
QR Exam Algebra
September 9, 2017

Morning

Justify your answers. The complex numbers, the real numbers and the finite field with p
elements will be denoted by C, R and Fp respectively.

(1) Suppose that f(X) ∈ F2[X] is a square-free polynomial of degree 5 with coefficients
in F2, and K is the splitting field of f(X). What are the possibilities for the Galois
group of the field extension K/F2?

(2) Suppose that V and W are nonzero finite dimensional R-vector spaces. The vector
space V is equipped with a symmetric bilinear form (·, ·)V and W is equipped with
a symmetric bilinear form (·, ·)W .
(a) Show that there exists a symmetric bilinear form (·, ·)V⊗W on V ⊗W such that

(v1 ⊗ w1, v2 ⊗ w2)V⊗W = (v1, v2)V (w1, w2)W for all v1, v2 ∈ V and w1, w2 ∈ W .
(b) Assume that (·, ·)V and (·, ·)W are positive definite. Show that (·, ·)V⊗W is posi-

tive definite as well.

(3) Let R be a commutative ring with 1 and M an ideal of R.
(a) Show that, if M is both maximal and principal, then there is no ideal I of R

such that M % I %M2.
(b) Give an example of a commutative ring R, a maximal ideal M (but not neces-

sarily principal) of R and an ideal I with M % I %M2.
(4) Define

B =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 .

(a) Suppose that A is a complex 4×4 matrix with AB = 0. Describe the possibilities
for the Jordan normal form of A.

(b) Suppose that A is a complex 4 × 4 matrix with AB = BA = 0. Describe the
possibilities for the Jordan normal form of A.

(5) Suppose that G is a finite group with whose order is divisible by the prime number
p and σ is an automorphism of G such that σp is the identity. Show that G has an
element g of order p with σ(g) = g.
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QR Exam Algebra
September 9, 2017

Afternoon

Justify your answers. The complex numbers, the real numbers and the finite field with p
elements will be denoted by C, R and Fp respectively.

(1) Suppose that A is a complex 5× 5 matrix with minimal polynomial X5 −X3.
(a) What is the characteristic polynomial of A2?
(b) What is the minimal polynomial of A2?

(2) Let G = GLn(Fp) be the group of invertible n × n matrices with coefficients in Fp,
where p is prime. Then G acts by left multiplication on the Fp-vector space (Fp)

n

consisting of all n-high column vectors with entries in Fp. This induces an action of
G on the set S of chains of Fp-vector spaces 0 $ V1 $ V2 $ · · · $ Vn = (Fp)

n in which
dimVi = i.
(a) Determine the size of S.
(b) Describe the stabilizer in G of the chain in which Vi consists of all n-high column

vectors whose bottom n− i entries are all zero.
(3) Let K = Q( 6

√
3, i).

(a) What is the degree of the field extension K/Q?
(b) Show thatK/Q is a Galois extension. What is the Galois group of this extension?

(4) For which nonnegative integers a, b is the ring Z[X]/(bX − a) an integral domain?

(5) Let G be a finite group without any proper characteristic subgroup. This means that
for every subgroup H with {1} $ H $ G there exists an automorphism σ of G such
that σ(H) 6= H. Show that there is a simple group L and a positive integer k such

that G ∼=
∏k

i=1 L is isomorphic to the direct product of k copies of L.
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QR Exam Algebra
September 9, 2017
Morning Solutions

(1) Let d be the degree of the extension K/F2. The Galois group is cyclic of order d.
Note that there are two irreducible polynomials of degree 1 (X and X + 1), one
irreducible polynomial of degree 2 (X2 +X + 1) and for each d ≥ 3 there is at least
1 irreducible polynomial. The possibilities of the degrees of the factors of f are
(a) 1, 1, 3;
(b) 2, 3;
(c) 1, 4;
(d) 5.

The value of d is the least common multiple of the degrees of the factors, and has to
be 3, 6, 4 or 5 respectively.

(2) (a) For fixed v2 ∈ V and w2 ∈ W , the map

(v1, w1) 7→ (v1, v2)V (w1, w2)W

is bilinear. By the universal property of tensor product, there exists a linear
map

ψv2,w2 : V ⊗W → R
such that

ψv2,w2(v1 ⊗ w1) = (v1, v2)V (w1, w2)W .

The map V ×W → Hom(V ⊗W,R) given by (v2, w2) 7→ ψv2,w2 is bilinear, so
there exists a linear map ψ′ : V ⊗W → Hom(V ⊗W,R) with

ψ′(v2 ⊗ w2) = ψ′v2,w2
.

Now we define

(a1, a2)V⊗W = ψ′(a1)(a2).

Note that (a1, a2)V⊗W is linear in a2 because ψ′(a1) is linear, and it is linear in
a1 because ψ′ is linear. To show symmetry, note that(∑

i

vi ⊗ wi,
∑
j

vj ⊗ wj

)
V⊗W

=
∑
i,j

(vi ⊗ wi, v
′
j ⊗ w′j)V⊗W =

=
∑
i,j

(vi, v
′
j)V (wi, w

′
j)W =

∑
i,j

(v′j, vi)V (w′j, wi) =
(∑

j

v′j ⊗ w′j, vi ⊗ wi

)
V⊗W

.

(b) We can choose a basis v1, v2, . . . , vn of V such that (vi, vj)V = δi,j (Kronecker
delta function) for all i, j. We can also choose a basis w1, . . . , wm of W such
that (wi, wj)W = δi,j. With respect to the basis vi ⊗ wj with 1 ≤ i ≤ n and
1 ≤ j ≤ m, the bilinear form (·, ·)V⊗W is the usual inner product, so it is positive
definite.

(3) (a) Since A has rank at most 2, its Jordan normal form must also have rank at most
2. On the other hand, if J is a matrix in Jordan normal form and J has rank at
most 2, then there exists an invertible matrix such that C im(B) ⊆ ker(J). So
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C−1JCB = 0. If we take A = C−1JC, then AB = 0 and J is the Jordan normal
form of A. The possible Jordan normal forms of rank ≤ 2 are:

(i) 
λ1 0 0 0
0 λ2 0 0
0 0 0 0
0 0 0 0


with λ1, λ2 ∈ C;

(ii) 
λ1 1 0 0
0 λ1 0 0
0 0 0 0
0 0 0 0


with λ1 ∈ C;

(iii) 
0 1 0 0
0 0 0 0
0 0 λ1 0
0 0 0 0


with λ1 ∈ C \ {0};

(iv) 
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


(v) 

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .

(b) If AB = BA = 0 then A must be of the form

A =


0 0 a b
0 0 0 0
0 0 0 0
0 0 c d

 .

The characteristic polynomial is X3(X−d), so the Jordan normal form can have
at most 1 nonzero eigenvalue (counted with multiplicity). Also, if A2 = 0 then
me must have d = 0 and bc = 0 and it follows that A has rank at most 1. In
view of part (a), the only possibilities are
The Jordan normal form of A can be
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(i) 
0 1 0 0
0 0 0 0
0 0 λ1 0
0 0 0 0


with λ1 ∈ C or

(ii) 
λ1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


with λ1 ∈ C.

(c) 
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0


case (i) appears when b = c = 0 and a = 1, case (ii) appears when a = b = c = 0

and case (iii) appears when a = d = 0 and b = c = 1.
(4) (a) Suppose that M = (m). and (m) = M % I % M2 = (m2). Let I ′ = {a ∈ R |

am ∈ I} and M ′ = {a ∈ R | am ∈M2}. We have M ⊆M ′ ⊆ I ′ ⊆ R so I ′ = M
or I ′ = R. If I ′ = R then we have m ∈ I and I = M . If I ′ = M then for for
every b ∈ I we can write b = ma with a ∈ I ′ = M , so b ∈ M2 and we conclude
that I = M2.

(b) For example R = C[X, Y ], M = (X, Y ), I = (X2, Y ) and M2 = (X2, XY, Y 2).
(5) Let H be the subgroup of all elements g ∈ G with σ(g) = g. The group 〈σ〉 acts on

G and its orbits have 1 or p elements (because the orbit size has to divide the order
of 〈σ〉). So G \H is a union of orbits of size p, and |G \H| = |G| − |H| is divisible
by p. Since |G| is divisible by p, we conclude that |H| is divisible by p. By Cauchy’s
theorem, H has an element of order p.
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Afternoon Solutions

(1) The minimum polynomial is equal to the characteristic polynomial. The matrix A
must be conjugate to

B =


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 −1


and A2 is conjugate to

B2 =


0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1


(a) The characteristic polynomial of A2 (and B2) is X3(X − 1)2.
(b) The minumum polynomial of A2 (and B2) is X2(X − 1).

(2) (a) For every i Vi/Vi−1 is a 1-dimensional subspace of Fp)
n/Vi−1 ∼= Fn−i+1

p and the

number of choices for this is (pn−i+1−1)/(p−1). These one dimensional subspaces
uniquely determine the chain, so the total number of chains is

pn − 1

p− 1
· p

n−1 − 1

p− 1
· · · p− 1

p− 1
.

(b) The stabilizer consists of the invertible upper triangular matrices.
(3) (a) Let L = Q( 6

√
3). The field extension L/Q has degree 6 because the minimum

polynomial X6 − 3 is irreducible by Eisenstein’s criterion. The extension K/L
has degree 2 because i2 ∈ L and i 6∈ L. So [K : Q] = [K : L] · [L : Q] = 2 ·6 = 12.

(b) Let ζ = (1+
√

3i)/2 be the primitive 6-th root of unity and let M be the splitting
field of X6 − 3. Then M contains 6

√
3 and ζ 6

√
3 and therefore ζ. Now M also

contains
√

3 and i = (2ζ − 1)/
√

3. So M contains K. On the other hand, K
contains ζ and 6

√
3 and therefore it contains M . We conclude that K = M .

So K = M is a splitting field and this implies that K/Q is Galois. The Galois
group is the dihedral group D6 with 12 element. More precisely, the Galois group
K/Q(ζ) is generated by an automorphism σ of order 6 that sends 6

√
3 to ζ 6

√
3.

Let τ be complex conjugation. This is another automorphism of K/Q. Note
that τστ−1 = σ−1. Now τ and σ generate the dihedral group D6.

(4) Let R = Z[X]/(bX − a). We distinguish the following cases:
(a) If a = b = 0 then R = Z[X] which is an integral domain.
(b) If b = 0 and a = 1 then R = 0 is not an integral domain. ( because in an integral

domain 1 6= 0).
(c) If b = 0 and a = p is prime, then R = Fp[X] is an integral domain.
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(d) If b = 0 and a is not prime then R has zero divisors and is not an integral
domain.

(e) Suppose that b > 0 and d = gcd(a, b) 6= 1. We can write a = a′d and b = b′d.
In R we have d(b′X − a′) = 0 and d, b′X − a′ 6= 0. So R has zero divisors and is
not an integral domain.

(f) Suppose that b > 0 and gcd(a, b) = 1. Define a ring homomorphism ϕ : Z[X]→
Q by ϕ(f(X)) = f(a

b
). The kernel is generated by bX − a. Indeed if f(X) is a

polynomial in the kernel, then f(a
b
) = 0 so we can factor f(X) = g(X)(bX − a)

with g(X) ∈ Q[X]. By Gauß’ Lemma, g(X) has integer coefficients and f(X)
lies in the ideal (bX−a). By the first isomorphism theorem, R = Z[X]/(bX−a)
is isomorphic to the image of ϕ, which is an integral domain because it is a
subring of the integral domain Q.

(5) Suppose that G is not trivial. Let L be a nontrivial normal subgroup of G. We may
assume that L does not have a nontrivial subgroup that is normal in G and properly
contained in L. For every automorphism σ of G, σ(L) is also a normal subgroup.
Suppose that

{σ(L) | σ is an automorphism of G} = {L1, L2, L3, . . . , Ld},
where L1, L2, . . . , Ld are distinct normal subgroups of G. By induction on r we show
that L1L2 · · ·Lr is isomorphic to Ls for some s. The case r = 1 is clear. Suppose that
L1L2 · · ·Lr

∼= Ls. Then (L1L2 · · ·Lr)∩Lr+1 is a normal subgroup of Lr+1 and must be
isomorphic to Lr+1 or {1}. In the first case, we have L1L2 · · ·Lr+1 = L1L2 · · ·Lr

∼= Ls.
In the second case, L1L2 · · ·Lr and Lr+1 are normal subgroups of L1L2 · · ·Lr+1 with a
trivial intersection, so L1L2 · · ·Lr+1 = (L1L2 · · ·Lr)×Lr+1

∼= Ls×L = Ls+1. Suppose
that N is a normal subgroup of L that is not equal to L. Then N × {0}s−1 ⊂ Ls is
a normal subgroup. By minimality of L, we see that N must be trivial. This proves
that L is simple.
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