetry, if fj is not a
multiple of fi for all i 6= j, then λj = 0.
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