January 2016, Qualifying Review, Morning Exam

Problem 1. Let p be a prime number and let 1 < n < p? be an integer. Show that every
p-Sylow subgroup of S, is abelian.

Solution. Suppose that n < p?. Using division with remainder we can write n = pq-+r with
0<r<pandgq= L%j The number n! has exactly ¢ prime factors p, so Sylow subgroups
of S,, have p? elements. Let H be the group generated by

(12 pp+lp+2 - 2p)...,(plg=1)+1plg—1)+2 - pq).

This is an abelian subgroup of S,, with p? elements. Therefore, H is a p-Sylow subgroup.
Since all p-Sylow subgroups are conjugate, all p-Sylow subgroups are abelian.

Problem 2. Let A be a 5 x 5 matrix with complex entries. Suppose that the set of all
eigenvectors of A, together with the zero vector, forms a two-dimensional subspace of C5.
What are the possible Jordan normal forms of A?

Solution. Let A\ be an eigenvalue for A. If there is another eigenvalue p and v and w are
eigenvectors with eigenvalues A and pu respectively, then v,w € S but v+w ¢ S. So S cannot
be a subspace. Therefore, A is the only eigenvalue of A. All the Jordan blocks in the Jordan
normal form of A have eigenvalue A. Now S is the kernel of A — AI. Since A — A\[ has a 2
dimensional kernel, A has exactly 2 Jordan blocks. The possible Jordan normal forms for A
are

A1 000 A1 000
0Xx100 0Xx100
0 0AN1 0]and [O O X O O
00 0 X O 00 0 X1
00 0 0 A 00 0 0 A

where \ is any complex number. For the normal forms above, the space S is clearly a 2-
dimensional subspace. So the same is true for any matrix that is conjugate to one of these
Jordan normal forms.

Problem 3. Let p be a prime number and let d € F,, be a non-square. Show that the set
of matrices of the form

a b

db a

with a,b € F,, forms a field (under matrix addition and multiplication).

Solution. Let K be the set of such matrices. It is clearly closed under addition. It is easily
verified to be closed under multiplication. Since

a b 2 2
det(db a)—a —db

is non-zero if a or b is non-zero (since d is not a square), all the non-zero matrices in K are
invertible. Thus K is a domain. It is clear that K has p? elements, and is therefore a field
(since a finite domain is a field).



Problem 4. Let R = C[t?,t3], considered as a subring of C[t], and let I C R be the ideal
(t2,#3). Compute the dimension of I ®p R/I as a complex vector space.

Solution. We have M ®g R/I = M/IM for any R-module M, so in particular [ ® g R/I =
I/1?2. We have I? = (t2,t%)? = (t*,¢°,1%). Thus I/I* has t*/t3 as a basis, and is two
dimensional.

Problem 5. Suppose that G is a finite group with exactly three conjugacy classes. Show
that G is isomorphic to S3 or Z/3Z.

Solution. Let C; = {e}, Cy and C3 be the conjugacy classes and assume without loss of
generality that |Cy| < |Cs]. The cardinality |C;| divides |G|, say |G| = d;|C;|. We have
G G G
|G| = |C1| + |Co| + |C3] = u+ |d—|+ |d—|
3

and dl 2 dg 2 d3

3 1 1 1
>

and ds < 3. It follows that d3 = 3 or d3 = 2. If d3 = 3 then we must have d; = dy = 3. In
this case, G has d; = 3 elements, so G is isomorphic to Z/3Z.

If d3 = 2, then we must have d; = 6 and dy = 3. In this case the group has 6 elements
and is not commutative. So G must be isomorphic to Sj.



January 2016, Qualifying Review, Afternoon Exam

Problem 1. Let A be an n x n complex matrix. Recall that its characteristic polynomial
is defined by xa(t) = det(tI — A), where [ is the identity matrix. Prove the identity

Xa2(t%) = xa(t)x-a(t).

Solution. We have

Ya2(t?) = det (2] — A?)
=det((tI — A)(t] + A))
=det(t/ — A)det(t] — (—A))
= Xa(t)x-a(t).

Here I denotes the identity matrix.

Problem 2. Let G be a finite group of cardinality 2"m, with m odd, that contains an
element of order 2". Show that all order 2 elements of G are conjugate.

Solution. The group G contains a cyclic group of order 2". Since all 2-Sylow subgroups are
conjugate, all 2-Sylow subgroups myst be cyclic of order 2". Suppose that a, b are elements
of order 2. There exists 2-Sylow subgroups A and B such that a € A and b € B. There
exists an element g € G such that gAg~' = B. Now gag~! is an element of order 2 in B.
Because B is cyclic of order 2", it has exactly 1 element of order 2, namely b. Therefore
gag~! =b.

Problem 3. Let V' be the vector space of 3 x 3 real matrices. Define a bilinear form (-, -)
on V by
(A, B) = trace(AB — AB").

Show that (-,-) is symmetric and compute its signature.

Solution. We have
(A, B) = trace(AB — AB")
= trace(AB) — trace( AB")
= trace(BA) — trace((BA")")
= trace(BA) — trace(BA")
= trace(BA — BA")
= <Bv A)
and so the form is symmetric.

We now compute the signature. We can write V =W & Z where W is the 6-dimensional
space of symmetric matrices, and Z is the 3-dimensional space of skew-symmetric matrices.
If B € W then (A, B) = trace(A(B — B")) = 0. So W lies in the kernel of the bilinear
form. So the sign 0 has multiplicity at least 6. If we restrict the bilinear form to Z, we get

(A, A) = trace(A? — AA") = —2trace(AA") < 0 for every nonzero A € Z. The sign — has
multiplicity 3 and the sign 0 has multiplicity 6.



Problem 4. Let R be a commutative ring with identity such that I.J = I N J for all ideals
I and J. Show that every prime ideal of R is maximal.

Solution. Let p be a prime ideal of R, and put R = R/p. We claim I N.J = I -.J for all
ideals I and J of R. To see this, let I and J be given, and let I and J be their inverse images
in R. Let T € I NJ, and let « be a lift of T to R. Then « belongs to INJ = I.J, and so T
belongs to I -.J. Thus I NJ C I -.J, and the reverse inclusion is clear.

Let a € R be non-zero. Then (a?) = (a)(a) = (a) N (a) = (a), and so a = ba? for some b.
Since R is a domain and a is non-zero, we find 1 = ba, and so @ is a unit. Thus R is a field,
and so p is maximal.

Problem 5. Let K = Q(a) where a is an algebraic number satisfying a? = 13 + 2v/13.
Show that K/Q is Galois with group Z/4Z.

Solution. Since 13 + 2v/13 is not a square in Q(v/13), we see that K/Q is a degree 4
extension. The element a is a root of the quartic polynomial f(z) = (2% — 13)? — 52, and
so this is its minimal polynomial by degree considerations. Let L be the splitting field of f.
The roots of f in L are +a and +b, where b* = 13 — 2/13.

Let o be an automorphism of L that restricts to the identity on Q(v/13). Then o(a) = +a
and o(b) = £b. We have (ab)? = 132 —4-13 = 13-9, and so ab = £3+/13. Thus o(ab) = ab,
and so either o(a) = a and o(b) = b, in which case o is the identity on L, or o(a) = —a and
o(b) = —b. We have thus shown that Gal(L/Q(+/13)) has order at most 2. Thus Gal(L/Q)
has order at most 4. But L/Q is Galois and has degree at least 4. We conclude that L/Q
has degree exactly 4, and thus coincides with K. In particular, K is Galois.

Suppose that ¢ € Gal(K/Q) is non-trivial on Q(v/13). Then o(ab) = —ab by the obser-
vations of the previous paragraph. Since o permutes the roots of f, we see that o(a) must
be +a or +b. Since o(a®) # a?, we cannot have o(a) = +a. Thus o(a) = +b; suppose
(without loss of generality) o(a) = b. Then o(b) = +a, and since o(ab) = —ab we must have
o(b) = —a. Thus 0?(a) = o(b) = —a and so ¢* is not the identity. It follows that Gal(K/Q)
has an element of order > 2, and is therefore cyclic of order 4.



