Advanced Calculus and Complex Variables (solution hints)

August 2021

For full credit, support your answers with appropriate explanations. There are five problems, each worth 20 points.

- 1. (20 points) Let Q be the set of rational numbers. Give an example of a function $f:[0,1] \to \mathbb{R}$ that satisfies the following two criteria:
 - (a) f must be continuous at $x \in [0, 1] Q$.
 - (b) f must be discontinuous at $x \in [0, 1] \cap Q$.

Explain why f has the above two properties. Informal explanations will get full credit.

Solution Let q_1, q_2, \ldots be an enumeration of rationals in [0, 1]. Define

$$f(x) = \sum_{\{n|q_n \le x\}} \frac{1}{2^n}$$

for $x \in [0, 1]$. Then f has the above two properties.

2. A function $f : [0,1] \to \mathbb{R}$ is said to be lower semicontinuous if for every sequence x_1, x_2, \ldots in [0,1] with

$$x_* = \lim_{n \to \infty} x_n$$

we also have

$$f(x_*) \le \lim \inf_{n \to \infty} f(x_n).$$

The sequence of values

$$g_n = \inf\{f(x_n), f(x_{n+1}), \ldots\}$$

is obviously increasing and therefore has a limit as $n \to \infty$ (the limit can be finite or $+\infty$). The limit of g_1, g_2, \ldots is by definition $\liminf_{n\to\infty} f(x_n)$.

(a) (10 points) If $f : [0,1] \to \mathbb{R}$ is a lower semicontinuous function, prove that it attains its infimum. That means there exists $x_* \in [0,1]$ such that

$$f(x) \ge f(x_*)$$

for all $x \in [0, 1]$.

- (b) (10 points) Give an example of an $f : [0, 1] \to \mathbb{R}$ that is lower semicontinuous but does not attain its supremum.
- **Solution:** (a) Suppose $m = \inf\{f(x) | x \in [0, 1]\}$. There must exist a sequence x_1, x_2, \ldots such that $\lim_{n\to\infty} f(x_n) = m$. By the Bolzano-W property and by taking a subsequence if necessary, we may assume that $\lim_{n\to\infty} x_n = x_*$. It then follows that $f(x_*) \leq m$ from the definition of lower semicontinuity and because m is the inf we must have $m = f(x_*)$. This is one of many possible proofs. (b) Define f(x) = x for 0 < x < 1 and f(0) = f(1) = -1. The supremum, which is 1, is not attained by this lower-semi function.

3. Sketch closed and oriented curves γ in \mathbb{C} such that the value of

$$\frac{1}{2\pi i} \int_{\gamma} \left(\frac{1}{z-1} + \frac{1}{z-2} \right) dz$$

is 0, 1, and -2, respectively.

- 4. The function $f(z) = \sqrt{1-z^2}$ has branch points at $z = \pm 1$ but nowhere else. In particular, $z = \infty$ is not a branch point. Thus, we may choose the branch cut to be the interval (-1, 1) in the real line and specify the branch by requiring $f(i) = +\sqrt{2}$.
 - (a) (5 points) For f(z) as specified above, is f(z) positive or negative "slightly above" the branch cut (-1, 1). Here "slightly above" refers to the limiting value of f(z) as a point on the branch cut is approached from above.
 - (b) (15 points) Evaluate the integral

$$\int_{-\infty}^{\infty} \frac{dz}{\sqrt{1-z^2}}$$

where it is assumed that the path from $-\infty$ to ∞ is along the real line and slightly above the branch cut. The branch of $f(z) = \sqrt{1-z^2}$ is as specified above.

Solution (a) f(z) is positive slightly above the branch cut. This may be proved using a continuity argument by first letting z vary from i to 0 and then above the branch cut. (b) First argue that $f(z) \sim -iz$ for |z| large as follows. For large iy, y > 0, a continuity argument from z = i upwards shows that $f(iy) \sim y = -iz$. Again by continuity, we must have $f(z) \sim -iz$ for all z with large |z|. The value of the integral can then be shown to be equal to

$$\int_{\gamma} \frac{1}{-iz} \, dz$$

where γ is the path Re^{it} with $t \in [0, \pi]$ and counterclockwise, and in the limit $R \to \infty$. Thus the integral evaluates to π .

5. Consider the function

$$f(z) = \left(z - \frac{\pi}{2}\right)\sin \pi z.$$

(a) (10 points) Evaluate the integral

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} \, dz,$$

with γ being the close curve $|z| = 2\pi$ oriented counter-clockwise.

(b) (10 points) Let γ_n be the close curve $|z| = n + \frac{1}{2}$ oriented counter-clockwise and define

$$I_n = \frac{1}{2\pi i} \int_{\gamma_n} \frac{z^2 f'(z)}{f(z)} \, dz.$$

Evaluate the limit

$$\lim_{n \to \infty} \frac{I_n}{n^3}.$$

Above $n \in \mathbb{Z}^+$ is assumed.

Solution (a) $z = 0, \frac{\pi}{2}, \pm 1, \dots, \pm 6$ are the roots of f(z) = 0 inside γ . Thus the answer is 14. (b) First argue that

$$I_n = \frac{\pi^2}{4} + 2(1^2 + \dots + n^2)$$

using residues and the argument principle. The limit must then be equal to $\frac{2}{3}$.