
QR Exam Algebra
January 4, 2017

Morning

(1) Suppose that R is a commutative ring with 1 with only finitely many ideals. Suppose
that m1,m2, . . . ,md are all maximal ideals.
(a) Show that if a ∈ m1 ∩m2 ∩ · · · ∩md then a is nilpotent.
(b) Show that if the number of distinct ideals of R is not a power of 2, then R

contains a nonzero nilpotent element.
(2) Suppose that G is group of order 24 · 11 · 13 · 17 · 19 with a normal 2-Sylow subgroup.

Show that the center of G contains more than 1 element.
(3) We denote the field with q elements by Fq. Let ψ : F318 → F318 be the map defined

by ψ(a) = a3− a. For which positive integers d is the kernel of ψd a subfield of F318?
(4) Let D4 be the dihedral group with 8 elements. Construct a Galois extension K/Q

with Galois group D4. In your example, describe explicitly all intermediate fields L
with Q ⊂ L ⊂ K such that L/Q is an extension of degree 2.

(5) (a) Give an example of a nonzero finitely generated Z[X]-module M which is torsion-
free, but not free.

(b) Give an example of a nonzero finitely generated Z[X]-module M and two irre-
ducible elements f1, f2 ∈ Z[X] such that f1f2 kills M , but M does not decompose
as a product M1 ×M2 such that f1 kills M1 and f2 kills M2.
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Afternoon

(1) Fix a field k and A be the ring k[X]/(Xp − 1). Classify all simple A-modules in the
following two cases:
(a) k = Q;
(b) k = Fp, the field with p elements.

(An A-module M is simple if it has exactly 2 submodules, namely 0 and M itself.)
(2) Let K be a separably closed field, so K does not have any finite seperable field

extension other than K itself. Let L/K be a finite nontrivial extension of fields.
(a) Show that the trace map Tr : L→ K is the zero map.
(b) Give an example of such a field extension L/K.

(3) Let Vn be the space of polynomials in x of degree at most n with real coefficients.
Define a linear map φ : Vn → Vn by φ(f) = xf ′ + f ′′. Show that there exists
λ0, λ1, . . . , λn ∈ R and a basis {f0, f1, . . . , fn} of Vn such that φ(fi) = λifi for all
i = 0, 1, . . . , n.

(4) Suppose that V is a finite dimensional real vector space equipped with a symmetric
bilinear form (·, ·).
(a) Show that there exists a bilinear form (·, ·)? on

∧2 V with the property

(v1 ∧ v2, w1 ∧ w2)? = (v1, w1)(v2, w2)− (v1, w2)(v2, w1).

(b) Give the signature of (·, ·)? in terms of the signature of (·, ·).
(5) Show that an abelian group of order 100 cannot act faithfully on a set with 13

elements.
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(1) (a) Suppose that a ∈ m1 ∩m2 ∩ · · · ∩md. Consider the chain

(a) ⊇ (a2) ⊇ (a3) ⊇ (a4) ⊇ · · ·

Because there are only finitely many ideals, (am) = (am+1) for some m. It
follows that am = am+1b for some b ∈ R. We have (1 − ab)am = 0. If 1 − ab
is not invertible, then 1 − ab ∈ mr for some r. But then we have a ∈ mr and
1 = (1− ab) + ab ∈ mr. Contradiction. So 1− ab is invertible and am = 0.

(b) Suppose that R does not contain a nonzero nilpotent element. Then by part (a),
m1 ∩m2 ∩ · · · ∩mr = (0). Since mi + mj = R for i 6= j, we have

R = R/m1 ×R/m2 × · · · ×R/md

because of the Chinese Remainder Theorem. Each field R/mi has exactly 2
ideals, and R has 2d ideals.

(2) Let S be the 2-Sylow subgroup of G. The group G acts on S by conjugation. The cen-
ter Z(S) of S is a characteristic subgroup of S (i.e., it is fixed by any automorphism).
So Z(S) is also normalized by G. The groups G and G/S act on Z(S) by conjugation.
This yields a group homomorphism γ : G/S → Aut(Z(S)). We have Z(S) ∼= Z/2Zd
where 1 ≤ d ≤ 3. The cardinality of Aut(Z(S)) is (24 − 1)(24 − 2)(24 − 22)(24 − 23),
(23− 1)(23− 2)(23− 22), (22− 1)(22− 2) or (2− 1). All these numbers are realtively
prime to |G/Z(S)| = 11 · 13 · 17 · 19. So the image of γ is trivial, and G/S and G act
trivially on Z(S) by conjugation. This implies that Z(G) = Z(S) is nontrivial.

(3) We can view F318 as an F3-vector space. The Frobenius map φ : F318 → F318 is F3-
linear and has order 18. So φ satisfies the polyonomial X18 − 1 = (X − 1)9(X + 1)9.
The eigenvalues of φ are 1 and −1. The Jordan normal form of φ has Jordan blocks
with eigenvalues 1 and −1. The ker(φ2 − I) is the field F32 , which is 2-dimensional.
This implies that there is one 9 × 9 Jordan block with eigenvalue 1, and one 9 × 9
Jordan block with eigenvalue −1. From this it is clear the the dimension of the
kernel of ψd = (φ − I)d is equal to d if d ≤ 9 and equal to 9 if d ≥ 9. For d ≥ 9,
ker(ψd) = ker(ψ9) = ker(φ9 − I) = F39 is a subfield. For d = 3, ker(ψ3) = F33 is a
subfield, and for d = 1, ker(ψ) = F3 is a subfield. The field F318 has a subfield of
order 3d if and only if d divides 18. So for d = 4, 5, 6, 7, 8 there is no subfield with
3d elements and the kernel of ψd is not a subfield. For d = 2, the kernel of ψ2 has
9 elements, but is not equal to the field F32 . Indeed, if a ∈ F9 \ F3, then we have
ψ2(a) = (φ2 + φ + I)(a) = (φ − I)(a) 6= 0. So ker(ψd) is a subfield for d = 1, d = 3
and d ≥ 9.

(4) Let K = Q( 4
√

2, i) be the splitting field of X4 − 2. Then K/Q is clearly a Galois
extension. Since X4− 2 is irreducible of degree 4 by Eisenstein’s criterion, Q( 4

√
2)/Q

has degree 4. Since i is not real, i 6∈ Q( 4
√

2) and K/Q( 4
√

2) is an extension of degree
2. The extension K/Q has degree 4 · 2 = 8. Let αk = ik−1 4

√
2 for k = 1, 2, 3, 4.

Then complex conjugation σ corresponds to the permutation (2 4). There exists an
automorphism τ that sends α1 to α2. We may replace τ by τσ and assume that
τ(i) = i. Then τ is the permutation (1 2 3 4). Now σ and τ generate a Dihedral
group D4 of order 8. Every subgroup of D4 of index 2 contains τ 2. The group D4/〈τ 2〉
is isomorphic to Z/2Z × Z/2Z with generators τ and σ. The quadratic extension L

have to beK〈τ〉 = Q(i), K〈τσ〉 = Q(i
√

2) or K〈τ
2,σ〉 = Q(

√
2).
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(5) (a) Take M = (2, X) ⊆ Z[X]. Since Z[X] is free and therefore torsion-free, so is
the ideal M . If M is free then we have (2, X) = (f) for some polynomial f .
But then f divides 2 and X. But then f has to be a constant dividing X and
therefore has to be equal to ±1. It follows that 1 ∈ (2, X). But it is easy to see
that this is not the case. Z[X]/(2, X) is isomorphic to the field F2.

(b) Let M = Z[X]/(2X), f1 = 2 and f2 = X. Clearly, 2X kills M . Suppose that
M = M1 ×M2 with 2M1 = XM2 = 0. Then we can write 1 = a1 + a2 with
2a1, Xa2 ∈ (2X). It follows that 2X = 2X(a1 + a2) = (2a1)X + (Xa2)2 ∈
(2X)(2, X) and 1 ∈ (2, X). Contradiction.
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(1) (a) If k = Q, then Xp− 1 = (X − 1)(Xp−1 +Xp−2 + · · ·+ 1) is the factorization into
irreducibles, and we have

R = k[X]/(Xp − 1) ∼= k[X]/(X − 1)× k[X]/(Xp−1 +Xp−2 + · · ·+ 1) = k × L

is a product of 2 fields. Now k and L are simple modules. If M is a simple
module, then we can choose a ∈ M nonzero, and the map f 7→ fa gives a
surjective module homomorphism R → M . The only quotients of R are k and
L.

(b) If k = Fp, then Xp − 1 = (X − 1)p. Now k is a simple R-module. If M is
any simple module then we have a surjective module homomorphism R → M .
The kernel is a maximal ideal, and has to be (X − 1). This shows that M is
isomorphic to the module k.

(2) Let p be the characteristic of the field K.
(a) Suppose that L/K is a nontrivial extension. Let a ∈ L and define M = K(a).

If L 6= M , then we have TrL/M(a) = [L : M ]a = 0 because [L : M ] is divisible
by p. We have TrL/K(a) = TrM/K TrL/M(a) = 0. Suppose that L = M and
[L : K] = pr. Let f(X) be the minimum polynomial of a. Since the extension is
inseperable we have f ′(X) = 0. In particular, the coefficient of Xpr−1, which is
−Tr(a) is equal to 0.

(b) Let F be the algebraic closure of the field F2(X), and let K ⊂ F be the separable
closure of F2(X). It consists of all a ∈ F such that F2(X, a)/F2(X) is separable.
Let L = K(X1/p). Then L/K is a inseperable, nontrivial extension.

(3) Let us choose the basis 1, x, x2, . . . , xn of Vn. With respect to this basis, φ has the
matrix 

0 0 2 0 0 · · ·
0 1 0 6 0 · · ·
0 0 2 0 12 · · ·
0 0 0 3 0 · · ·
0 0 0 0 4 · · ·
...

...
...

...
...

. . .


So the matrix is upper triangular with diagonal entries 0, 1, 2, . . . , n. The diagonal
entries are the eigenvalues and they are all distinct. This implies that φ is diago-
nalizable. This means that there exists a basis f0, f1, . . . , fn with φ(fi) = λifi. The
eigenvalues λ0, λ1, . . . , λn are equal to 0, 1, . . . , n.

(4) (a) For fixed v1, v2 ∈ V , define fv1,v2 : V × V → R by

fv1,v2(w1, w2) = (v1, w1)(v2, w2)− (v1, w2)(v2, w1).

It is easy to see that fv1,v2 is bilinear. Also fv1,v2(w,w) = 0, so it is also alter-

nating. So there exists a unique linear function Fv1,v2 :
∧2 V → R such that

Fv1,v2(w1 ∧ w2) = (v1, w1)(v2, w2)− (v1, w2)(v2, w1).

Similarly, using this unqueness, we see that the map V × V → (
∧2 V )? defined

by

(v1, v2) 7→ Fv1,v2
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is bilinear and alternating. So there exists a linear map ψ :
∧2 V → (

∧2 V )?

such that
ψ(v1 ∧ v2) = Fv1,v2 .

If a, b ∈
∧2 V , then we define (a, b)? = ψ(a)(b) ∈ R. It is now clear that (·, ·)? is

bilinear, and

(v1∧v2, w1∧w2)? = ψ(v1∧v2)(w1∧w2) = Fv1,v2(w1∧w2) = (v1, w1)(v2, w2)−(v1, w2)(v2, w1).

(b) Suppose that the signature of (·, ·) is (p, q, r) (p positive, q negative, r zero
eigenvalues) where p, q, r = n. Let a1, a2, . . . , ap, b1, b2, . . . , bq, c1, c2, . . . , cr be an
orthogonal basis with (ai, ai) = 1, (bj, bj) = −1 and (ck, ck) = 0 for all i, j, k. A

basis of
∧2 V is given by

vector index range cardinality sign
ai ∧ aj (1 ≤ i < j ≤ p)

(
p
2

)
+1

ai ∧ bj (1 ≤ i ≤ p, 1 ≤ j ≤ q) pq −1
ai ∧ cj (1 ≤ i ≤ p, 1 ≤ j ≤ r) pr 0
bi ∧ bj (1 ≤ i < j ≤ q)

(
q
2

)
+1

bi ∧ cj (1 ≤ i ≤ q, 1 ≤ j ≤ r) qr 0
ci ∧ cj (1 ≤ i < j ≤ r)

(
r
2

)
0

So the signature of (·, ·)? is (
(
p
2

)
+
(
q
2

)
, pq, pr + qr +

(
r
2

)
).

(5) Suppose that G is an abelian group of order 100 acting faithfully on a set with 13
elements. This gives an injective group homomorphism φ : G → S13. Let H be the
5-Sylow subgroup of G. Since 13! has only 2 factors 5, the image φ(H) is a 5-Sylow
subgroup. Since the 5-Sylow subgroup is unique up to conjugation, we may assume
without loss of generality that φ(H) is generated by (1 2 3 4 5) and (6 7 8 9 10). The
centralizer of φ(H) in S13 is isomorphic to Z/5Z× Z/5Z× S3 and has 150 elements.
The image φ(G) has 100 elements. On the other hand, φ(G) is contained in the
centralizer of φ(H) and its order has to divide 150. Contradiction.
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