1. Let

$$
\alpha_{1}, \alpha_{2}, \ldots
$$

be an enumeration of rational numbers in the interval $[0,1)$. Define $f:[0,1] \rightarrow \mathbb{R}$ as

$$
f(x)=\sum_{\left\{j \mid \alpha_{j}<x\right\}} \frac{1}{2^{j}}
$$

for $0<x \leq 1$ and $f(x)=0$ for $x=0$.
a) Prove that f is discontinuous at rational x with $x<1$.
b) Prove that f is continuous at irrational x.
2. Let γ_{n} be the path

$$
\gamma_{n}(t)=\left(t, \frac{\sin 2 \pi t}{n}\right), \quad 0 \leq t \leq 1,
$$

and let γ be the path $\gamma(t)=(t, 0), 0 \leq t \leq 1$, in the $x-y$ plane. If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a continuous function, prove that

$$
\lim _{n \rightarrow \infty} \int_{\gamma_{n}} f=\int_{\gamma} f
$$

where the integrals over γ and γ_{n} are path integrals.
3. Let $\omega=e^{\frac{2 \pi i}{n}}$ with $n \in \mathbb{Z}$ and $n>2$. Evaluate

$$
1+\omega^{2}+\omega^{4}+\cdots+\omega^{2(n-1)} .
$$

4. Let $f(z)$ be defined of $\operatorname{Im} z \geq 0$ such that f is analytic for $\operatorname{Im} z>0, f$ is real if z is real, and f is continuous for all $\operatorname{Im} z \geq 0$. Define

$$
f(z)=\overline{f(\bar{z})}
$$

for $\operatorname{Im} \mathrm{z}<0$.
a) Verify that f is differentiable for $\operatorname{Im} z<0$.
b) Verify that f is continuous for $\operatorname{Im} z=0$.
5. Evaluate $\int_{0}^{\infty} \frac{d x}{x^{1 / 5}(1+x)}$ using complex integration.

Problems
(a) Suppose $x=\alpha_{j}$
and

$$
\alpha_{k_{1}}, \alpha_{k_{2}}, \alpha_{k_{3}}, \ldots
$$

to be an enumeration of rationals $<x$.
Then $f(x)=\sum_{i=1}^{\infty} \frac{1}{2^{k_{i}}}$
and

$$
f(x+\epsilon)>f(x)+\frac{1}{2^{j}}
$$

for any $t>0$. Thus f is discant at x.
(b) Suppose x is is rational.

Given $\in>0$ choose J so large that

$$
\sum_{j>J} \frac{1}{2^{j}}=\frac{1}{2^{J}}<\epsilon .
$$

$$
\delta=\frac{1}{2} \min _{j=1}\left|\alpha_{j}-x\right|
$$

if $|x \cdot y|>\delta$ chen

$$
x>\alpha_{j} \text { for } j=1 \cdots J
$$

iff

$$
y>\alpha_{v},
$$

proof: $x>\alpha_{j}$ then $x>\alpha_{j}+\delta$ by choice of δ.

$$
\begin{aligned}
y-\alpha_{j} & =(y-x)+\left(x-\alpha_{j}\right) \\
& >(y-x)+\delta>0
\end{aligned}
$$

Sumilany, if $x<\alpha_{0}$ then $x+\delta<\alpha_{0}$

$$
\begin{aligned}
\alpha_{v}-y & =\alpha_{j}-x+x-y \\
& >\alpha_{j}-x+\delta>0
\end{aligned}
$$

Thus

$$
|f(x)-f(y)| \leqslant \sum \frac{1}{2} j=6
$$

j) J

Problem 2

$$
\begin{aligned}
& \left|\gamma_{n}-\gamma\right|=\left|\left(0, \sin \frac{2 \pi t}{n}\right)\right| \\
& \leq \frac{1}{n} \text { for } 0 \leq t \leq 1 \text {. } \\
& \dot{\gamma}(t)=(1,0) \\
& \hat{\gamma}_{p}(t)=\left(1,2 \pi \frac{\cos 2 \pi t}{n}\right) \\
& \text { is }(t) 1=1 \\
& \left|\dot{r}_{n}(t)\right|=\left(1+\frac{4 \pi^{2} \cos ^{2} 2 \pi t}{n^{2}}\right)^{1 / 2} \\
& 0<\left|\dot{r}_{n}(t)\right|-|\gamma(t)| \leqslant \frac{4 n^{2}}{n^{2}}
\end{aligned}
$$

because:

$$
\begin{aligned}
& \text { because: } 1+x<1+2 x+x^{2} \text { for } x>0 \\
& \Rightarrow \sqrt{1+x} \leqslant 1+x \quad f r x \geqslant 0 . \\
& \int f(\gamma)|\dot{\gamma}| d t-\int f\left(\gamma_{n}\right)\left|\dot{\gamma}_{n}\right| d t \\
&=\int\left(f(r)-f\left(k_{0}\right)|\dot{\gamma}| d t+\int f\left(\gamma_{n}\right)\left(|\gamma|-\mid \gamma_{p}\right)\right) d t
\end{aligned}
$$

$$
\begin{aligned}
& \int f(\gamma)|\dot{\gamma}| d t-\int f\left(\gamma_{n}\right)\left|\dot{\gamma}_{n}\right| d t \\
= & \left.\int\left(f-f\left(\gamma_{0}\right)\right)|\dot{\gamma}| d t+\int f\left(\gamma_{n}\right)\left(|\dot{\gamma}|-\mid \dot{\gamma}_{p}\right)\right) d t
\end{aligned}
$$

There foe

$$
\begin{aligned}
& \left|\int_{r} f-\int_{\gamma_{n}}\right| \\
\leqslant & \int_{0}^{1}\left|f(r(t))-f\left(r_{m}(t)\right)\right|\left|\frac{d v}{d t}\right| d t \\
+ & \int_{0}^{1} \left\lvert\, f\left(\gamma_{n}(t) \left\lvert\,\left(\left|\frac{d \gamma_{n}}{d t}\right| \cdot\left|\frac{d v}{d t}\right|\right) d t .\right.\right.\right.
\end{aligned}
$$

$$
\text { FIRST } \left.\left|\gamma-\gamma_{n}\right| \leq \frac{1}{n} \Rightarrow \right\rvert\, f\left(\gamma(t)-f\left(\gamma_{n}(t) \mid \rightarrow 0\right.\right.
$$ as $n \rightarrow \infty$ unif in t becouse f is unif contim.

SECOND γ_{n}, r ore contained is

$$
|x| \leq 2, \quad|y| \leq 2
$$

ound we may assume $|f| \leq M$ in Chis region.
we venfiedo! $\left|\frac{d r_{n}}{d c}\right|-\left|\frac{d r_{n}}{d t}\right| \leq \frac{4 \pi^{2}}{n^{2}}$
Thergore both teems in the upper. bound $\rightarrow 0$ as $n \rightarrow \infty$.

Problem 3

$$
\omega=e^{2 \pi i / n}
$$

Then $w^{n} \leq 1$ and $\left(w^{2}\right)^{n}=1$

$$
\begin{aligned}
& z^{n}-1=(2-1)\left(1+z+\cdots+z^{n-1}\right) \\
& \omega^{2 n}-1=\left(\omega^{2}-1\right)\left(1+\omega^{2}+\cdots+w^{2(n-1)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\omega^{2}-1\right)\left(1+\omega^{2}+\cdots+\omega^{2(n-1)}\right)=0 \\
& \left\{x>2, \omega^{2} \neq 1 .\right.
\end{aligned}
$$

Thus $1+\omega^{2}+\cdots+\omega^{2(n-1)}=0$.

Problem 4
(b) If $\operatorname{lm}(z)<0$ and $z \rightarrow a$ with a real

$$
\lim _{z \rightarrow a} f(z)=\lim _{z \rightarrow a} \overline{f(\sqrt{z})}=\overline{f(a)}=f(a)
$$

(a) Ass um $\operatorname{Im} z<0$.

$$
\frac{f(z+h)-f(z)}{h}=\frac{\overline{f(\bar{z}+i)}-\overline{f(\bar{z})}}{h}
$$

for h small.

$$
\begin{aligned}
& =\overline{\left(\frac{f(\bar{z}+\bar{h})-f(\bar{z})}{\bar{h}}\right)} \\
& \lim _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(\frac{f(\bar{z}+\bar{h})-f(\bar{z})}{\bar{h}}\right)}{f^{\prime}(\bar{z})} \\
& =\operatorname{fin}^{(\text {because } f \text { is }} \overline{\text { analytic at }} \bar{z} .
\end{aligned}
$$

Problems 5 consider $\int_{r_{1} \cup r_{2} \cup r_{R}} \frac{d z}{z^{y_{5}(1+z)}}$
with

The branch $z^{1 / 5}=s^{1 / 5} e^{\frac{i 0}{5}}$ with $0<\theta<2 \pi$.
tue real line is the branch cut.
r_{1} is slightly above, γ_{2} slightly below.

$$
\begin{aligned}
& \int_{\gamma_{1} \cup \gamma_{2} \cup \gamma_{R}} \frac{d z}{z^{1 / 5}(1+z)}=2 \pi i \operatorname{Res}\left(\frac{1}{z^{1 / 5}(1+z)} ;-1\right) \\
&=\frac{2 \pi i}{e^{i \pi / 5}} \\
& \lim _{R \rightarrow \infty} \int_{\gamma_{R}} \frac{d z}{z^{1 / 5}(1+z)}=0 \\
& \lim _{R \rightarrow \infty} \int_{\gamma_{1}} \frac{d z}{z^{1 / 5}(1+z)}=\int_{0} \frac{x^{2 / 5}(1+x)}{}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{R \rightarrow-\infty} \int_{r_{2}} \frac{d z}{2^{1 / 5}(1+z)} \\
&= \int_{\infty}^{0} \frac{d x}{x^{1 / 5} e^{\frac{2 \pi i}{5}}(1+x)} \\
&= \frac{-1}{e^{2 \pi i / 5}} \int_{0}^{\infty} \frac{d x}{x^{1 / 5}(1+x)} \\
& \operatorname{lhus}_{0}^{\infty} \frac{d x}{x^{1 / 5}(1+x)}=\frac{2 \pi i}{e^{i \pi / 5}} \frac{e^{2 \pi i / 5}}{\left(e^{2 \pi i / 5}-1\right)} \\
&=\left.\frac{\pi}{\pi} \frac{(2 i)}{i \pi / 5}-i \pi / 5\right) \\
&= \frac{\pi}{\sin \left(\frac{\pi}{5}\right)}
\end{aligned}
$$

