
Morning solutions

(1) Using elementary row operations we get(
5 4
2 7

)
⇒
(

1 −10
2 7

)
⇒
(

1 −10
0 27

)
Using elementary column operations we get(

1 −10
0 27

)
⇒
(

1 0
0 27

)
and Z/2M ∼= Z/(27). Since Z/(27) has a unique subgroup of index 9 (and order 3),
there exists a unique subgroup of Z2 containing M that has index 9. This module
M is generated by (1,−10) and (0, 9).

(2) Suppose that B be the Jordan normal form of A and let Jn(λ) be a Jordan block
of B of size n × n with eigenvalue λ. If n > 1 then Jn(λ)2 − λ2I is nonzero and
nilpotent. This means that B has a generalized eigenvector with eigenvalue λ2 that
is not an eigenvector. This implies that B and A are not diagonalizable, which is
a contradiction. Therefore n = 1. So all the Jordan blocks of B have size 1 × 1.
Therefore, B is diagonal and A is diagonalizable.

(3) (a) Let φ : R→ Z[x]/(2, x) be the homomorphism defined by φ(p(x)) = p(x)+(2, x).
The homomorphism is surjective, and the kernel is I := (2, 2x, 2x2, 2x3, ...). By
the first isomorphism theorem, R/I is isomorphic to Z[x]/(2, x) ' F2, which is
a field; thus, I is maximal. It is also not hard to see that 2xn does not lie in
the R-ideal generated by (2, 2x, . . . , 2xn−1) because the coefficient of xn of any
polynomial in (2, 2x, . . . , 2xn−1) is divisible by 4. This shows that I is not finitely
generated.

(b) Let ψ : R → Z[x]/(3) ∼= F3[x] be the homomorphism defined by φ(p(x)) =
p(x) + (3). It is easy to see that ψ is surjective and that the kernel is (3). So
R/(3) is isomorphic to F3[x]. In particular, this ring is not finite.

(4) (a) To specify a 2-dimensional subspace, one must specify two linearly independent
vectors, and then mod out by the choice of basis. The number of possibilities for
the first vector is p4−1 as it can be any nonzero vector; the second vector cannot
lie in the line spanned by the first, so there are p4 − p possibilities. In all, there
are (p4 − 1)(p4 − p) possibilities. The group GL2(Fp) has size (p2 − 1)(p2 − p)
by a similar argument; this group acts freely and transitivity on the choice of
basis vectors for a given 2-dimensional subspace of V . Thus, the number of two

dimensional subspaces is the quotient (p4−1)(p4−p)
(p2−1)(p2−p)

= (p2 + 1)(1 + p + p2). In

particular, this number is congruent to 1 modulo p, and thus not divisible by p.
(b) The number computed in the first part is congruent to 1 modulo p. Now, for any

p-group G acting on a set X, we have the congruence |XG| ≡ |X| mod p: all
orbits that are not singletons (i.e., not fixed points) must have size divisible by
p since G is a p-group. Applying this to the set X considered in (a) shows that
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|XG| ≡ 1 mod p, and thus XG is non-empty. This translates to the existence
of a 2-dimensional subspace fixed (setwise) by G.

(5) The splitting field of K over Q is Q( 4
√

2, i). Since X4−2 is irreducible (by Eisenstein),
we have [Q( 4

√
2 : Q)] = 4. Since i 6∈ Q( 4

√
2), we have [Q( 4

√
2, i) : Q( 4

√
2)] = 2 and

[Q( 4
√

2, i) : Q] = [Q( 4
√

2, i) : Q( 4
√

2)] · [Q( 4
√

2 : Q)] = 2 · 4 = 8. From [Q(i) : Q] = 2
and [Q( 4

√
2, i) : Q] = [Q( 4

√
2, i) : Q(i)]] · [Q(i) : Q] follows that [Q( 4

√
2, i) : Q(i)]] = 4

and x4 − 2 is irreducible over Q(i).
(a) There exists an automorphism σ fixing Q(i) such that σ( 4

√
2) = i 4

√
2. Let τ be

complex conjugation. On the set of roots { 4
√

2, i 4
√

2,− 4
√

2,−i 4
√

2} the actions of
the automorphisms are given by σ = (1 2 3 4) and τ = (2 4). Together they
generate the dihedral group D8 with 8 elements. So this must be the whole
Galois group.

(b) By the Galois correspondence these subfields correspond to subgroups of D8 of
order 2. The order 2 subgroups are 〈(1 3)〉, 〈(2, 4)〉, 〈(1 3)(2 4)〉, 〈(1 2)(3 4)〉
and 〈(1 4)(2 3)〉. The corresponding subfields are Q(i 4

√
2), Q(− 4

√
2), Q(i,

√
2)

Q((1 + i) 4
√

2) and Q((1− i) 4
√

2). respectively.
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Afternoon solutions

(1) We have [M : Fp] = 60, [K : Fp] = 6 and [L : Fp] = 10. The Galois group G of the
extension M/Fp is Z/(60). The group GK fixing K has index 6 so it is generated by
10 + (60). Similarly, the Galois group GL that fixes L is generated by 6 + (60). The
intersection of GK and GL is generated by 30 + (60). This intersection is isomorphic
to Z/2. This implies that [M : KL] = 2. So [KL : Fp] = 60/2 = 30 and KL has p30

elements. The group generated by GK and GL is generated by 2 + (60). This group
is isomorphic to Z/30. Therefore [M : K ∩ L] = 30, [K ∩ L : Fp] = 60/30 = 2 and
K ∩ L has p2 elements.

(2) The Galois group of K over Fp is Z/(de) since the finite field Fp has a unique exten-
sion (necessarily Galois) of degree n for any integer n ≥ 1. As Z/(de) has a unique
quotient of size d (namely, Z/(d)), there is a unique field L between Fp and K such
that L/Fp is Galois with group Z/(d). But then L has degree d over Fp, so L must
have pd elements.

(3) Let f(x) be the characteristic polynomial of A. Its degree is n. Since f(x) is rre-
ducible, the ideal (f(x)) is maximal.
(a) Consider the ring homomorphism φ : K[x]→ Matn,n(K) that sends the polyno-

mial p(x) to p(A). For any polynomial p(x) we can write p(x) = q(x)f(x) + r(x)
where r(x) has degree < n (or is equal to 0). We have p(A) = q(A)f(A)+r(A) =
r(A) which lies in the span of I, A,A2, . . . , An−1. So the image im(φ) of φ is equal
to the span of I, A, . . . , Ar−1. The kernel of φ contains the maximal ideal (f(x)).
Since ker(φ) is clearly not equal to K[x], we must have ker(φ) = (f(x)). By
the first isomorphism theorem, we have K[x]/(f(x)) ∼= im(ϕ). Because (f(x))
is maximal, K[x]/(f(x)) is a field.

(b) The map ψ : Matn,n(K) → Kn defined by ψ(p(x)) = p(A)v is a K[x]-module
homomorphism. . The kernel is an submodule (hence an ideal) of K[x] that
contains the maximal ideal (f(x)). The kernel is not the whole ring, because v
is nonzero. Because (f(x)) is maximal, the kernel of ψ must be equal to (f(x)).
If v,Av, . . . , An−1v are linearly dependent, then there exists a nonzero polyno-
mial q(x) of degree ≤ n − 1 with q(A)v = 0. Since q(x) ∈ ker(ψ) = (f(x)) we
have f(x) | q(x) but this is a contradiction because f(x) has degree n and q(x)
has degree < n. So v,Av, . . . , An−1v are linearly independent. Since Kn has
dimension n, these vectors must form a basis.

(4) (a) 0. Because Z/(2)⊗ Z/(3) is generated as a Z-module by

(1 + (2))⊗ (1 + (3)) = (3 + (2))⊗ (1 + (3)) =

= (1 + (2))⊗ (3 + (3)) = (1 + (2))⊗ (0 + (3)) = 0.

(b) Z/(3). The map ψ : Z/(3)×Z/(9)→ Z/(3) given by ψ(a+(3), b+(9)) = ab+(3) is
well defined, so there exists a surjective group homomorphism Z/(3)⊗ZZ/(9)→
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Z/(3). On the other hand Z/(3) × Z/(9) is generated by (1 + (3)) ⊗ (1 + (9))
which has order at most 3 in Z/(3)⊗Z Z/(9).
Z/(3).

(c) 0.This module is generated by elements of the form

(a
b

+ Z)⊗ c
d

= (a
b

+ Z)⊗ (b · c
db

) = (a+ Z)⊗ c
db

= (0 + Z)⊗ c
db

= 0.

(5)
(a) Define ψ : V × V × V →

∧2 V ⊗ V by

ψ(a, b, c) = (a ∧ c)⊗ b− (b ∧ c)⊗ a.
For fixed c, this map is bilinear in a and b. It is also skew-symmetric: ψ(a, b, c) =
−ψ(b, a, c). By the universal property of

∧2 V , there exists a map θ :
∧2×V →∧2⊗V such that

θ((a ∧ b), c) = ψ(a, b, c) = (a ∧ c)⊗ b− (b ∧ c)⊗ a.
It is easy to verify that this map is also linear in c, so ϕ is bilinear, and there
exists a linear map ϕ :

∧2 V ⊗ V →
∧2 V ⊗ V with the property

ϕ((a ∧ b)⊗ c) = θ(a ∧ b, c) = (a ∧ c)⊗ b− (b ∧ c)⊗ a.
(b) Restricting ϕ to the span of (e1 ∧ e2)⊗ e3, (e1 ∧ e3)⊗ e2 and (e2 ∧ e3)⊗ e1 gives

the matrix  0 1 −1
1 0 1
−1 1 0


This matrix has eigen value −2 with multiplicity 1 and eigenvalue 1 with mul-
tiplicity 2. For i 6= j ei ∧ ej)⊗ ej is an eigenvector with eigenvalue 1. There are
6 such vectors. Combined we have the eigenvalue 1 with multiplicity 8 and the
eigenvalue −2 with multiplicity 1.

(6) Let n = 2rm be the order of n where r > 0 and m is odd. Suppose that S is the
2-Sylow subgroup of G. It has 2r elements. Since S is a nontrivial 2-group, it has
a nontrivial center, and this nontrivial center has an element of order 2, call it g.
Consider the action of G on itself by conjugation. If H is the stabilizer, and C is the
orbit, then H is the centralizer of g, C is the conjugacy class of g and |H| · |C| = |G|.
Since H contains S, |H| is divisible by 2r which implies that |C| is odd.
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