
Advanced Calculus and Complex Variables (solution hints)
August 2021

For full credit, support your answers with appropriate explanations.

There are �ve problems, each worth 20 points.

1. (20 points) Let Q be the set of rational numbers. Give an example of a function
f : [0, 1]→ R that satis�es the following two criteria:

(a) f must be continuous at x ∈ [0, 1]−Q.
(b) f must be discontinuous at x ∈ [0, 1] ∩Q.

Explain why f has the above two properties. Informal explanations will get full credit.

Solution Let q1, q2, . . . be an enumeration of rationals in [0, 1]. De�ne

f(x) =
∑

{n|qn≤x}

1

2n

for x ∈ [0, 1]. Then f has the above two properties.

2. A function f : [0, 1] → R is said to be lower semicontinuous if for every sequence
x1, x2, . . . in [0, 1] with

x∗ = lim
n→∞

xn

we also have
f(x∗) ≤ lim inf

n→∞
f(xn).

The sequence of values
gn = inf{f(xn), f(xn+1), . . .}

is obviously increasing and therefore has a limit as n → ∞ (the limit can be �nite or
+∞). The limit of g1, g2, . . . is by de�nition lim infn→∞ f(xn).

(a) (10 points) If f : [0, 1] → R is a lower semicontinuous function, prove that it
attains its in�mum. That means there exists x∗ ∈ [0, 1] such that

f(x) ≥ f(x∗)

for all x ∈ [0, 1].

(b) (10 points) Give an example of an f : [0, 1]→ R that is lower semicontinuous but
does not attain its supremum.

Solution: (a) Supposem = inf{f(x)|x ∈ [0, 1]}. There must exist a sequence x1, x2, . . .
such that limn→∞ f(xn) = m. By the Bolzano-W property and by taking a sub-
sequence if necessary, we may assume that limn→∞ xn = x∗. It then follows that
f(x∗) ≤ m from the de�nition of lower semicontinuity and because m is the inf we
must have m = f(x∗). This is one of many possible proofs. (b) De�ne f(x) = x
for 0 < x < 1 and f(0) = f(1) = −1. The supremum, which is 1, is not attained
by this lower-semi function.
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3. Sketch closed and oriented curves γ in C such that the value of

1

2πi

ˆ
γ

(
1

z − 1
+

1

z − 2

)
dz

is 0, 1, and −2, respectively.

4. The function f(z) =
√
1− z2 has branch points at z = ±1 but nowhere else. In

particular, z = ∞ is not a branch point. Thus, we may choose the branch cut to be
the interval (−1, 1) in the real line and specify the branch by requiring f(i) = +

√
2.

(a) (5 points) For f(z) as speci�ed above, is f(z) positive or negative �slightly above�
the branch cut (−1, 1). Here �slightly above� refers to the limiting value of f(z)
as a point on the branch cut is approached from above.

(b) (15 points) Evaluate the integral

ˆ ∞
−∞

dz√
1− z2

,

where it is assumed that the path from −∞ to∞ is along the real line and slightly
above the branch cut. The branch of f(z) =

√
1− z2 is as speci�ed above.

Solution (a) f(z) is positive slightly above the branch cut. This may be proved using
a continuity argument by �rst letting z vary from i to 0 and then above the branch
cut. (b) First argue that f(z) ∼ −iz for |z| large as follows. For large iy, y > 0,
a continuity argument from z = i upwards shows that f(iy) ∼ y = −iz. Again
by continuity, we must have f(z) ∼ −iz for all z with large |z|. The value of the
integral can then be shown to be equal to

ˆ
γ

1

−iz
dz

where γ is the path Reit with t ∈ [0, π] and counterclockwise, and in the limit
R→∞. Thus the integral evaluates to π.

5. Consider the function
f(z) =

(
z − π

2

)
sin πz.

(a) (10 points) Evaluate the integral

1

2πi

ˆ
γ

f ′(z)

f(z)
dz,

with γ being the close curve |z| = 2π oriented counter-clockwise.
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(b) (10 points) Let γn be the close curve |z| = n + 1
2
oriented counter-clockwise and

de�ne

In =
1

2πi

ˆ
γn

z2f ′(z)

f(z)
dz.

Evaluate the limit

lim
n→∞

In
n3
.

Above n ∈ Z+ is assumed.

Solution (a) z = 0, π
2
,±1, . . . ,±6 are the roots of f(z) = 0 inside γ. Thus the answer

is 14. (b) First argue that

In =
π2

4
+ 2(12 + · · ·+ n2)

using residues and the argument principle. The limit must then be equal to 2
3
.
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