
January 2016, Qualifying Review, Morning Exam

Problem 1. Let p be a prime number and let 1 ≤ n < p2 be an integer. Show that every
p-Sylow subgroup of Sn is abelian.

Solution. Suppose that n < p2. Using division with remainder we can write n = pq+r with
0 ≤ r < p and q = bn

p
c. The number n! has exactly q prime factors p, so Sylow subgroups

of Sn have pq elements. Let H be the group generated by

(1 2 · · · p), (p+ 1 p+ 2 · · · 2p), . . . , (p(q − 1) + 1 p(q − 1) + 2 · · · pq).

This is an abelian subgroup of Sn with pq elements. Therefore, H is a p-Sylow subgroup.
Since all p-Sylow subgroups are conjugate, all p-Sylow subgroups are abelian.

Problem 2. Let A be a 5 × 5 matrix with complex entries. Suppose that the set of all
eigenvectors of A, together with the zero vector, forms a two-dimensional subspace of C5.
What are the possible Jordan normal forms of A?

Solution. Let λ be an eigenvalue for A. If there is another eigenvalue µ and v and w are
eigenvectors with eigenvalues λ and µ respectively, then v, w ∈ S but v+w 6∈ S. So S cannot
be a subspace. Therefore, λ is the only eigenvalue of A. All the Jordan blocks in the Jordan
normal form of A have eigenvalue λ. Now S is the kernel of A − λI. Since A − λI has a 2
dimensional kernel, A has exactly 2 Jordan blocks. The possible Jordan normal forms for A
are 

λ 1 0 0 0
0 λ 1 0 0
0 0 λ 1 0
0 0 0 λ 0
0 0 0 0 λ

 and


λ 1 0 0 0
0 λ 1 0 0
0 0 λ 0 0
0 0 0 λ 1
0 0 0 0 λ


where λ is any complex number. For the normal forms above, the space S is clearly a 2-
dimensional subspace. So the same is true for any matrix that is conjugate to one of these
Jordan normal forms.

Problem 3. Let p be a prime number and let d ∈ Fp be a non-square. Show that the set
of matrices of the form (

a b
db a

)
with a, b ∈ Fp forms a field (under matrix addition and multiplication).

Solution. Let K be the set of such matrices. It is clearly closed under addition. It is easily
verified to be closed under multiplication. Since

det

(
a b
db a

)
= a2 − db2

is non-zero if a or b is non-zero (since d is not a square), all the non-zero matrices in K are
invertible. Thus K is a domain. It is clear that K has p2 elements, and is therefore a field
(since a finite domain is a field).



Problem 4. Let R = C[t2, t3], considered as a subring of C[t], and let I ⊂ R be the ideal
(t2, t3). Compute the dimension of I ⊗R R/I as a complex vector space.

Solution. We have M ⊗RR/I = M/IM for any R-module M , so in particular I ⊗RR/I =
I/I2. We have I2 = (t2, t3)2 = (t4, t5, t6). Thus I/I2 has t2, t3 as a basis, and is two
dimensional.

Problem 5. Suppose that G is a finite group with exactly three conjugacy classes. Show
that G is isomorphic to S3 or Z/3Z.

Solution. Let C1 = {e}, C2 and C3 be the conjugacy classes and assume without loss of
generality that |C2| ≤ |C3|. The cardinality |Ci| divides |G|, say |G| = di|Ci|. We have

|G| = |C1|+ |C2|+ |C3| =
|G|
d1

+
|G|
d2

+
|G|
d3

and d1 ≥ d2 ≥ d3.

3

d3
≥ 1

d1
+

1

d2
+

1

d3
= 1.

and d3 ≤ 3. It follows that d3 = 3 or d3 = 2. If d3 = 3 then we must have d1 = d2 = 3. In
this case, G has d1 = 3 elements, so G is isomorphic to Z/3Z.

If d3 = 2, then we must have d1 = 6 and d2 = 3. In this case the group has 6 elements
and is not commutative. So G must be isomorphic to S3.



January 2016, Qualifying Review, Afternoon Exam

Problem 1. Let A be an n × n complex matrix. Recall that its characteristic polynomial
is defined by χA(t) = det(tI − A), where I is the identity matrix. Prove the identity

χA2(t2) = χA(t)χ−A(t).

Solution. We have

χA2(t2) = det(t2I − A2)

= det((tI − A)(tI + A))

= det(tI − A) det(tI − (−A))

= χA(t)χ−A(t).

Here I denotes the identity matrix.

Problem 2. Let G be a finite group of cardinality 2nm, with m odd, that contains an
element of order 2n. Show that all order 2 elements of G are conjugate.

Solution. The group G contains a cyclic group of order 2n. Since all 2-Sylow subgroups are
conjugate, all 2-Sylow subgroups myst be cyclic of order 2n. Suppose that a, b are elements
of order 2. There exists 2-Sylow subgroups A and B such that a ∈ A and b ∈ B. There
exists an element g ∈ G such that gAg−1 = B. Now gag−1 is an element of order 2 in B.
Because B is cyclic of order 2n, it has exactly 1 element of order 2, namely b. Therefore
gag−1 = b.

Problem 3. Let V be the vector space of 3 × 3 real matrices. Define a bilinear form 〈·, ·〉
on V by

〈A,B〉 = trace(AB − ABt).

Show that 〈·, ·〉 is symmetric and compute its signature.

Solution. We have

〈A,B〉 = trace(AB − ABt)

= trace(AB)− trace(ABt)

= trace(BA)− trace((BAt)t)

= trace(BA)− trace(BAt)

= trace(BA−BAt)

= 〈B,A〉
and so the form is symmetric.

We now compute the signature. We can write V = W ⊕ Z where W is the 6-dimensional
space of symmetric matrices, and Z is the 3-dimensional space of skew-symmetric matrices.
If B ∈ W then 〈A,B〉 = trace(A(B − Bt)) = 0. So W lies in the kernel of the bilinear
form. So the sign 0 has multiplicity at least 6. If we restrict the bilinear form to Z, we get
〈A,A〉 = trace(A2 − AAt) = −2 trace(AAt) < 0 for every nonzero A ∈ Z. The sign − has
multiplicity 3 and the sign 0 has multiplicity 6.



Problem 4. Let R be a commutative ring with identity such that IJ = I ∩ J for all ideals
I and J . Show that every prime ideal of R is maximal.

Solution. Let p be a prime ideal of R, and put R = R/p. We claim I ∩ J = I · J for all
ideals I and J of R. To see this, let I and J be given, and let I and J be their inverse images
in R. Let x ∈ I ∩ J , and let x be a lift of x to R. Then x belongs to I ∩ J = IJ , and so x
belongs to I · J . Thus I ∩ J ⊂ I · J , and the reverse inclusion is clear.

Let a ∈ R be non-zero. Then (a2) = (a)(a) = (a) ∩ (a) = (a), and so a = ba2 for some b.
Since R is a domain and a is non-zero, we find 1 = ba, and so a is a unit. Thus R is a field,
and so p is maximal.

Problem 5. Let K = Q(a) where a is an algebraic number satisfying a2 = 13 + 2
√

13.
Show that K/Q is Galois with group Z/4Z.

Solution. Since 13 + 2
√

13 is not a square in Q(
√

13), we see that K/Q is a degree 4
extension. The element a is a root of the quartic polynomial f(x) = (x2 − 13)2 − 52, and
so this is its minimal polynomial by degree considerations. Let L be the splitting field of f .
The roots of f in L are ±a and ±b, where b2 = 13− 2

√
13.

Let σ be an automorphism of L that restricts to the identity on Q(
√

13). Then σ(a) = ±a
and σ(b) = ±b. We have (ab)2 = 132− 4 · 13 = 13 · 9, and so ab = ±3

√
13. Thus σ(ab) = ab,

and so either σ(a) = a and σ(b) = b, in which case σ is the identity on L, or σ(a) = −a and
σ(b) = −b. We have thus shown that Gal(L/Q(

√
13)) has order at most 2. Thus Gal(L/Q)

has order at most 4. But L/Q is Galois and has degree at least 4. We conclude that L/Q
has degree exactly 4, and thus coincides with K. In particular, K is Galois.

Suppose that σ ∈ Gal(K/Q) is non-trivial on Q(
√

13). Then σ(ab) = −ab by the obser-
vations of the previous paragraph. Since σ permutes the roots of f , we see that σ(a) must
be ±a or ±b. Since σ(a2) 6= a2, we cannot have σ(a) = ±a. Thus σ(a) = ±b; suppose
(without loss of generality) σ(a) = b. Then σ(b) = ±a, and since σ(ab) = −ab we must have
σ(b) = −a. Thus σ2(a) = σ(b) = −a and so σ2 is not the identity. It follows that Gal(K/Q)
has an element of order > 2, and is therefore cyclic of order 4.


