Advanced Calculus and Complex Variables (solution hints)

August 2021
For full credit, support your answers with appropriate explanations.
There are five problems, each worth 20 points.

1. (20 points) Let Q be the set of rational numbers. Give an example of a function $f:[0,1] \rightarrow \mathbb{R}$ that satisfies the following two criteria:
(a) f must be continuous at $x \in[0,1]-Q$.
(b) f must be discontinuous at $x \in[0,1] \cap Q$.

Explain why f has the above two properties. Informal explanations will get full credit.
Solution Let q_{1}, q_{2}, \ldots be an enumeration of rationals in $[0,1]$. Define

$$
f(x)=\sum_{\left\{n \mid q_{n} \leq x\right\}} \frac{1}{2^{n}}
$$

for $x \in[0,1]$. Then f has the above two properties.
2. A function $f:[0,1] \rightarrow \mathbb{R}$ is said to be lower semicontinuous if for every sequence x_{1}, x_{2}, \ldots in $[0,1]$ with

$$
x_{*}=\lim _{n \rightarrow \infty} x_{n}
$$

we also have

$$
f\left(x_{*}\right) \leq \lim \inf _{n \rightarrow \infty} f\left(x_{n}\right)
$$

The sequence of values

$$
g_{n}=\inf \left\{f\left(x_{n}\right), f\left(x_{n+1}\right), \ldots\right\}
$$

is obviously increasing and therefore has a limit as $n \rightarrow \infty$ (the limit can be finite or $+\infty)$. The limit of g_{1}, g_{2}, \ldots is by definition $\liminf _{n \rightarrow \infty} f\left(x_{n}\right)$.
(a) (10 points) If $f:[0,1] \rightarrow \mathbb{R}$ is a lower semicontinuous function, prove that it attains its infimum. That means there exists $x_{*} \in[0,1]$ such that

$$
f(x) \geq f\left(x_{*}\right)
$$

for all $x \in[0,1]$.
(b) (10 points) Give an example of an $f:[0,1] \rightarrow \mathbb{R}$ that is lower semicontinuous but does not attain its supremum.

Solution: (a) Suppose $m=\inf \{f(x) \mid x \in[0,1]\}$. There must exist a sequence x_{1}, x_{2}, \ldots such that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=m$. By the Bolzano-W property and by taking a subsequence if necessary, we may assume that $\lim _{n \rightarrow \infty} x_{n}=x_{*}$. It then follows that $f\left(x_{*}\right) \leq m$ from the definition of lower semicontinuity and because m is the inf we must have $m=f\left(x_{*}\right)$. This is one of many possible proofs. (b) Define $f(x)=x$ for $0<x<1$ and $f(0)=f(1)=-1$. The supremum, which is 1 , is not attained by this lower-semi function.
3. Sketch closed and oriented curves γ in \mathbb{C} such that the value of

$$
\frac{1}{2 \pi i} \int_{\gamma}\left(\frac{1}{z-1}+\frac{1}{z-2}\right) d z
$$

is 0,1 , and -2 , respectively.
4. The function $f(z)=\sqrt{1-z^{2}}$ has branch points at $z= \pm 1$ but nowhere else. In particular, $z=\infty$ is not a branch point. Thus, we may choose the branch cut to be the interval $(-1,1)$ in the real line and specify the branch by requiring $f(i)=+\sqrt{2}$.
(a) (5 points) For $f(z)$ as specified above, is $f(z)$ positive or negative "slightly above" the branch cut $(-1,1)$. Here "slightly above" refers to the limiting value of $f(z)$ as a point on the branch cut is approached from above.
(b) (15 points) Evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{d z}{\sqrt{1-z^{2}}}
$$

where it is assumed that the path from $-\infty$ to ∞ is along the real line and slightly above the branch cut. The branch of $f(z)=\sqrt{1-z^{2}}$ is as specified above.

Solution (a) $f(z)$ is positive slightly above the branch cut. This may be proved using a continuity argument by first letting z vary from i to 0 and then above the branch cut. (b) First argue that $f(z) \sim-i z$ for $|z|$ large as follows. For large $i y, y>0$, a continuity argument from $z=i$ upwards shows that $f(i y) \sim y=-i z$. Again by continuity, we must have $f(z) \sim-i z$ for all z with large $|z|$. The value of the integral can then be shown to be equal to

$$
\int_{\gamma} \frac{1}{-i z} d z
$$

where γ is the path $R e^{i t}$ with $t \in[0, \pi]$ and counterclockwise, and in the limit $R \rightarrow \infty$. Thus the integral evaluates to π.
5. Consider the function

$$
f(z)=\left(z-\frac{\pi}{2}\right) \sin \pi z
$$

(a) (10 points) Evaluate the integral

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z
$$

with γ being the close curve $|z|=2 \pi$ oriented counter-clockwise.
(b) (10 points) Let γ_{n} be the close curve $|z|=n+\frac{1}{2}$ oriented counter-clockwise and define

$$
I_{n}=\frac{1}{2 \pi i} \int_{\gamma_{n}} \frac{z^{2} f^{\prime}(z)}{f(z)} d z
$$

Evaluate the limit

$$
\lim _{n \rightarrow \infty} \frac{I_{n}}{n^{3}}
$$

Above $n \in \mathbb{Z}^{+}$is assumed.
Solution (a) $z=0, \frac{\pi}{2}, \pm 1, \ldots, \pm 6$ are the roots of $f(z)=0$ inside γ. Thus the answer is 14. (b) First argue that

$$
I_{n}=\frac{\pi^{2}}{4}+2\left(1^{2}+\cdots+n^{2}\right)
$$

using residues and the argument principle. The limit must then be equal to $\frac{2}{3}$.

