Morning solutions

(1) Using elementary row operations we get

7= )=6 %)

Using elementary column operations we get

1—10:>10
0 27 0 27

and Z/*M = Z,/(27). Since Z/(27) has a unique subgroup of index 9 (and order 3),
there exists a unique subgroup of Z? containing M that has index 9. This module
M is generated by (1,—10) and (0,9).

(2) Suppose that B be the Jordan normal form of A and let .J,(A) be a Jordan block
of B of size n X n with eigenvalue A\. If n > 1 then J,(\)?> — A2 is nonzero and
nilpotent. This means that B has a generalized eigenvector with eigenvalue A\? that
is not an eigenvector. This implies that B and A are not diagonalizable, which is
a contradiction. Therefore n = 1. So all the Jordan blocks of B have size 1 x 1.
Therefore, B is diagonal and A is diagonalizable.

(3) (a)

Let ¢ : R — Z[z]/(2, z) be the homomorphism defined by ¢(p(x)) = p(z)+(2, z).
The homomorphism is surjective, and the kernel is I := (2, 2z, 222,223, ...). By
the first isomorphism theorem, R/ is isomorphic to Z[z]/(2,z) ~ Fy, which is
a field; thus, I is maximal. It is also not hard to see that 22" does not lie in
the R-ideal generated by (2,2x,...,22""!) because the coefficient of 2™ of any
polynomial in (2, 2x,...,2z"!) is divisible by 4. This shows that I is not finitely
generated.

Let ¢ : R — Z[x]/(3) = F3[z] be the homomorphism defined by ¢(p(x)) =
p(z) + (3). It is easy to see that 1 is surjective and that the kernel is (3). So
R/(3) is isomorphic to Fs[z]. In particular, this ring is not finite.

To specify a 2-dimensional subspace, one must specify two linearly independent
vectors, and then mod out by the choice of basis. The number of possibilities for
the first vector is p* —1 as it can be any nonzero vector; the second vector cannot
lie in the line spanned by the first, so there are p* — p possibilities. In all, there
are (p* — 1)(p* — p) possibilities. The group GLy(F,) has size (p* — 1)(p* — p)
by a similar argument; this group acts freely and transitivity on the choice of
basis vectors for a given 2-dimensional subspace of V. Thus, the number of two
dimensional subspaces is the quotient % =P+ +p+p*. In
particular, this number is congruent to 1 modulo p, and thus not divisible by p.
The number computed in the first part is congruent to 1 modulo p. Now, for any
p-group G acting on a set X, we have the congruence |X¢| = |X| mod p: all
orbits that are not singletons (i.e., not fixed points) must have size divisible by

p since G is a p-group. Applying this to the set X considered in (a) shows that
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(5) The splitting field of K over Q is Q(+/2,

| XY =1 mod p, and thus X% is non-empty. This translates to the existence
of a 2-dimensional subspace fixed (setwise) by G.

i). Since X*—2 is irreducible (by Eisenstein),
we have [Q(v/2 : Q)] = 4. Since i ¢ Q(v/2), we have [Q(v/2,7) : Q(v/2)] = 2 and
[Q(V2,4) : Q] = [Q(V2,1) : Q(V2)] - [Q(V2: Q)] = 24 = 8. From [Q(i) : Q] =2
and [Q(V/2,4) : Q] = [Q(V2,4) : Q(i)]] - [Q(i) : Q] follows that [Q(v/2,7) : Q(i)]] = 4
and x* — 2 is irreducible over Q(3).

(a) There exists an automorphism ¢ fixing Q(4) such that o(v/2) = iv/2. Let 7 be
complex conjugation. On the set of roots {v/2,iv/2, —v/2, —iv/2} the actions of
the automorphisms are given by o = (1 2 3 4) and 7 = (2 4). Together they
generate the dihedral group Dg with 8 elements. So this must be the whole
Galois group.

(b) By the Galois correspondence these subfields correspond to subgroups of Dg of
order 2. The order 2 subgroups are ((1 3)), ((2,4)), ((1 3)(2 4)), ((1 2)(3 4))
and ((1 4)(2 3)). The corresponding subfields are Q(iv/2), Q(—v/2), Q(i,v/2)
Q((1+4)v/2) and Q((1 — i)v/2). respectively.



Afternoon solutions

(1) We have [M : F,] =60, [K : F)] =6 and [L : F,] = 10. The Galois group G of the
extension M /F, is Z/(60). The group Gk fixing K has index 6 so it is generated by
10 4 (60). Similarly, the Galois group G, that fixes L is generated by 6 + (60). The
intersection of G and G, is generated by 30 + (60). This intersection is isomorphic
to Z/2. This implies that [M : KL] = 2. So [KL : F,] =60/2 = 30 and KL has p*
elements. The group generated by Gk and G|, is generated by 2 + (60). This group
is isomorphic to Z/30. Therefore [M : K N L] =30, [K N L :F,] =60/30 = 2 and
K N L has p? elements.

(2) The Galois group of K over F, is Z/(de) since the finite field F, has a unique exten-
sion (necessarily Galois) of degree n for any integer n > 1. As Z/(de) has a unique
quotient of size d (namely, Z/(d)), there is a unique field L between F, and K such
that L/, is Galois with group Z/(d). But then L has degree d over F,, so L must
have p? elements.

(3) Let f(x) be the characteristic polynomial of A. Its degree is n. Since f(x) is rre-
ducible, the ideal (f(x)) is maximal.

(a) Consider the ring homomorphism ¢ : K[z] — Mat,, ,(K) that sends the polyno-
mial p(z) to p(A). For any polynomial p(x) we can write p(x) = q(z) f(x) +r(z)
where r(z) has degree < n (or is equal to 0). We have p(A) = q(A)f(A)+r(A) =
r(A) which lies in the span of I, A, A%,... A", So the image im(¢) of ¢ is equal
to the span of I, A, ..., A""1. The kernel of ¢ contains the maximal ideal (f(z)).
Since ker(¢) is clearly not equal to K[z], we must have ker(¢) = (f(z)). By
the first isomorphism theorem, we have K[z]/(f(z)) = im(y). Because (f(x))
is maximal, K|[z]/(f(z)) is a field.

(b) The map ¢ : Mat,, ,(K) — K™ defined by ¢(p(x)) = p(A)v is a K[z|-module
homomorphism. . The kernel is an submodule (hence an ideal) of K[z] that
contains the maximal ideal (f(z)). The kernel is not the whole ring, because v
is nonzero. Because (f(z)) is maximal, the kernel of ¢» must be equal to (f(x)).
If v, Av, ..., A" 1v are linearly dependent, then there exists a nonzero polyno-
mial ¢(z) of degree < n — 1 with ¢(A)v = 0. Since g(x) € ker(v)) = (f(z)) we
have f(x) | g(x) but this is a contradiction because f(x) has degree n and ¢(z)
has degree < n. So v, Av,..., A" v are linearly independent. Since K™ has
dimension n, these vectors must form a basis.

(4) (a) 0. Because Z/(2) ® Z/(3) is generated as a Z-module by

(1+@2)el+3)=CB+2)@(1+3)) =
—(1+2)2B+3)=01+(2)®0+(3) =0

(b) Z/(3). Themap ¢ : Z/(3)xZ/(9) — Z/(3) given by ¥(a+(3),b+(9)) = ab+(3) is
well defined, so there exists a surjective group homomorphism Z/(3) @7 7Z/(9) —
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Z/(3). On the other hand Z/(3) x Z/(9) is generated by (1 + (3)) ® (1 + (9))
which has order at most 3 in Z/(3) ®z Z/(9).

7] (3).

0.This module is generated by elements of the form

G+2)0i=G+2)00b -3)=(+2)053=0+2)0 5 =0.

Define ¢ : VxVxV —= A*V®V by
Y(a,b,c) =(aNc)®@b—(bAc)®a.
For fixed ¢, this map is bilinear in a and b. It is also skew-symmetric: ¥ (a,b,c) =

—1(b, a, ). By the universal property of /\2 V', there exists a map 6 : /\2 xV —
A\’ ®V such that

O((aND),c) =1Y(a,b,c)=(aNc)@b— (bAc)® a.

It is easy to verify that this map is also linear in ¢, so ¢ is bilinear, and there
exists a linear map ¢ : /\2 VeV — /\2 V ® V with the property

e((anb)@c)=0(aNbc)=(anc)@b—(bAc)®a.

Restricting ¢ to the span of (e; Aeg) ® ez, (e1 Aez) ® ey and (ez A e3) ® eg gives
the matrix

0 1 -1
1 0 1
-1 1 0

This matrix has eigen value —2 with multiplicity 1 and eigenvalue 1 with mul-
tiplicity 2. For i # j e; A e;) ® e; is an eigenvector with eigenvalue 1. There are
6 such vectors. Combined we have the eigenvalue 1 with multiplicity 8 and the
eigenvalue —2 with multiplicity 1.

(6) Let n = 2"m be the order of n where r > 0 and m is odd. Suppose that S is the

2-Sylow subgroup of G. It has 2" elements. Since S is a nontrivial 2-group, it has
a nontrivial center, and this nontrivial center has an element of order 2, call it g.
Consider the action of G on itself by conjugation. If H is the stabilizer, and C' is the
orbit, then H is the centralizer of g, C' is the conjugacy class of g and |H| - |C| = |G]|.
Since H contains S, |H| is divisible by 2" which implies that |C] is odd.





