QR Exam Algebra September 9, 2017 Morning

Justify your answers. The complex numbers, the real numbers and the finite field with p elements will be denoted by \mathbb{C} , \mathbb{R} and \mathbb{F}_p respectively.

- (1) Suppose that $f(X) \in \mathbb{F}_2[X]$ is a square-free polynomial of degree 5 with coefficients in \mathbb{F}_2 , and K is the splitting field of f(X). What are the possibilities for the Galois group of the field extension K/\mathbb{F}_2 ?
- (2) Suppose that V and W are nonzero finite dimensional \mathbb{R} -vector spaces. The vector space V is equipped with a symmetric bilinear form $(\cdot, \cdot)_V$ and W is equipped with a symmetric bilinear form $(\cdot, \cdot)_W$.
 - (a) Show that there exists a symmetric bilinear form $(\cdot, \cdot)_{V \otimes W}$ on $V \otimes W$ such that $(v_1 \otimes w_1, v_2 \otimes w_2)_{V \otimes W} = (v_1, v_2)_V (w_1, w_2)_W$ for all $v_1, v_2 \in V$ and $w_1, w_2 \in W$.
 - (b) Assume that $(\cdot, \cdot)_V$ and $(\cdot, \cdot)_W$ are positive definite. Show that $(\cdot, \cdot)_{V \otimes W}$ is positive definite as well.
- (3) Let R be a commutative ring with 1 and M an ideal of R.
 - (a) Show that, if M is both maximal and principal, then there is no ideal I of R such that $M \supseteq I \supseteq M^2$.
 - (b) Give an example of a commutative ring R, a maximal ideal M (but not necessarily principal) of R and an ideal I with $M \supseteq I \supseteq M^2$.
- (4) Define

$$B = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

- (a) Suppose that A is a complex 4×4 matrix with AB = 0. Describe the possibilities for the Jordan normal form of A.
- (b) Suppose that A is a complex 4×4 matrix with AB = BA = 0. Describe the possibilities for the Jordan normal form of A.
- (5) Suppose that G is a finite group with whose order is divisible by the prime number p and σ is an automorphism of G such that σ^p is the identity. Show that G has an element g of order p with $\sigma(g) = g$.

QR Exam Algebra September 9, 2017 Afternoon

Justify your answers. The complex numbers, the real numbers and the finite field with p elements will be denoted by \mathbb{C} , \mathbb{R} and \mathbb{F}_p respectively.

- (1) Suppose that A is a complex 5×5 matrix with minimal polynomial $X^5 X^3$.
 - (a) What is the characteristic polynomial of A^2 ?
 - (b) What is the minimal polynomial of A^2 ?
- (2) Let $G = \operatorname{GL}_n(\mathbb{F}_p)$ be the group of invertible $n \times n$ matrices with coefficients in \mathbb{F}_p , where p is prime. Then G acts by left multiplication on the \mathbb{F}_p -vector space $(\mathbb{F}_p)^n$ consisting of all n-high column vectors with entries in \mathbb{F}_p . This induces an action of G on the set S of chains of \mathbb{F}_p -vector spaces $0 \subsetneq V_1 \subsetneq V_2 \subsetneq \cdots \subsetneq V_n = (\mathbb{F}_p)^n$ in which $\dim V_i = i$.
 - (a) Determine the size of S.
 - (b) Describe the stabilizer in G of the chain in which V_i consists of all n-high column vectors whose bottom n-i entries are all zero.
- (3) Let $K = \mathbb{Q}(\sqrt[6]{3}, i)$.
 - (a) What is the degree of the field extension K/\mathbb{Q} ?
 - (b) Show that K/\mathbb{Q} is a Galois extension. What is the Galois group of this extension?
- (4) For which nonnegative integers a, b is the ring $\mathbb{Z}[X]/(bX-a)$ an integral domain?
- (5) Let G be a finite group without any proper characteristic subgroup. This means that for every subgroup H with $\{1\} \subsetneq H \subsetneq G$ there exists an automorphism σ of G such that $\sigma(H) \neq H$. Show that there is a simple group L and a positive integer k such that $G \cong \prod_{i=1}^k L$ is isomorphic to the direct product of k copies of L.

QR Exam Algebra September 9, 2017 Morning Solutions

- (1) Let d be the degree of the extension K/\mathbb{F}_2 . The Galois group is cyclic of order d. Note that there are two irreducible polynomials of degree 1 (X and X + 1), one irreducible polynomial of degree 2 $(X^2 + X + 1)$ and for each $d \geq 3$ there is at least 1 irreducible polynomial. The possibilities of the degrees of the factors of f are
 - (a) 1, 1, 3;
 - (b) 2, 3;
 - (c) 1, 4;
 - (d) 5.

The value of d is the least common multiple of the degrees of the factors, and has to be 3, 6, 4 or 5 respectively.

(2) (a) For fixed $v_2 \in V$ and $w_2 \in W$, the map

$$(v_1, w_1) \mapsto (v_1, v_2)_V(w_1, w_2)_W$$

is bilinear. By the universal property of tensor product, there exists a linear map

$$\psi_{v_2,w_2}:V\otimes W\to\mathbb{R}$$

such that

$$\psi_{v_2,w_2}(v_1 \otimes w_1) = (v_1,v_2)_V(w_1,w_2)_W.$$

The map $V \times W \to \operatorname{Hom}(V \otimes W, \mathbb{R})$ given by $(v_2, w_2) \mapsto \psi_{v_2, w_2}$ is bilinear, so there exists a linear map $\psi' : V \otimes W \to \operatorname{Hom}(V \otimes W, \mathbb{R})$ with

$$\psi'(v_2 \otimes w_2) = \psi'_{v_2, w_2}.$$

Now we define

$$(a_1, a_2)_{V \otimes W} = \psi'(a_1)(a_2).$$

Note that $(a_1, a_2)_{V \otimes W}$ is linear in a_2 because $\psi'(a_1)$ is linear, and it is linear in a_1 because ψ' is linear. To show symmetry, note that

$$\left(\sum_{i} v_{i} \otimes w_{i}, \sum_{j} v_{j} \otimes w_{j}\right)_{V \otimes W} = \sum_{i,j} (v_{i} \otimes w_{i}, v'_{j} \otimes w'_{j})_{V \otimes W} =$$

$$= \sum_{i,j} (v_{i}, v'_{j})_{V}(w_{i}, w'_{j})_{W} = \sum_{i,j} (v'_{j}, v_{i})_{V}(w'_{j}, w_{i}) = \left(\sum_{j} v'_{j} \otimes w'_{j}, v_{i} \otimes w_{i}\right)_{V \otimes W}.$$

- (b) We can choose a basis v_1, v_2, \ldots, v_n of V such that $(v_i, v_j)_V = \delta_{i,j}$ (Kronecker delta function) for all i, j. We can also choose a basis w_1, \ldots, w_m of W such that $(w_i, w_j)_W = \delta_{i,j}$. With respect to the basis $v_i \otimes w_j$ with $1 \leq i \leq n$ and $1 \leq j \leq m$, the bilinear form $(\cdot, \cdot)_{V \otimes W}$ is the usual inner product, so it is positive definite.
- (3) (a) Since A has rank at most 2, its Jordan normal form must also have rank at most 2. On the other hand, if J is a matrix in Jordan normal form and J has rank at most 2, then there exists an invertible matrix such that $C \text{ im}(B) \subseteq \text{ker}(J)$. So

 $C^{-1}JCB=0$. If we take $A=C^{-1}JC$, then AB=0 and J is the Jordan normal form of A. The possible Jordan normal forms of rank ≤ 2 are:

(i)

with $\lambda_1, \lambda_2 \in \mathbb{C}$;

(ii)

with $\lambda_1 \in \mathbb{C}$;

(iii)

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \lambda_1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

with $\lambda_1 \in \mathbb{C} \setminus \{0\}$;

(iv)

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

 (\mathbf{v})

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

(b) If AB = BA = 0 then A must be of the form

The characteristic polynomial is $X^3(X-d)$, so the Jordan normal form can have at most 1 nonzero eigenvalue (counted with multiplicity). Also, if $A^2=0$ then me must have d=0 and bc=0 and it follows that A has rank at most 1. In view of part (a), the only possibilities are

The Jordan normal form of A can be

(i)
$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda_1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

with $\lambda_1 \in \mathbb{C}$ or

(ii)

$$\begin{pmatrix}
\lambda_1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

with $\lambda_1 \in \mathbb{C}$.

(c)

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

case (i) appears when b = c = 0 and a = 1, case (ii) appears when a = b = c = 0 and case (iii) appears when a = d = 0 and b = c = 1.

- (4) (a) Suppose that M=(m). and $(m)=M\supsetneq I\supsetneq M^2=(m^2)$. Let $I'=\{a\in R\mid am\in I\}$ and $M'=\{a\in R\mid am\in M^2\}$. We have $M\subseteq M'\subseteq I'\subseteq R$ so I'=M or I'=R. If I'=R then we have $m\in I$ and I=M. If I'=M then for for every $b\in I$ we can write b=ma with $a\in I'=M$, so $b\in M^2$ and we conclude that $I=M^2$.
 - (b) For example $R = \mathbb{C}[X, Y], M = (X, Y), I = (X^2, Y) \text{ and } M^2 = (X^2, XY, Y^2).$
- (5) Let H be the subgroup of all elements $g \in G$ with $\sigma(g) = g$. The group $\langle \sigma \rangle$ acts on G and its orbits have 1 or p elements (because the orbit size has to divide the order of $\langle \sigma \rangle$). So $G \setminus H$ is a union of orbits of size p, and $|G \setminus H| = |G| |H|$ is divisible by p. Since |G| is divisible by p, we conclude that |H| is divisible by p. By Cauchy's theorem, H has an element of order p.

QR Exam Algebra September 9, 2017 Afternoon Solutions

(1) The minimum polynomial is equal to the characteristic polynomial. The matrix A must be conjugate to

and A^2 is conjugate to

- (a) The characteristic polynomial of A^2 (and B^2) is $X^3(X-1)^2$.
- (b) The minumum polynomial of A^2 (and B^2) is $X^2(X-1)$.
- (2) (a) For every $i \ V_i/V_{i-1}$ is a 1-dimensional subspace of $\mathbb{F}_p)^n/V_{i-1} \cong \mathbb{F}_p^{n-i+1}$ and the number of choices for this is $(p^{n-i+1}-1)/(p-1)$. These one dimensional subspaces uniquely determine the chain, so the total number of chains is

$$\frac{p^n-1}{n-1} \cdot \frac{p^{n-1}-1}{n-1} \cdots \frac{p-1}{n-1}$$
.

- (b) The stabilizer consists of the invertible upper triangular matrices.
- (3) (a) Let $L = \mathbb{Q}(\sqrt[6]{3})$. The field extension L/\mathbb{Q} has degree 6 because the minimum polynomial $X^6 3$ is irreducible by Eisenstein's criterion. The extension K/L has degree 2 because $i^2 \in L$ and $i \notin L$. So $[K : \mathbb{Q}] = [K : L] \cdot [L : \mathbb{Q}] = 2 \cdot 6 = 12$.
 - (b) Let $\zeta = (1+\sqrt{3}i)/2$ be the primitive 6-th root of unity and let M be the splitting field of $X^6 3$. Then M contains $\sqrt[6]{3}$ and $\zeta\sqrt[6]{3}$ and therefore ζ . Now M also contains $\sqrt{3}$ and $i = (2\zeta 1)/\sqrt{3}$. So M contains K. On the other hand, K contains ζ and $\sqrt[6]{3}$ and therefore it contains M. We conclude that K = M. So K = M is a splitting field and this implies that K/\mathbb{Q} is Galois. The Galois group is the dihedral group D_6 with 12 element. More precisely, the Galois group $K/\mathbb{Q}(\zeta)$ is generated by an automorphism σ of order 6 that sends $\sqrt[6]{3}$ to $\zeta\sqrt[6]{3}$. Let τ be complex conjugation. This is another automorphism of K/\mathbb{Q} . Note that $\tau\sigma\tau^{-1} = \sigma^{-1}$. Now τ and σ generate the dihedral group D_6 .
- (4) Let $R = \mathbb{Z}[X]/(bX a)$. We distinguish the following cases:
 - (a) If a = b = 0 then $R = \mathbb{Z}[X]$ which is an integral domain.
 - (b) If b = 0 and a = 1 then R = 0 is not an integral domain. (because in an integral domain $1 \neq 0$).
 - (c) If b = 0 and a = p is prime, then $R = \mathbb{F}_p[X]$ is an integral domain.

- (d) If b = 0 and a is not prime then R has zero divisors and is not an integral domain.
- (e) Suppose that b > 0 and $d = \gcd(a, b) \neq 1$. We can write a = a'd and b = b'd. In R we have d(b'X a') = 0 and $d, b'X a' \neq 0$. So R has zero divisors and is not an integral domain.
- (f) Suppose that b > 0 and $\gcd(a, b) = 1$. Define a ring homomorphism $\varphi : \mathbb{Z}[X] \to \mathbb{Q}$ by $\varphi(f(X)) = f(\frac{a}{b})$. The kernel is generated by bX a. Indeed if f(X) is a polynomial in the kernel, then $f(\frac{a}{b}) = 0$ so we can factor f(X) = g(X)(bX a) with $g(X) \in \mathbb{Q}[X]$. By Gauß' Lemma, g(X) has integer coefficients and f(X) lies in the ideal (bX a). By the first isomorphism theorem, $R = \mathbb{Z}[X]/(bX a)$ is isomorphic to the image of φ , which is an integral domain because it is a subring of the integral domain \mathbb{Q} .
- (5) Suppose that G is not trivial. Let L be a nontrivial normal subgroup of G. We may assume that L does not have a nontrivial subgroup that is normal in G and properly contained in L. For every automorphism σ of G, $\sigma(L)$ is also a normal subgroup. Suppose that

$$\{\sigma(L) \mid \sigma \text{ is an automorphism of } G\} = \{L_1, L_2, L_3, \dots, L_d\},\$$

where L_1, L_2, \ldots, L_d are distinct normal subgroups of G. By induction on r we show that $L_1L_2\cdots L_r$ is isomorphic to L^s for some s. The case r=1 is clear. Suppose that $L_1L_2\cdots L_r\cong L^s$. Then $(L_1L_2\cdots L_r)\cap L_{r+1}$ is a normal subgroup of L_{r+1} and must be isomorphic to L_{r+1} or $\{1\}$. In the first case, we have $L_1L_2\cdots L_{r+1}=L_1L_2\cdots L_r\cong L^s$. In the second case, $L_1L_2\cdots L_r$ and L_{r+1} are normal subgroups of $L_1L_2\cdots L_{r+1}$ with a trivial intersection, so $L_1L_2\cdots L_{r+1}=(L_1L_2\cdots L_r)\times L_{r+1}\cong L^s\times L=L^{s+1}$. Suppose that N is a normal subgroup of L that is not equal to L. Then $N\times\{0\}^{s-1}\subset L^s$ is a normal subgroup. By minimality of L, we see that N must be trivial. This proves that L is simple.