QR Exam Algebra
January 4, 2017
Morning

(1) Suppose that R is a commutative ring with 1 with only finitely many ideals. Suppose
that mqy, my, ..., my are all maximal ideals.
(a) Show that if @ € m; Nmy N -+ Nmy then a is nilpotent.
(b) Show that if the number of distinct ideals of R is not a power of 2, then R
contains a nonzero nilpotent element.
(2) Suppose that G is group of order 2*-11-13-17-19 with a normal 2-Sylow subgroup.
Show that the center of G contains more than 1 element.
(3) We denote the field with ¢ elements by F,. Let ¢ : F3i1s — F31s be the map defined
by ¢(a) = a® — a. For which positive integers d is the kernel of 1)¢ a subfield of F3is?
(4) Let Dy be the dihedral group with 8 elements. Construct a Galois extension K/Q
with Galois group Dy. In your example, describe explicitly all intermediate fields L
with Q C L C K such that L/Q is an extension of degree 2.
(5) (a) Give an example of a nonzero finitely generated Z|X]-module M which is torsion-
free, but not free.
(b) Give an example of a nonzero finitely generated Z[X]-module M and two irre-
ducible elements fi, fo € Z[X] such that f f5 kills M, but M does not decompose
as a product M; x M, such that f; kills M; and f5 kills Ms.
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(1) Fix a field k& and A be the ring k[X]/(X? — 1). Classify all simple A-modules in the

following two cases:

(a) k=Q;

(b) k =T, the field with p elements.

(An A-module M is simple if it has exactly 2 submodules, namely 0 and M itself.)

(2) Let K be a separably closed field, so K does not have any finite seperable field
extension other than K itself. Let L/K be a finite nontrivial extension of fields.

(a) Show that the trace map Tr: L — K is the zero map.
(b) Give an example of such a field extension L/K.

(3) Let V,, be the space of polynomials in x of degree at most n with real coefficients.
Define a linear map ¢ : V,, — V,, by o¢(f) = =f + f”. Show that there exists
Aoy A1y - A € R and a basis {fy, fi,..., fu} of V,, such that ¢(f;) = A\ f; for all
1=0,1,...,n.

(4) Suppose that V' is a finite dimensional real vector space equipped with a symmetric
bilinear form (-, -).

(a) Show that there exists a bilinear form (-,-), on A”V with the property

(Ul A V2, W1 A U)Q)* = (Ul,U)l)(’UQ,wQ) — (Ul,w2)<U2,w1>.

(b) Give the signature of (-,-), in terms of the signature of (-, -).
(5) Show that an abelian group of order 100 cannot act faithfully on a set with 13
elements.



(1)

(2)

(3)

(a) Suppose that a € m; Nmy N --- N my. Consider the chain
(a) 2 (a®) 2 (a®) 2 (a*) 2 ---

Because there are only finitely many ideals, (¢™) = (a™'!) for some m. It
follows that ™ = a™"'b for some b € R. We have (1 — ab)a™ = 0. If 1 — ab
is not invertible, then 1 — ab € m, for some r. But then we have a € m, and
1 = (1 — ab) 4+ ab € m,. Contradiction. So 1 — ab is invertible and a™ = 0.

(b) Suppose that R does not contain a nonzero nilpotent element. Then by part (a),
m; Nmg N---Nm, = (0). Since m; +m; = R for i # j, we have

R=R/m; x R/my X --- X R/my

because of the Chinese Remainder Theorem. Each field R/m; has exactly 2

ideals, and R has 2% ideals.
Let S be the 2-Sylow subgroup of G. The group G acts on S by conjugation. The cen-
ter Z(.S) of S is a characteristic subgroup of S (i.e., it is fixed by any automorphism).
So Z(S) is also normalized by G. The groups G and G /S act on Z(S) by conjugation.
This yields a group homomorphism ~ : G/S — Aut(Z(S)). We have Z(S) = Z /274
where 1 < d < 3. The cardinality of Aut(Z(9)) is (2* —1)(21 — 2)(21 — 2%)(21 — 23),
(23 —1)(2° —2)(23 —2?), (22 —1)(22 —2) or (2 —1). All these numbers are realtively
prime to |G/Z(S)| = 11-13-17-19. So the image of v is trivial, and G/S and G act
trivially on Z(S) by conjugation. This implies that Z(G) = Z(S) is nontrivial.
We can view F31s as an Fz-vector space. The Frobenius map ¢ : Fzis — [Fgis is [F3-
linear and has order 18. So ¢ satisfies the polyonomial X —1 = (X — 1)?(X + 1)°.
The eigenvalues of ¢ are 1 and —1. The Jordan normal form of ¢ has Jordan blocks
with eigenvalues 1 and —1. The ker(¢? — I) is the field Fs2, which is 2-dimensional.
This implies that there is one 9 x 9 Jordan block with eigenvalue 1, and one 9 x 9
Jordan block with eigenvalue —1. From this it is clear the the dimension of the
kernel of ¢¢ = (¢ — I)? is equal to d if d < 9 and equal to 9 if d > 9. For d > 9,
ker(¢?) = ker(¢)?) = ker(¢? — I) = F39 is a subfield. For d = 3, ker(¢)3) = Fss is a
subfield, and for d = 1, ker(¢)) = F3 is a subfield. The field F3is has a subfield of
order 3% if and only if d divides 18. So for d = 4, 5,6, 7,8 there is no subfield with
3¢ elements and the kernel of 1? is not a subfield. For d = 2, the kernel of 42 has
9 elements, but is not equal to the field Fsz2. Indeed, if a € Fq \ F3, then we have
V¥a) = (¢* + ¢+ I)(a) = (¢ — I)(a) # 0. So ker(¢)?) is a subfield for d = 1, d = 3
and d > 9.
Let K = Q(+/2,4) be the splitting field of X* — 2. Then K/Q is clearly a Galois
extension. Since X — 2 is irreducible of degree 4 by Eisenstein’s criterion, Q(+/2)/Q
has degree 4. Since i is not real, i € Q(v/2) and K/Q(+/2) is an extension of degree
2. The extension K/Q has degree 4 -2 = 8. Let o = PF1/2 for k = 1,2,3,4.
Then complex conjugation o corresponds to the permutation (2 4). There exists an
automorphism 7 that sends a7 to as. We may replace 7 by 70 and assume that
7(i) = i. Then 7 is the permutation (1 2 3 4). Now ¢ and 7 generate a Dihedral
group Dy of order 8. Every subgroup of Dy of index 2 contains 72. The group D,/(7?)
is isomorphic to Z/27Z x Z/27 with generators T and o. The quadratic extension L
have to be K™ = Q(i), K™ = Q(iv/2) or K9 = Q(v/2).
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(5) (a) Take M = (2,X) C Z[X]. Since Z[X] is free and therefore torsion-free, so is
the ideal M. If M is free then we have (2,X) = (f) for some polynomial f.
But then f divides 2 and X. But then f has to be a constant dividing X and
therefore has to be equal to +1. It follows that 1 € (2, X). But it is easy to see
that this is not the case. Z[X]/(2, X) is isomorphic to the field F,.
(b) Let M = Z[X]/(2X), f1 = 2 and fo = X. Clearly, 2X kills M. Suppose that
M = M; x My with 2M; = XM, = 0. Then we can write 1 = a; + as with
2a1, Xay € (2X). It follows that 2X = 2X(a; + as) = (2a1)X + (Xa2)2 €
(2X)(2,X) and 1 € (2, X). Contradiction.



1) (a)

If k=Q, then X? —1 = (X —1)(X?P~'+ XP~24...+1) is the factorization into
irreducibles, and we have

R=k[X]/(XP —1) 2 k[X]/(X —1) x E[X]/(XP 4+ XP 24 ... 4+ 1) =k x L

(b)

is a product of 2 fields. Now k and L are simple modules. If M is a simple
module, then we can choose a € M nonzero, and the map f — fa gives a
surjective module homomorphism R — M. The only quotients of R are k and
L.

If £k = F,, then X?» —1 = (X — 1)». Now k is a simple R-module. If M is
any simple module then we have a surjective module homomorphism R — M.
The kernel is a maximal ideal, and has to be (X — 1). This shows that M is
isomorphic to the module k.

(2) Let p be the characteristic of the field K.

(a)

(b)

Suppose that L/K is a nontrivial extension. Let a € L and define M = K(a).
If L # M, then we have Try y(a) = [L : M]a = 0 because [L : M] is divisible
by p. We have Try/x(a) = Trayx Trpm(a) = 0. Suppose that L = M and
[L:K]=p" Let f(X) be the minimum polynomial of a. Since the extension is
inseperable we have f/(X) = 0. In particular, the coefficient of X? =1 which is
—Tr(a) is equal to 0.

Let F be the algebraic closure of the field Fo(X), and let K C F be the separable
closure of Fo(X). It consists of all a € F such that F»(X, a)/F2(X) is separable.
Let L = K(X'/?). Then L/K is a inseperable, nontrivial extension.

(3) Let us choose the basis 1,z, 2%, ... 2" of V,,. With respect to this basis, ¢ has the

matrix
0020 O
01 06 0
00 2 0 12
0003 0
00 0O0 4
So the matrix is upper triangular with diagonal entries 0,1,2,...,n. The diagonal

entries are the eigenvalues and they are all distinct. This implies that ¢ is diago-
nalizable. This means that there exists a basis fy, f1,..., fn with ¢(f;) = A\ifi. The
eigenvalues Ao, A1, ..., A, are equal to 0,1, ..., n.

4) (a)

For fixed vy, v, € V, define f,, ., : V x V = R by

fvl,vz(wh w2) — (UIJ U)l)(UQ, w2) - (Ula U)Q)(’UQ, wl)'
It is easy to see that f,, ,, is bilinear. Also f,, .,(w,w) = 0, so it is also alter-

nating. So there exists a unique linear function F,, ,, : /\2 V' — R such that

Fyy vy (w1 Awz) = (v1,w1)(v2, wa) — (v1, wa)(v2, wy).
Similarly, using this unqueness, we see that the map V' x V — ( /\2 V)* defined
by

(Ula /02) = Fvl,vg
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is bilinear and alternating. So there exists a linear map v : A>V — (A°V)*
such that

@Z)(Ul A UQ) = FU17U2‘
If a,b € A\’ V, then we define (a,b), = ¢(a)(b) € R. Tt is now clear that (-, -), is
bilinear, and
(1 Avg, w1 Awg), = (V1 Avg) (Wi Awg) = Foyp oy (w1 Awg) = (v, w1)(v2, we) — (v1, w) (v, wy).

(b) Suppose that the signature of (-,-) is (p,q,r) (p positive, ¢ negative, r zero
eigenvalues) where p,q,r = n. Let ay,a9,...,ap,b1,b2,...,bg,c1,¢2,..., ¢, be an
orthogonal basis with (a;,a;) =1, (bj,b;) = —1 and (cg, cx) =0 for all 4, j, k. A
basis of A”V is given by

vector index range cardinality sign
CL,’/\CL]’ (1<Z<]<p) (12;) +1
a; A ¢; (1<z<p1<j<r) pr 0
bi/\Cj (1<Z<q,1<j<7") qr 0
aNeg (1<i<ji<r) (;) 0

So the signature of (-, ), is ((8) + (2),pq, pr + qr + (})).

(5) Suppose that G is an abelian group of order 100 acting faithfully on a set with 13
elements. This gives an injective group homomorphism ¢ : G — Si3. Let H be the
5-Sylow subgroup of G. Since 13! has only 2 factors 5, the image ¢(H) is a 5-Sylow
subgroup. Since the 5-Sylow subgroup is unique up to conjugation, we may assume
without loss of generality that ¢(H) is generated by (1234 5) and (6 78 9 10). The
centralizer of ¢(H) in Sy3 is isomorphic to Z/5Z x Z/5Z x Ss and has 150 elements.
The image ¢(G) has 100 elements. On the other hand, ¢(G) is contained in the
centralizer of ¢(H) and its order has to divide 150. Contradiction.



