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Abstract

The variational quantum Monte Carlo (VQMC) method has received significant

attention because of its ability to overcome the curse of dimensionality inherent

in many-body quantum systems, by representing the exponentially complex quan-

tum states variationally with machine learning models. We develop novel training

strategies to improve the scalability of VQMC, and build parallelization frame-

works for solving large-scale problems. The application of our method is extended

to quantum chemistry and financial derivative pricing. For quantum chemistry, we

build a pre-processing pipeline serving as an interface connecting molecular infor-

mation and VQMC, and achieve remarkable performance in comparison with the

classical approximate methods. On the other hand, we present a simple general-

ization of VQMC applicable to arbitrary linear PDEs, showcasing the technique in

the Black-Scholes equation for pricing European contingent claims dependent on

many underlying assets. We also introduce meta-learning and multi-fidelity active

learning as exotic components to VQMC, which, under some reasonable assump-

tions on the problem formulation, can further improve the convergence and the

sampling efficiency of our method.
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Chapter 1

Introduction

Quantum many-body system describes a vast category of physical problems, in which the
repeated interactions between particles create quantum correlations, and the wave function of
the system is a complicated object holding a large amount of information, which makes exact
calculations about the system impractical. The variational quantum Monte Carlo (VQMC)
method received significant attention in the recent past because of its ability to overcome
the curse of dimensionality inherent in quantum many-body systems, by representing the
quantum states variationally with machine learning models. In particular, VQMC transforms
the eigenvalue problem into a stochastic optimization problem, and the exact ground-state
wavefunction can be found as the solution to the optimization problem. It is in general
impossible to compute the optimization objective exactly, since it involves integrals over a
high-dimensional space. Instead, this population quantity is approximated with statistical
averages over finite samples from the probability distribution inferred by the wavefunction.
The idea of utilizing neural-network quantum states to overcome the curse of dimensionality
in high-dimensional VQMC simulations was first introduced by Carleo and Troyer [24],
who concentrated on restricted Boltzmann machines (RBMs) applied to two-dimensional
quantum spin models. Gomes et al. [47] shows that techniques from quantum VQMC
literature can be adapted for approximately solving combinatorial optimization problems.

Dispite the recent surge of interest in VQMC-related methods applying to quantum
many-body problems, researchers encountered limitations when working with their fields of
interest. Our work is motivated by the observation that, there’s a cap on the problem size
that the current VQMC method is capable of dealing with; to the best of our knowledge, it
is applied to problems only up to hundreds of qubits. However, in many real applications,
such as quantum chemistry, we may need to deal with a many-body Schrodinger equation
describing interactions within molecules consisting of a very large number of orbiting
electrons. The main objective of our work is to discover the potential of VQMC algorithm,
and develop technologies to extend its application to a wider range of problems. We start with
the classical combinatorial optimization problems such as MaxCut, and develop evolution
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strategies to improve the state-of-the-art performance for larger-scale problems. We then
consider a special class of problems by assuming the presence of a sparse Hamiltonian
ensembles that admit a certain task regularity, and show that one can accelerate the training
of VQMC and improve the convergence on new learning tasks, by employing information
from previously encountered tasks through meta-learning. After that, we rework on the
architecture of the model by switching from RBM with Markov chain Monte Carlo (MCMC)
sampling to the one that directly supports auto-regressive sampling, achieving substantially
better scalability up to problems of ten-thousand dimensions. Finally, we successfully
apply our developed algorithm to quantum chemistry and financial derivative pricing. As
a side project, we develop multi-fidelity active learning as a efficient sampling method to
potentially improve the training of VQMC in higher dimensions.

The following is a brief overview of the chapters in this thesis.

Chapter 2: Natural Evolution Strategy. We introduce a notion of quantum natural
evolution strategies, which provides a geometric synthesis of a number of known quan-
tum/classical algorithms for performing classical black-box optimization. The algorithmic
framework is illustrated for approximate combinatorial optimization problems, and a sys-
tematic strategy is found for improving the approximation ratios. In particular, it is found
that natural evolution strategies can achieve approximation ratios competitive with widely
used heuristic algorithms for Max-Cut, at the expense of increased computation time.

Chapter 3: Meta Learning. Motivated by close analogies between meta reinforcement
learning (Meta-RL) and variational quantum Monte Carlo with disorder, we propose a
learning problem and an associated notion of generalization, with applications in ground
state determination for quantum systems described by random Hamiltonians. Specifically,
we interpret the Hamiltonian disorder as task uncertainty for a Meta-RL agent. A model-
agnostic meta-learning approach is proposed to solve the associated learning problem and
numerical experiments in disordered quantum spin systems indicate that the resulting Meta
Variational Monte Carlo accelerates training and improves convergence.

Chapter 4: Autoregressive Flows. While VQMC has been applied to solve high-dimensional
problems, it is known to be difficult to parallelize, primarily owing to the Markov chain
Monte Carlo (MCMC) sampling step. More specifically, VQMC targets the ground eigen-
state by performing alternating steps of Monte Carlo sampling from a high-dimensional
quantum state followed by gradient-based optimization. MCMC sampling limits the scala-
bility of VQMC in two ways: (1) the burn-in process is an inherently sequential task; (2)
sampling precise and uncorrelated samples become increasingly difficult for large input
dimension. We explore the scalability of VQMC when autoregressive models are used
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in place of MCMC. Autoregressive models, in contrast, provide efficient and exact com-
putations for both sampling and density evaluation. We undertake a parallelization study
of autoregressive neural quantum states, thereby improving the time-efficiency and scala-
bility of VQMC. In particular, we demonstrate that our method scales up to ten-thousand
dimensional combinatorial optimization problems.

Chapter 5: Application: Quantum Chemistry. Significant scalability challenges arise
when applying variational optimization with neural-network representation on quantum
states to solve interacting fermionic problems of larger scales, which correspond to non-
locally interacting electronic Hamiltonian as a sum of more than thousands of products of
Pauli operators. We introduce scalable parallelization strategies to improve neural-network-
based VQMC calculations for ab-initio quantum chemistry applications. We establish GPU-
supported local energy parallelism to compute the optimization objective for hamiltonians of
potentially complex molecules. Using autoregressive sampling techniques, we demonstrate
systematic improvement in wall-clock timings required to achieve CCSD baseline target
energies. The performance is further enhanced by accommodating the architecture of
molecular hamiltonian with the autoregressive sampling ordering. Our algorithm achieves
remarkable performance in comparison with the classical approximate methods and exhibits
both running time and scalability advantages over existing neural-network based methods.

Chapter 6: Application: Financial Derivative Pricing. Variational quantum Monte Carlo
(VQMC) combined with neural-network quantum states offers a novel angle of attack on the
curse-of-dimensionality encountered in a particular class of partial differential/difference
equations (PDEs). We present a simple generalization of VQMC applicable to arbitrary
linear PDEs, showcasing the technique in the Black-Scholes equation for pricing European
contingent claims dependent on many underlying assets. More precisely, we adapt the
McLachlan variational principle to handle non-unitary evolution according to the general lin-
ear partial differential equation, and represent the state of the system relative to a predefined
basis using the output of a generative neural network, according to which exact sampling
can be performed efficiently. We also propose additional modifications to the McLachlan
to accomodate boundary conditions. Our proposed VQMC solver enjoys the exponential
speedup for state evolution and moreover does not suffer from the exponential overhead of
the readout step, since the VQMC model permits efficient queries to arbitrary probability
amplitudes.

Chapter 7: Multi-Fidelity Active Learning. The performance of VQMC is substantially
influenced by the batch size of the samples used to approximate the optimization objective.
Both MCMC and autoregressive sampling sample a batch of samples strictly according to
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the probability inferred by the model at every iteration. In addition, our finance application
requires the model to pre-train on the initial condition of the PDE, involving standard training
on the batch of randomly selected data points within the domain, which could be problematic
in higher dimensions. Therefore, we need an data sampling mechanism that optimizes the
performance of the training. Active learning (AL) is a well-established machine learning
method that iteratively selects the most informative sample points based on the current
model estimation. AL is particularly effective in learning from high-dimensional problems
where the data points are sparse, making learning the interpolation area increasingly difficult.
We make a step further by developing a general framework for training the surrogate
classifier with multiple information sources, where Multi-Fidelity Active Learning (MFAL)
algorithm is proposed to efficiently sample training data that maximizes the surrogate’s
performance under a limited query budget. Unlike the existing approaches, the proposed
methodology makes no assumptions on the information sources and applies to problems
with high-dimensional input and large training sets. We analyze our algorithm on examples
ranging from synthetic to physics-based simulation models. and show it outperforms several
other baselines by a noticeable margin in terms of accuracy and efficiency.
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Chapter 2

Variational Quantum Monte Carlo and Natural
Evolution Strategies

An evolution strategy [115, 106] is a black-box optimization algorithm that iteratively
updates a population of candidates within the feasible region of the search space. The
population is updated by a process of random mutation, followed by fitness evaluation,
and subsequent recombination of best-performing members to form the next generation.
The focus of this section is on the natural evolution strategies (NES) algorithm [140] and
its quantum variants, in which the population is represented by a smoothly parameterized
family of search distributions defined on the search space. The mutation is achieved by
sampling new candidates from the search distribution, which yields a gradient estimator of
the expected fitness. The recombination step involves updating the parameters of the search
distribution in the direction of the steepest ascent, with respect to the information geometry
implicit in the choice of search distribution.

Natural evolution strategies have recently demonstrated considerable progress in solving
black-box optimization problems in high dimensions, including continuous optimization
problems relevant to reinforcement learning [112]. Comparatively, little work has been done
on the discrete optimization side (see however [80, 81, 96]). It was very recently shown
by [47] that techniques from quantum variational Monte Carlo (VQMC) literature [24]
can be adapted for approximate heuristic solution of combinatorial optimization problems.
Meanwhile, in the quantum computation literature, considerable effort has focused on
approximate heuristic solution of combinatorial optimization problems using low-depth
quantum circuits [36, 145].

The unifying principle shared by the above algorithms is their utilization of Monte-Carlo
samples drawn from a particular probability distribution, the choice of which is determined
by a local optimization problem over a variational family of search distributions. The
algorithms differ in the choice of variational family, as well as the geometry underlying
the local optimization problem, and the use of quantum or classical resources to perform
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sampling. We provide a unified view of the relationship between the geometries which
underpin these algorithms. In addition, we revisit the experiments of [47] in which heuristic
algorithms were found to outperform NES both in terms of approximation ratio and time
to solution. In contrast, we show that NES can achieve approximation ratios for Max-Cut
competitive with widely used algorithms, albeit at the expense of significantly increased
computational cost. The key factor impacting performance is identified to be the batch size
of the stochastic gradient estimator.

The chapter is structured as follows. First, the basics ingredients of both VQMC and the
natural evolution algorithm are reviewed. Next, we clarify the relationship between natural
evolution strategies and quantum approximate optimization including the classical/quantum
hybrid approach introduced in [47]. Finally, numerical experiments are presented, focusing
on the problem of combinatorial optimization for the Max-Cut problem.

2.1 Quantum Basics

The study of physics depends on the problem domain. In classical physics, we study
“large” particles in everyday life, and the properties of the particle are continuous. In
quantum physics, the objects are very small particles and the property becomes quantized.
For example, an electron presents in discrete energy states, e.g., ground state and first
excited state. One well-known challenge in quantum many-body problems is the underlying
exponentially large dimensionality. In particular, the large dimensionality lies in both the
description of the problem, i.e. the Hamiltonian, and the solutions, i.e., the eigenstates of
the Hamiltonian. A quantum state ψ is in a Hilbert space

|ψ⟩ ∈ H (2.1)

admitting a linear vector form. For example, if a two-dimensionalH is spanned by |0⟩ and
⟨1|, and |v⟩ = 1√

2
|0⟩+ i√

2
|1⟩, then we write ket as a column vector and bra as a row vector,

|v⟩ =

 1√
2

i√
2

 , ⟨v| =
(

1√
2
,
−i√
2

)
. (2.2)

To describe the quantum state, we often use the Hamiltonian description where we have a
PDE or some equation describing the state, H |ψ⟩ = λ |ψ⟩, where λ is an eigenvalue. The
quantized states correspond to the eigenvalues, for example, the ground state relates to the
lowest eigenvalue.
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The physical observables of a given quantum system—such as the spin of an electron—
are encoded as Hermitian operators on the Hilbert space describing the quantum states of
the system. The actual values that this observable may take are encoded in the eigenvalues
of the operator; for example, an observable describing the spin of an electron would have
eigenvalues 1 and −1, which represent the spin-up and spin-down states, respectively. From
this point, choosing two eigenvectors to associate with the eigenvalues determines the
resulting Hermitian.

We may choose |0⟩ to be the eigenvector associated with 1 and |1⟩ to be the eigenvector
associated with −1, in which case the Hermitian operator will have the following matrix in
the {|0⟩ , |1⟩}-basis:

Z = σz =

1 0

0 −1

 .
Choosing |+⟩ and |−⟩ as eigenvectors gives the operator

X = σx =

0 1

1 0

 ,
and choosing the states corresponding with the positive and negative y-axis on the Bloch
sphere gives the operator

Y = σy =

0 −i
i 0

 .
Physically, these choices of eigenvectors correspond with the measurement of an elec-

tron’s spin along different spatial coordinate axes, as done in the Stern–Gerlach experiment.
These matrices σx, σy, and σz are called the Pauli spin matrices, which are of fundamental
importance in quantum mechanics as they, along with the identity matrix, form a basis for
the (real) vector space of 2× 2 Hermitian matrices. Therefore every observable on the state
space of a single qubit may be uniquely expressed as a real linear combination of the identity
matrix and the Pauli matrices.

2.2 Variational Quantum Monte Carlo

2.2.1 Formulation

We are interested in heuristic approximation algorithms for determining a minimal eigenpair
of certain large and sparse random conjugate-symmetric (Hermitian) matrices that admit
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an efficient description. For simplicity, throughout this chapter, we restrict to the case of
real symmetric matrices for simplicity and consider only real eigenvectors. In addition,
the ground eigenvector is non-negative entry-wise if all off-diagonal entries of H are
further restricted to be non-positive, as a consequence of the Perron-Frobenius theorem.
The sparsity assumption underlying matrices under consideration is summarized by the
following requirement

Definition 2.2.1. A symmetric matrix H ∈ RN×N is row s-sparse if the list of non-zero
entries {(y,Hxy) : Hxy ̸= 0} is computable in time O(s), for each row index x ∈ [N ].

We consider s-sparse quantum many-body Hamiltonians where s = O
(
poly(log(N))

)
,

although the techniques we discuss do not require an exponential separation between the
sparsity parameter s and the matrix side length N . The size of these matrices is a power of 2,
that is, N = 2n, and they have sparsity parameter s = poly(n) with n = O(logN). These
include as a special case quadratic unconstrained binary optimization (QUBO) problems
such as Max-Cut [18]. We describe the differentiable family of trial vectors θ ∈ Rd with
a function ψθ : [N ] → R, of which the outputs are the components of the vector relative
to the standard basis ψθ(x) = ⟨ex, ψθ⟩. Given a row-sparse symmetric matrix H , we
define the variational Monte Carlo learning problem as the following continuous stochastic
optimization task,

min
θ∈Rd

L(θ), L(θ) =
⟨ψθ, Hψθ⟩
⟨ψθ, ψθ⟩

= E
x∼πθ

[
(Hψθ)(x)

ψθ(x)

]
≥ λmin(H), (2.3)

where the population quantity is computed over the probability distribution

πθ(x) =
ψθ(x)

2

⟨ψθ, ψθ⟩
. (2.4)

It is convenient to express the population objective function as the mean of a random variable
as L(θ) = Ex∼πθ [lθ(x)] where we have defined the following stochastic objective function,
which is defined for x ∈ [N ] whenever ψθ(x) ̸= 0,

lθ(x) =
(Hψθ)(x)

ψθ(x)
, (2.5)

and whose variance under πθ is given by,

var
x∼πθ

(
lθ(x)

)
= E

x∼πθ

[(
lθ(x)− L(θ)

)2]
=
⟨ψθ, H2ψθ⟩
⟨ψθ, ψθ⟩

−
[
⟨ψθ, Hψθ⟩
⟨ψθ, ψθ⟩

]2
. (2.6)
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It follows from the Rayleigh-Ritz principle that if the trial vector ψθ approaches any eigen-
vector of H , then the variance of stochastic objective approaches zero. In practice, the
objective function is optimized using a variant of stochastic mini-batch gradient descent
closely related to the stochastic natural gradient called stochastic reconfiguration [124].
Stochastic estimators for the gradient and the Fisher information matrix follow from their
population forms,

∇L(θ) = 2 E
x∼πθ

[(
lθ(x)− L(θ)

)
∇θ log |ψθ(x)|

]
,

I(θ) = E
x∼πθ

[
∇θ log πθ(x)⊗∇θ log πθ(x)

]
, (2.7)

where we used an identity for the derivative of the logarithm. If the normalizing constant
⟨ψθ, ψθ⟩ of the probability distribution πθ is unknown, then above expectation values can
be approximated by the Markov chain Monte Carlo method. If the normalization condition
⟨ψθ, ψθ⟩ = 1 is fulfilled, then by absorbing the factor of 2 into the logarithm one finds the
reinforce gradient with baseline given by L(θ),

∇L(θ) = E
x∼πθ

[(
lθ(x)− L(θ)

)
∇θ log πθ(x)

]
. (2.8)

Markov chain Monte Carlo Sampling (MCMC) methods have been developed for
sampling from a probability distribution πθ that is difficult to directly draw i.i.d. samples
from. The canonical Metropolis-Hastings algorithm [59] and its numerous variations, e.g.,
Gibbs sampling [42], Reversible Jump MCMC [49] and Hamiltonian Monte Carlo [33, 61],
achieve this by carefully constructing a transition kernel p(xt+1|xt) for an ergodic Markov
chain whose state distribution limits to the target distribution. Using samples from this
Markov chain, we can then compute estimates for the expected values required in VQMC
framework

E
x∼πθ

[ϕ(x)] ≈ ϕT =
1

T

T∑
t=1

ϕ(xt), (2.9)

where ϕ represents some deterministic function. Furthermore, these estimates are guaranteed
to be asymptotically unbiased by the ergodic theorem.

2.2.2 Model

Restricted Boltzmann Machine (RBM) is a natural choice of modeling the wavefunction
ψ. RBM is a model N visible input nodes σ = (σ1, ..., σN) and M hidden nodes h =
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(h1, ..., hM), where hi, σj ∈ {−1, 1} are binary variables. An energy function is defined for
a configuration of nodes

E(σ,h) = −
∑
j

ajσj −
∑
i

bihi −
∑
ij

hiWijσj = −σTa− bTh− σTW Th. (2.10)

The model for each σ can be simplified to (by adding up all 2M of hi)

ψ(σ) =
∑
h

e−E(σ,h) =
∑
h

eσ
T a+bTh+σTWTh

= eσ
T a

∑
h

e(b
T+σTWT )h. (2.11)

Define c = b+Wσ, then we have

ψ(σ) = eσ
T a

∑
h

e
∑

i cihi = eσ
T a

∏
i

(eci + e−ci) = eσ
T a

∏
i

2 cosh(ci)

logψ(σ) = σTa+
∑
i

log(2 cosh(ci)). (2.12)

We do not implement the logarithm directly for table implementation, instead, we consider

log(2 cosh(x)) = log
1 + e−2x

e−x
= log(1 + e−2x)− (−x) = softplus(−2x) + x. (2.13)

The forward pass of the model is summarized below. Note that we centralize the output by
the log(2) shift.

Algorithm 1 RBM
Input: Configuration σ of size N .
Output: Logarithm of the unnormalized probability.
Model Parameters: Linear operator C with bias. Linear operator A with no bias.

1: Compute c = C(σ).
2: Compute lncosh(ci) = softplus(−2ci) + ci − log(2), for i ∈ {1, ..., N}
3: logψ = A(σ) +

∑
i lncosh(ci).

The classical take of RBM is used to learn the probability distribution, which means the
function value is real and always equal or larger than zero. However, we want the model
to be capable of representing quantum states with complex values (i.e.the eigenvectors of
certain ground state contains negative or even complex entry values). To this end, we build
two models with real parameters, outputting the real and complex values respectively. More
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specifically, we have parameters W real, breal, areal,W imag, bimag, aimag. And we have

creal = W realσ + breal, cimag = W imagσ + bimag,

logψ(σ) = σTareal + iσTaimag +
∑
i

log(2 cosh(creal
i + icimag

i )). (2.14)

The following example illustrates how the complex restricted Boltzmann machine can
efficiently represent probability distributions that are hard to represent using classical neural
networks. Let X = {0, 1}n be the set of all bitstrings of length n and denote Pn ⊆ X the
subset consisting of all 2n−1 bitstring with even Hamming weight. Define pn ∈ P(X) as
follows,

pn =
1

|Pn|
1Pn , (2.15)

where 1Pn : X → {0, 1} is the indicator function for the subset Pn. Approximate rep-
resentation of pn by a real-valued restricted Boltzmann machine requires a number m of
hidden units scaling exponentially in n [93] (see also [126]). In contrast, pn can be exactly
represented by a complex RBM with m = 1 hidden unit.

2.3 Natural Gradient Descent

Stochastic gradient descent (SGD) is the simplest but most influential algorithm for the non-
linear optimization problem. However, SGD for learning quantum amplitude is inefficient
as it does not take into account the geometry of the parameter space, whereas a small change
in some model parameters may have a drastically different output. One should take this into
account while moving in the parameter space to find optimal parameters.

Consider the problem of optimizing a real-valued, but otherwise arbitrary function
f ∈ RX = {X → R} defined on a search space X . For simplicity of presentation, we focus
on |X| <∞, although the method generalizes in a straightforward way to infinite search
spaces, as required for continuous optimization. Now consider the probability simplex
P(X) defined as,

P(X) =
{
p ∈ RX : p ⪰ 0,

∑
x∈X

p(x) = 1
}
. (2.16)

The natural evolution strategies algorithm can be motivated by the following two observa-
tions, which concern the convex and Riemannian geometry of the set P(X):

1. The optimization problem admits the following equivalent convex relaxation,

min
x∈X

f(x) = min
p∈P(X)

(
E
x∼p

[f(x)]
)
, (2.17)
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whose global minimizers form the subsimplex consisting of the following convex hull of
Dirac distributions,

conv
{
δa ∈ P(X) : a ∈ argmin

x∈X
f(x)

}
. (2.18)

2. There is a natural Riemannian metric called the Fisher-Rao metric defined on the
interior int(P(X)) of the probability simplex, consisting of strictly positive probability
vectors. The distance between p, q ≻ 0 is defined as

dFR(p, q) := arccos (⟨√p,√q⟩), (2.19)

where
√
p denotes the elementwise square root of the probability vector p.

Given a smoothly parametrized family of search distributions {pθ : θ ∈ Rd} ⊆ P(X),
one obtains a trivial variational bound as follows,

min
x∈X

f(x) ≤ min
θ∈Rd

(
E

x∼pθ
[f(x)]

)
=: min

θ∈Rd
L(θ). (2.20)

Natural evolution strategies seek to obtain a good approximation ratio by optimizing the
above variational upper bound using Riemannian gradient descent in the geometry induced
by the Fisher-Rao metric, otherwise known as natural gradient descent [5]. Specifically,
given a learning rate η > 0 and initial condition θ0 ∈ Rd, one considers the deterministic
sequence in Rd defined by,

θt+1 = argmin
θ∈Rd

[
⟨θ − θt,∇L(θt)⟩+

1

2η
∥θ − θt∥2Iθt

]
, (2.21)

where Iθ denotes the Fisher information matrix, evaluated at the parameter vector θ ∈ Rd,

Iθ = E
x∼pθ

[∇θ log pθ(x)⊗∇θ log pθ(x)] . (2.22)

Indeed, it can be shown that Iθ is the local coordinate representation of the Riemannian
metric tensor induced by (2.19), and the restriction to the interior of the probability simplex
ensures that the logarithm is defined1.

Observe that the iteration (2.21) defining the sequence (θt)t≥0 involves the unknown
function f . The natural evolution strategies can now be defined as the randomized algorithm
inspired by (2.21), in which ∇L(θ) is replaced by a stochastic gradient estimator obtained
by sampling from the search distribution pθ. Likewise, if the Fisher information (2.22)

1This discussion ignored the fact that, unlike a bone fide Riemannian metric, the Fisher information matrix
can be degenerate, in which case we choose the minimizer of (2.21) to be θt+1 = θt − ηI+θt∇L(θt), where I+θ
denotes the pseudo-inverse of Iθ.

12



cannot be evaluated in closed form, then it can be replaced by an associated estimator.

2.4 Quantum Approximate Optimization

In this section, we pedagogically review the proposal of [47] showing it to be a variant of
Natural Evolution Strategies in which the optimization dynamics is modified as a conse-
quence of the quantum state geometry. In addition, we identify the regime in which both
methods coincide. The quantization of natural evolution strategies proceeds by replacing
the search space X with a complex Euclidean space,

CX = span{|x⟩ : x ∈ X} , (2.23)

whose orthonormal basis elements are |x⟩. Moreover, the probability simplex P(X) is
replaced by the convex set of density operators,

D(CX) = {ρ ∈ Herm(CX) : ρ ⪰ 0, tr(ρ) = 1} , (2.24)

where Herm(CX) denotes the set of Hermitian operators on CX . It is clear that any classical
probability distribution p ∈ P(X) can be encoded as the following diagonal density operator
diag(p) :=

∑
x∈X p(x)|x⟩⟨x|. It is equally clear that this does not extinguish the space

of admissible density operators: another possibility being the rank-1 projection operator
Pψ = |ψ⟩⟨ψ|/⟨ψ|ψ⟩ onto the one-dimensional subspace spanned by the vector ψ ∈ CX .
Any admissible density operator ρ ∈ D(CX) gives rise to a valid probability distribution,
which we call diag(ρ) ∈ P(X), obtained from the diagonal matrix representation in the
standard basis.

It is conceptually useful to introduce the following Hermitian operator Hf ∈ Herm(CX)

(diagonalized by the standard basis),

Hf (x) :=
∑
x∈X

f(x)|x⟩⟨x| , (2.25)

whose ground-state subspace encodes the solution of the optimization problem,

span
{
|a⟩ : a ∈ argmin

x∈X
f(x)

}
. (2.26)

Then for any density operator ρ ∈ D(CX) we see that the quantum expectation value of Hf
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evaluated in the state ρ, is computed by the following classical expectation value,

tr(ρHf ) = E
x∼diag(ρ)

[f(x)] , (2.27)

which is an obvious upper bound for minx∈X f(x). The above identity demonstrates the
widely known fact that for diagonal operators of the form (2.25), unconstrained optimization
over the space of quantum states D(CX) is equivalent to optimization over the probability
simplex P(X). Gomes et al. [47] asks if constrained optimization within a parametrized
subset of density operators provides a useful heuristic for approximate combinatorial opti-
mization. In particular, they consider the case of rank-1 projectors, for which there exists a
natural Riemannian metric called the Fubini-Study metric defined as follows,

dFS(Pψ, Pϕ) := arccos

(√
tr(PψPϕ)

)
. (2.28)

Thus, given a smoothly parametrized subset {ψθ : θ ∈ Rd} ⊆ CX of a complex Euclidean
space, one can define quantum natural evolution strategies as the local optimization of the
following variational upper bound, via Riemannian gradient descent in the geometry induced
by the Fubini-Study metric,

min
x∈X

f(x) ≤ min
θ∈Rd

(
E

x∼|ψθ|2

[
f(x)

])
. (2.29)

The choice to restrict to rank-1 projection operators involves no loss of generality compared
to classical natural evolution strategies because if we choose ψθ =

∑
x∈X

√
pθ(x)|x⟩, then

the Fubini-Study geometry reduces to Fisher-Rao. Thus, if the parametric family is chosen to
be strictly positive ψθ ≻ 0, then Riemannian gradient descent in the Fubini-Study geometry
coincides with natural gradient descent2 and we recover classical natural evolution strategies.
Therefore we henceforth use the terminology ‘natural gradient’ to refer to both geometries
interchangeably.

The natural gradient has been thoroughly explored in the variational Monte Carlo for
ground-state optimization of non-diagonal Hermitian operators [124, 24], and more recently
in the variational quantum algorithm literature [147, 127, 71]. Finally, we note the possibility
of generalizing to higher-rank density operators, the investigation of which is left to future
work.

2The local coordinate representation of the Fubini-Study and Fisher-Rao metric tensor agree if the Berry
connection vanishes [127].
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2.5 Experiments

Consider combinatorial optimization problems defined on X = {±1}n. For concreteness
we focus on the Max-Cut problem corresponding to an undirected graph G = (V,E) of size
|V | = n. The function f ∈ RX to be minimized is simply,

f(x) =
∑

{i,j}∈E

xixj − 1

2
, (2.30)

where −f(x) is the size of the cut corresponding to the configuration x ∈ X . After fixing
a parametrized family of wavefunctions, we locally optimize the variational upper bound
(2.29) using stochastic natural gradient descent. Following [47], we choose the variational
wavefunction ψθ ∈ CX to be of Boltzmann form [24],

ψθ(x) =
∑

z∈{±1}m
exp

[
⟨z,Wx+ b⟩+ ⟨x, c⟩

]
, (2.31)

where the variational parameters θ = (W, b, c) ∈ Fm×n × Fm × Fn and F denotes either
R or C. In the case F = R we have ψθ ≻ 0 and the optimization problem is equivalent
to natural evolution strategies [140]. An example illustrating the increased expressiveness
of complex restricted Boltzmann machines compared to their real-valued counterparts for
representing classical probability distributions is also presented.

Algorithm Performance Comparisons

# Cut
# Nodes

50 70 100 150 200 250

Cut Number

Random 149.60 ± 7.41 297.10 ± 11.48 614.30 ± 16.94 1436.80 ± 27.14 2467.30 ± 30.27 3888.00 ± 39.06

GW 203.40 ± 3.61 380.90 ± 8.48 752.50 ± 9.22 1685.70 ± 13.10 2875.10 ± 22.34 4439.90 ± 26.07

BM 206.30 ± 0.46 390.90 ± 0.54 776.60 ± 1.56 1719.90 ± 1.58 2931.20± 8.07 4526.70± 12.96

NES 206.97± 0.01 392.98± 0.01 777.62± 1.40 1721.84± 7.21 2927.82 ± 12.10 4515.72 ± 11.41

Time elapsed (sec)

Random * * * * * *

GW 0.32 ± 0.11 0.51 ± 0.04 1.59 ± 0.02 5.34 ± 0.20 12.24 ± 0.34 21.09 ± 0.54

BM 0.77 ± 0.12 0.96 ± 0.08 1.36 ± 0.08 1.52 ± 0.16 2.32 ± 0.13 2.63 ± 0.14

NES 964.20 ± 12.58 1883.46 ± 20.39 3683.93 ± 65.30 8606.25 ± 203.14 15693.06 ± 431.68 23621.38 ± 847.84

Table 2.1: Performance comparison for algorithms on graph instances of different sizes. The mean
and std are computed from 10 trials with different random seeds. Here, “*” indicates that the time
elapsed is less than 0.1 seconds.

Although no polynomial-time algorithm is known for solving Max-Cut on general
graphs, many approximation algorithms have been developed in the past decades. Random
Cut Algorithm is a simple randomized 0.5-approximation algorithm that randomly assigns
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each node to a partition (e.g., see [92]). [46] improved the performance ratio from 0.5
to at least 0.87856, by making use of the semidefinite programming (SDP) relaxation of
the original integer quadratic program. [22] reformulated the SDP for Max-Cut into a
non-convex problem, with the benefit of having a lower dimension and no conic constraint,
but with the disadvantage of being heuristic in nature.

The above heuristic and approximate algorithms were used as benchmark solvers for
comparison with quantum natural evolution strategies. The implementation of Goemans-
Williamson Algorithm used the CVXPY [30, 3] package and the Burer-Monteiro reformu-
lation with the Riemannian Trust-Region method [2] used Manopt toolbox [16], which
essentially implements the optimization algorithm proposed by [65].

The classical and quantum variants of natural evolution strategies were realized using the
variational Monte Carlo (VMC) [88] method with Stochastic Reconfiguration (SR) [124],
as implemented in the NetKet toolbox [25]. The SR optimization was performed using
a regularization parameter λ = 0.1 and a learning rate η = 5× 10−2, for 90 iterations. At
each iteration, the number of Monte Carlo sampled observables (batch size for training)
is 4096. The mean performance of the observable batch drawn from the trained model is
reported. For Restricted Boltzmann Machine (RBM) model, the number of hidden variables
is set to be the same as the number of spins; the weights are complex-valued, initialized
with Gaussian distribution of mean 0 and standard deviation (std) 0.01. Throughout the
experiments, the timing benchmarks are performed on a core of an 8-core processor, Intel(R)
Xeon(R) CPU E5-2650 v2 @ 2.60GHz, with 128 GB of memory.

For evaluation, we constructed a problem instance for each graph size n by randomly
generating graph Laplacians with edge density 50%, for n ∈ {50, 70, 100, 150, 200, 250}.
This defines a set of problem instances, indexed by n, which are held fixed throughout the
experiments. For the fixed problem instance, each algorithm was executed 10 times using
10 random seeds/initializations. In Table 2.1, we report the mean and std of the performance
over graph instances of different sizes. Since the optimal cut for a given problem instance
cannot be computed for large scale problems, we approximate it with an upper bound
UBD(I) [17], which is the optimal value of the SDP relaxation, according to the arguments
in [46]. In Figure 2.1(L), we present the ratio cut(A(I))/UBD(I) for the same algorithms
A and graph instances I in Table 2.1 with box plot.

The choice of batch size was found to be a crucial factor controlling the performance
of the algorithm. Intuitively, it quantifies the exploration capability in the state space: the
algorithm has a better chance to discover the ground state if it is allowed to explore more.
The performance (as measured by approximation ratio) as well as the training time, as
a function of batch size, are reported in Figure 2.1(R) on the graph instance with 150
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Figure 2.1: (L) The performance comparison box plot for Goemans-Williamson (GW), Bu-
rer–Monteiro (BM), and quantum Natural Evolution Strategies (qNES). The approximation ratio is
approximated by dividing the upper bound from the cut number. The performance of qNES is on
par with the SDP benchmarks. (R) An ablation study for the training batch size, tested on the graph
instance with 150 nodes, using cRBMs with different hidden unit densities. The increase in batch
size improves the performance of qNES, at a cost of the linear increase in training time.

nodes. The ablation study also reveals that increasing hidden unit density is correlated with
performance, provided that training batch size is correspondingly increased. This is expected
behavior since increased model capacity is required to capture the increasing complexity
from the sampled observables.

Ablation Study on Optimizer and Model Architecture

Architecture
Optimizer

Adadelta Adamax Momentum RMSprop SGD

w.o. Natural Gradient

cRBM-1 1692.25 ± 6.13 1648.19 ± 12.67 1656.60 ± 6.83 1642.60 ± 15.07 1608.20 ± 52.05

Natural Gradient

rRBM-1 1646.96 ± 6.80 1687.16 ± 10.34 1694.02 ± 7.71 1692.76 ± 4.79 1704.16 ± 7.89

cRBM-1 1699.74 ± 11.60 1697.04 ± 17.24 1701.32 ± 8.32 1700.39 ± 10.00 1704.06 ± 5.28

cRBM-3 1713.13 ± 8.78 1693.07 ± 5.39 1700.33 ± 6.77 1686.20 ± 10.91 1709.14 ± 8.70

FC 1700.01 ± 7.50 1697.11 ± 8.84 1702.02 ± 6.02 1702.20 ± 14.54 1702.95 ± 8.13

Table 2.2: An ablation study for different optimization algorithms and model architectures, tested
on the graph instance with 150 nodes (UBD = 1784.89) and batch size 1024. Stochastic natural
gradient descent consistently outperformed all other optimizers, across all architectures considered.

The role of optimization algorithm and model architecture was also investigated, focusing
on the following optimizers (with and without natural gradient updates): Adadelta [148],
Adamax (α = 5× 10−3) [68], Momentum (η = 5× 10−2) [130], RMSprop (η = 5× 10−3),
SGD (η = 5 × 10−2). The architecture was chosen to be the restricted Boltzmann form
(2.31) with hidden unit density α = m/n (RBM-α), with real-valued weights (rRBM) and
complex weights (cRBM).

The natural gradient descent [5, 124] proved essential for converging to a good local
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optimum; results on cRBM-1 suggest that optimizers equipped with natural gradient updates
consistently outperformed those without. The use of complex RBM yielded some improve-
ment relative to the real-valued case, although the performance gap largely disappeared when
natural gradient updates were applied. In addition, we found that architectures other than
RBM can achieve high performance: the single-layer perceptron (FC) is compatible with
RBM across all optimizers. In general, Stochastic Natural Gradient Descent consistently
achieves optimal performance over all architectures, in comparison with other optimizers.

2.6 Conclusion

The Max-Cut approximation ratio achieved by natural evolution strategies is competitive
with widely used solvers, although this comes at the expense of significantly increased
computation time. It will be interesting to investigate other combinatorial optimization
problems, particularly from the spin-glass literature, which do not admit semidefinite
program relaxations.

It is legitimate to inquire about possible advantages for classical stochastic optimiza-
tion, given access to efficiently simulable subsets of quantum states, such as the complex
Boltzmann machine. In the case of natural evolution strategies, our ablative study indicates
that the use of natural gradient descent levels the playing field between the quantum and
classical variants.

18



Chapter 3

Meta Variational Quantum Monte Carlo

Although deep neural networks excel in individual learning tasks, they are brittle with
respect to task deformation. This fragility presents a challenge to the design of artificially
intelligent agents which are required to efficiently adapt from known source tasks to a stream
of unknown and dynamically changing target tasks. In order to quantify the ability of an
agent to adapt when confronted with a stream of learning tasks, it proves convenient to adopt
the modeling assumption in which there exists a probability distribution supported on the
space of possible tasks called the task distribution. Meta-learning (also called learning to

learn [133]) attempts to formalize the goal of adaptivity by exploiting regularities in the
task distribution in order to output a hypothesis that performs well on new task realizations,
given limited data access to each target task. It is instructive to contrast meta-learning with
the comparatively simpler paradigm of transfer learning in which the target task is known. In
this chapter, we explore a formal identification between model-agnostic meta-learning [37]
and a seemingly unrelated problem in quantum physics involving quantum Monte Carlo
with disorder.

Given a fixed target Hamiltonian H acting on a Hilbert spaceH of exponentially high
dimension, variational quantum Monte Carlo (VQMC) [88] computes an estimate of its
minimal eigenvalue and a description of the associated eigenvector. The ability of VQMC
to overcome the curse-of-dimensionality in this context stems from a reformulation of the
Rayleigh-Ritz principle as a stochastic optimization problem, the optimum of which is a
function outputting the components of the ground eigenvector on some orthonormal basis.
Leveraging the close connection between VQMC and deep reinforcement learning, Carleo
and Troyer [24] showed that when neural networks are exploited as trial functions and
optimized using natural gradient techniques, VQMC can achieve state-of-the-art results
in finding the ground state energies of the antiferromagnetic Heisenberg (AFH) model, in
which the Hamiltonian is defined by a geometrically local interaction graph corresponding
to a two-dimensional lattice. The domain of applicability of so-called neural-network
quantum states has since been expanded to encompass problems of electronic structure in
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finite [95, 79, 128] and infinite dimensions [100]. Further connections between VQMC
and deep learning have been elaborated in [47, 150] where it was shown that VQMC is a
quantum generalization of Natural Evolution Strategies (NES) [140], which in turn, provides
a single-step realization of natural policy gradient learning [66].

The ability of VQMC to obtain state-of-the-art results comes at the expense of significant
computation time due to the sequential nature of the sampling process. Sharir et al. [120]
proposes autoregressive modeling in replacement of the original Markov chain Monte Carlo
(MCMC) to speed up the sampling, and Zhao et al. [152] focuses on the scalability of VQMC
to large problems and efficient use of all available resources. This works attempts to address a
similar problem but under a different context, where we assume the presence of sparse matrix
ensembles that admit a certain task regularity. Our hypothesis is that one can accelerate
the training of VQMC and improve the convergence of new learning tasks, by employing
information from previously encountered tasks. The naive approach that uses the pre-trained
model parameters from one task as the initialization on the target task fails to apply in
VQMC, as there’s no notion of generalization to out-of-sample data for a task of which
the stochastic objective function is an unbiased estimator of a given population objective.
This lack of delineation between the training and testing phase is closely analogous to deep
reinforcement learning, where agents are trained and tested in the same learning environment
and the algorithm typically outputs a policy that is strongly overfitted to the learning task.
The above considerations motivate the viewpoint that meta-learning provides the relevant
context in which to discuss generalization both for deep reinforcement learning agents and
VQMC. Indeed, Meta-RL has enjoyed significant progress in the last few years, propelled
by the discovery of a scalable gradient-based instantiation suitable for deep learning called
model-agnostic meta-learning [37] (MAML).

In this work, we investigate the empirical performance of meta-VQMC over sparse
matrix ensembles with different kinds of task regularity, which we encode via geometric
locality assumptions. Our experimental results suggest that meta-VQMC is capable of
effectively accelerating the training of VQMC and improving the convergence of tasks
from the given ensembles. The work of this chapter expands on the preliminary work
of Zhao et al. [151] in which the notion of meta-VQMC was introduced and numerically
investigated for diagonal matrix ensembles as a special case, which corresponds to the
Max-Cut optimization problem. The content of the chapter is organized as follows: in
section 3.1, we introduce single-task variational quantum Monte Carlo, emphasizing the
connection with the REINFORCE algorithm and natural policy gradient learning. The
basics of meta-learning and the meta-VQMC are then recalled. The theory underlying
model-agnostic meta-learning and gradient-based meta-VQMC are described in section 3.2.
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Experimental results and analysis are presented in section 3.4 and section 3.5 concludes the
chapter.

3.1 Background

Meta-learning. In contrast to the single-task formulation of VQMC, which accepts a fixed
target Hamiltonian as input, our proposed meta-VQMC asks for an approximation of the
ground energy for an ensemble of Hamiltonians Hτ indexed by a random disorder parameter
τ sampled from a known distribution T . The simplest strategy of retraining a separate
neural-network quantum state from scratch for each realization of the disorder parameter
τ is impractical. The goal is thus shifted to finding a neural network that is maximally
adaptive to new realizations of the disorder. For experimental support, our focus in this
chapter is a special case of disordered quantum spin systems. These results are viewed as a
stepping stone to random electronic structures, in which we anticipate similar optimization
considerations to apply.

The formulation of meta-VQMC exhibits obvious parallels with meta-learning or
learning-to-learn in the machine learning literature [133], where data from previously
encountered learning tasks are employed to accelerate performance on new tasks, drawn
from an underlying task distribution T . In the language of meta-learning, τ indexes the
learning task, and T denotes the distribution over all tasks. In meta-VQMC, we assume the
task distribution is known to the learner; in contrast, conventional meta-learning assumes T
is unknown but possesses sufficient regularity to render meta-learning feasible.

Relationship with previous work. We differentiate our proposal from the uses of meta-
learning that have been proposed elsewhere in the quantum information literature. In
[141], for example, meta-learning has been proposed to mitigate various sources of noise,
specifically shot noise and parameter noise. In the context of VQMC, shot noise is analogous
to variance associated with finite mini-batches, whereas parameter noise has no clear
analogue. Ref. [137] is the most similar to ours in that they consider meta-learning from
known distributions. They differ by the choice to focus on variational quantum algorithms
such as VQE and QAOA and by the fact that they do not use model-agnostic meta-learning.
Instead, the meta-learning outer-loop involves training a separate recurrent neural network,
similar to [6]. The notion of meta-VQMC and a model-agnostic training algorithm was
originally introduced in [151]. The numerical experiments of [151] restricted to diagonal
matrix ensembles which can be understood as classical combinatorial optimization problems.
In this chapter, we expand the experiments to include off-diagonal matrix ensembles which
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have no classical analog.

3.2 Theory

A simple strategy that has proven successful in meta-learning of deep neural networks is
multi-task transfer learning [26, 11], which aims to learn an initialization for subsequent
tasks by jointly optimizing the learning objective of multiple tasks simultaneously, using a
mini-batch training strategy that interleaves batches across the tasks. Multi-task learning is,
however, prone to catastrophic interference [86], making it unsuitable for generalization to
the VQMC. The problem is exemplified by some of the simplest examples of disordered
spin systems: suppose Hτ is a random Hamiltonian whose expected value under the disorder
parameter vanishes Eτ∼T [Hτ ] = 0. As a concrete example, consider the Sherrington-
Kirkpatrick Hamiltonian, in which τ represents a collection of i.i.d. centered Gaussian
random variables Jij ∼ N(0, 1) representing the exchange energies. If we denote by Lτ
the objective function corresponding to disorder parameter τ , then the multi-task learning
objective function, expressed in the population limit, is given by

LMTL(θ) := E
τ∼T

[Lτ (θ)] = E
τ∼T

{
E

x∼πθ

[
(Hτψθ)(x)

ψθ(x)

]}
=
⟨ψθ,E[Hτ ]ψθ⟩
⟨ψθ, ψθ⟩

= 0 . (3.1)

The fact that the multi-task learning objective loses dependence on θ in the population limit
implies that the associated mini-batch algorithm makes no progress asymptotically.

In order to define an objective function that is asymptotically non-vacuous and which
promotes adaptation to new realizations of disorder, we propose to optimize the following
meta-learning objective function, again presented in population form for simplicity [6],

LML(θ) := E
τ∼T

[
Lτ

(
U t
τ (θ)

)]
= E

τ∼T

[
Lτ

(
Uτ ◦ · · · ◦ Uτ︸ ︷︷ ︸

t times

(θ)
)]

, (3.2)

where U t
τ : Rd → Rd denotes the t-fold application of a task adaptation operator Uτ , which

in the simplest case of gradient descent with step size β, is given by Uτ (θ) = θ − β∇Lτ (θ).
Optimization of the meta-learning objective LML ensures that when a new realization of the
disorder parameter is drawn, the initialization performs well after performing one or more
steps of gradient descent. Loosely speaking, meta-learning can be justified when one has a
budget for running a few steps of gradient descent.

In the case of meta-VQMC, we consider gradient-based optimization. Specifically, we
focus on model-agnostic meta-learning (MAML) [37] which is a gradient-based algorithm
that has been proposed for optimizing the meta-learning objective. Straightforward applica-
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Algorithm 2 MAML [37] adapted to meta-VQMC (batched over tasks).
Input: Matrix ensemble T , adaptation operator Uτ , adaptation steps t
Initialize θ
while not done do

Sample batch of disorder parameters B iid∼ T
for each disorder parameter τ ∈ B do

θτ = U t
τ (θ)

∇τ = (U t
τ )

′(θ)∇Lτ (θτ )
end for
∇ = 1

|B|
∑

τ∈B∇τ

θ ← OPTIMIZER(θ,∇)
end while

tion of the chain rule gives rise to the following gradient estimator for the meta-learning
objective,

∇LML(θ) = Eτ∼T
[
(U t

τ )
′(θ)∇Lτ

(
U t
τ (θ)

)]
, (3.3)

where (U t
τ )

′(θ) denotes the Jacobian matrix of the function U t
τ : Rd → Rd. The pseudocode

for MAML is outlined in Algorithm 2. In order to facilitate readability, we have presented
the algorithm with batching only in the task index, leaving the remaining expectation
values (with respect to Born probabilities) in population form. In a practical algorithm, the
intermediate variables θτ and ∇τ are estimated stochastically using independent batches
of data generated by the same task τ . Since the computation of the Jacobian involves
an expensive back-propagation, first-order MAML (foMAML) has been proposed (e.g.,
[37, 94]) as a simplification of MAML, in which the Jacobian matrix is approximated by the
identity matrix.

3.2.1 An illustrative example

The fact that the meta-learning objective function manages to avoid the catastrophic interfer-
ence phenomenon can be illustrated by the following toy model1. Rather than considering
the Rayleigh quotient, consider the following ensemble of quadratic functions specified by a
random positive-definite matrix A ∈ Rd×d and a random vector b ∈ Rd,

Lτ (θ) =
1

2
⟨θ, A θ⟩ − ⟨b, θ⟩ , (3.4)

where the random variable τ = (A, b) now corresponds to the task label. In the simplest
setting of single-step (t = 1) meta-learning with vanilla update operator Uτ (θ) = θ −

1This quadratic model has also been analyzed in the context of convergence theory in [35].
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β∇Lτ (θ), the optimal solution of the multi-task and meta-learning objectives can be found
in closed form,

argmin
θ∈Rd

LML(θ) = E
[
A(I − βA)2

]−1E
[
(I − βA)2b

]
. (3.5)

In the limit β → 0 corresponding to multi-task learning, the optimal solution is found
to only depend on the mean value of the random variable τ , whereas the meta-learner
(corresponding to β > 0) exploits information in the higher-order moments of τ .

3.3 Architecture

The structure of Restricted Boltzmann Machine (RBM) is

Input
[bs,n]−−−→ Fcn,cn

[bs,cn]−−−→ Lncoshsum
[bs]−→ Output1

[bs,n]−−−→ Fcn,1
[bs]−→ Add Output1

[bs]−→ Output.

The structure of 1D Convolutional Neural Network (CNN) is

Input
[bs,n]−−−→ Conv1dc,3,1,1

[bs,c,n]−−−−→ Reshape

[bs,cn]−−−→ Fccn,n
[bs,n]−−−→ Lncoshsum

[bs]−→ Output.

The structure of 2D Convolutional Neural Network (CNN) is

Input
[bs,

√
n,
√
n]−−−−−−→ Conv2dc,3,1,1

[bs,c,
√
n,
√
n]−−−−−−−→ Reshape

[bs,cn]−−−→ Fccn,n
[bs,n]−−−→ Lncoshsum

[bs]−→ Output.

Here bs is the batch size and n is the number of sites. Fca,b is a fully connected layer
with input size a and output size b. Convc,k,s,p is a convolutional layer with output channel
size c, kernel size k, stride s and circular padding size p. Lncoshsum refers to a series of
linear and non-linear operations involving: 1) taking natural logarithm for each entry of the
input tensor; 2) taking hyperbolic cosine for each entry of the input tensor; 3) summation
over the last dimension of the input tensor.
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3.4 Experiments

For our experiments, we focus on symmetric matrices whose side length is a power of 2,
that is, N = 2n. The real vector space of 2n× 2n symmetric matrices contains a subspace of
dimension O(poly(n)) which is parametrized by real parameters gi, hi, gij ∈ R as follows,

H = −
∑

1≤i≤n

(
hiXi + giZi

)
−

∑
1≤i<j≤n

gijZiZj, (3.6)

where Xi := I⊗(i−1) ⊗X ⊗ I⊗(n−i) and Zi := I⊗(i−1) ⊗ Z ⊗ I⊗(n−i) are defined in terms
of the following elementary 2× 2 matrices,

I =

1 0

0 1

 , Z =

1 0

0 −1

 , X =

0 1

1 0

 . (3.7)

The hamiltonian H can be verified to be n-sparse as described in definition 2.2.1, and admits
a binary representation with entry value written as

Hxy = −
∑

1≤i≤n

(
hiδx1y1 · · · δ¬xiyi · · · δxnyn+gi(1−2xi)

)
−δxy

∑
1≤i≤j≤n

gij(1−2xi)(1−2xj),

(3.8)
where the row and column indices x, y are in their binary forms x = 2n−1x1 · · · 20xn, y =

2n−1y1 · · · 20yn, and ¬xi denotes logical negation of xi ∈ {0, 1}.
Given a description of the matrix ensemble and a differentiable family of trial vectors

described by a neural network, we seek an initialization strategy which rapidly accelerates
the convergence of the trial vector to the ground space of randomly drawn problem instances.
The proposed strategy was compared against training random problem instances from scratch
(randomly initialized neural network). We also consider random initialized models that are
trained using the stochastic reconfiguration method (stochastic natural gradient descent), as
an additional baseline. To showcase the robustness of meta-VQMC, we conduct experiments
across various settings involving different task distributions and model architectures.

3.4.1 Task distribution generation

Matrix ensembles of exponential size were chosen by specifying the distribution for the
O(poly(n)) parameters gi, hi, gi,j appearing in (4.7). In this work, we impose hi ≤ 0

to ensure that the ground eigenvector can be chosen to be a non-negative vector due to
the Perron-Frobenius theorem. Meta-learning experiments were conducted using four
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task distributions (matrix ensembles) supported on the subspace of symmetric matrices
of the form (4.7), by first fixing a base matrix and then introducing Gaussian noise to the
parameters. The first base matrix we consider is referred to as the Max-Cut problem and is
defined by

HMax-Cut = −
1

4

∑
1≤i<j≤n

LijZiZj , (3.9)

where L = [Lij] denotes the Laplacian matrix for an undirected graph G = (V,E) of size
|V | = n. The diagonal entries of this matrix correspond to the sizes of the 2n possible
cuts on the graph G. The adjacency matrix for G was chosen by forming the n× n matrix
(B + BT )/2 − diag(B) with entries Bij sampled from the rounded Bernoulli(0.5). By
design, the diagonal entries of G are all zero.

The second base matrix is referred to as Sherrington-Kirkpatrick model, which is a
matrix of the form (4.7) with gi, gij ∼ U(−1, 1) and hi ∼ U(0, 1) sampled once and fixed.
The final experiments consider geometrically local versions of the Sherrington-Kirkpatrick
model (referred to as transverse field Ising model), in which the interactions are determined
by a one-dimensional ring geometry ZL = {0, . . . , L− 1} (with addition defined modulo L)
and a two-dimensional torus geometry ZL × ZL. The respective base matrices are given by

HTIM-1D = −
∑
i∈ZL

(giZiZi+1 + hiXi) , (3.10)

HTIM-2D = −
∑

(i,j)∈Z2
L

(
gvi,jZi,jZi+1,j + ghi,jZi,jZi,j+1 + hi,jXi,j

)
. (3.11)

Having fixed the base matrices as above, sampling from the respective matrix ensembles
was achieved via the following procedure. In the case of Max-Cut, a random adjacency
matrix was formed by perturbing the base adjacency matrix A with additive noise matrix
δA and then rebinarizing the sum A + δA. In particular, we chose δA = (N + NT )/2

where the entries of N consist of independent centered Gaussian noise of variance σ2. In the
case of the transverse field Ising and Sherington-Kirkpartric models, the parameters were
perturbed by additive centered Gaussian noise of variance σ2, followed by clippings of his
to non-negative values.

3.4.2 Settings

Network architectures are chosen to be either restricted Boltzmann machine (RBM) or
convolutional neural network (CNN). Carleo et al. (2017) [24] proposed RBM for the
transverse field Ising model and the anti-ferromagnetic Heisenberg model, taking the one-
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Figure 3.1: Results for RBM on Tσ with σ = 0.2, 0.5, 1.0 from left to right, where the base
hamiltonian is Max-Cut-49. Each curve is the average of the training curves over 8 testing tasks
randomly sampled from Tσ. The learning rates for outer and inner loops are 0.002 and 0.005,
respectively. Initializations from foMAML and MAML discover solutions that outperform random
initialization using far fewer iterations with SGD, on problems with diagonal matrix ensembles.
However, SR (stochastic reconfiguration) outperforms SGD in the long run. On the other hand, the
convergence of foMAML and MAML goes slower as σ increases, indicating that task adaptation
becomes more difficult for task distributions that are more complex.

dimensional state as input and outputs the logarithmic probability amplitude. Besides, RBM
accommodates input states with higher dimensional structures by flattening them down
to a single dimension. For Ising models with local geometric structures, it’s also natural
to use convolutions as local operators to process the inputs. In this chapter, we consider
CNN models with one layer of convolution followed by a fully connected layer. More
architectural details are deferred to the appendices.

Each iteration of the meta-learning loop involves independently sampling a batch of
16 tasks from the task distribution Tσ, parametrized by σ. During testing, 8 testing tasks
are sampled from Tσ and fixed for evaluation purposes. The inner loop used 1 iteration of
vanilla SGD with batch size 1024, while the outer loop training used 50 iterations of vanilla
SGD with batch size 16. The learning rates for outer and inner loops depend on the problem
type and model architecture.

3.4.3 Analysis of results

In Figure 3.1, we train separate RBM models on task distributions Tσ = 0.2, 0.5, 1.0 with
initializations from MAML and foMAML methods, and plot the training curves of the
models for 300 iterations. The training curves of randomly initialized models with SGD and
stochastic reconfiguration are also plotted for comparison. Our result shows that models
initialized using MAML discover solutions that outperform SGD in the long run using
far fewer iterations than SGD, consistent with the expectation that MAML initializations
perform well after performing only a few iterations of gradient descent. Despite accelerated
convergence, MAML was found to converge to suboptimal local minima in this case
compared to the stochastic reconfiguration (initialized from random). This observation
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Figure 3.2: Results for RBM on Tσ with σ = 0.2, 0.5, 1.0 from left to right, where the base
hamiltonians are Sherrington-Kirkpatrick model and TIM (transverse field Ising model) with 49
sites. Each curve is the average of the training curves over 8 testing tasks randomly sampled from
Tσ. The learning rates for outer and inner loops are 0.002 and 0.005, respectively. Initializations
from foMAML and MAML discover solutions that outperform random initialization using far fewer
iterations with SGD, on problems with sparse non-diagonal matrix ensembles.

0 50 100 150 200 250 300

65

60

55

50

45

40

35

30

E
n
e
rg

y

= 0.2

0 50 100 150 200 250 300
70

60

50

40

30
= 0.5

Training Curves for TIM-1D with CNN

0 50 100 150 200 250 300

80

70

60

50

40

30

= 1.0

0 50 100 150 200 250 300

90

80

70

60

50

40

E
n
e
rg

y

= 0.2

0 50 100 150 200 250 300

Number of Iteration

90

80

70

60

50

40 = 0.5

Training Curves for TIM-2D with CNN

0 50 100 150 200 250 300

100

90

80

70

60

50

= 1.0

Figure 3.3: Results for CNN on Tσ with σ = 0.2, 0.5, 1.0 from left to right, where the base
hamiltonians are TIM (transverse field Ising model) on 1D lattices with 49 sites and 2D lattices with
7×7 sites. Each curve is the average of the training curves over 8 testing tasks randomly sampled
from Tσ. The learning rates for outer and inner loops are 0.005 and 0.01, respectively. Initializations
from foMAML and MAML discover solutions that outperform random initialization using far fewer
iterations with SGD and CNN. On the other hand, the performance of CNN is in general comparable
with RBM.

28



reiterates the importance of the Riemannian geometry to the success of this optimization
problem. On the other hand, the convergence of MAML goes slower as σ increases,
indicating that task adaptation becomes more difficult for task distributions that are more
complex. In Figure 3.2, we follow similar protocols to the experiments conducted for
MaxCut, but switch the base matrix to Sherrington-Kirkpatrick model, and its geometrically
local 1D and 2D versions. Similar results are observed for these problems, where MAML
can discover solutions that outperform random initialization using far fewer iterations with
SGD, and the performance is competitive with that of stochastic reconfiguration training
from scratch. This implies that MAML is robust with respect to the choice of Hamiltonian
type. In Figure 3.3, we switch the architecture from RBM to convolutional neural networks
that take into account the geometric information of the lattice. The advantage of MAML
persists in disordered but geometrically local environments, and MAML performance is
largely on par with stochastic reconfiguration. This experiment indicates that MAML is
robust with respect to both the choice of the model architecture.

We conclude from our experiments that single-task learners are consistently slow to
converge and the convergence remains slow when using the stochastic reconfiguration
method. In some cases, for example, in the experiments in Figure 3.3, meta-learners
achieved the same or better long-term energy as single-task learners trained with stochastic
reconfiguration, at significantly decreased computational cost. In addition, foMAML and
MAML exhibit overall better performance on task distribution T with smaller strength of
disorder factor σ, in comparison with the random weight initialization counterparts. This is
expected as larger σ corresponds to a sparser task distribution where the samples are less
related. The improvements from MAML initializations are robust with respect to the choice
of hamiltonian types and model architectures.

3.5 Conclusion

The experimental results for various matrix ensembles indicate that MAML effectively
solves meta-VQMC by accelerating training and improving convergence. While the Max-
Cut problem is exactly solvable for the graph sizes considered here (e.g., by the Branch and
Bound method [108]), the experiment illuminates the importance of Riemannian geometry
to the success of the algorithm in some learning environments. It would be interesting to
investigate if similar findings impact the conclusions of policy-gradient-based Meta-RL.
In the case of quantum spin systems, the advantage offered by SR optimization is less
significant, while MAML maintains the lead compared to SGD both in terms of acceleration
and convergence. The reduction in performance with the increasing disorder is expected
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on general grounds since MAML has less opportunity to exploit regularities in the task
distribution. We speculate that the geometrically local models provide further opportunities
to exploit task regularity, explaining the improved convergence MAML relative to SR in
these environments. The models investigated all have non-positive off-diagonal entries,
which is a simplifying assumption and can be relaxed, paving the way to investigating
matrix ensembles relevant to electronic structure. The ideas presented in this chapter
naturally extend also to variational quantum algorithms (VQAs) such as the variational
quantum eigensolver. The key difference in the case of VQAs is that the denominator in the
Rayleigh quotient (2.3) is normalized ⟨ψθ, ψθ⟩ = 1 and stochastic estimation of the quantum
expectation value ⟨ψθ, Hτψθ⟩ involves performing measurements in multiple bases if the
Hamiltonian contains non-commuting terms. The exploration of meta-VQA and associated
learning algorithms is left to future work.
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Chapter 4

Accelerating VQMC with Normalizing Flows

The fact that the state space of a quantum system scales exponentially with the number of
its constituents leads to an inevitable curse-of-dimensionality facing the exact simulation
of generic quantum many-body systems. In practice, approximate solutions are sufficient
for most purposes and a number of successful variational methods based on the Rayleigh-
Ritz principle have been developed, which, given a local Hamiltonian H , produce an
estimate for the minimal eigenvalue λmin(H) and a description of an associated eigenvector.
Nevertheless, complexity-theoretic arguments suggest that the curse-of-dimensionality is
ultimately unavoidable [1] and the investigation of scalable variational algorithms is an
active field of research. A particularly promising variational algorithm from the viewpoint
of scalability is the variational quantum Monte Carlo (VQMC) [88].

VQMC targets the ground eigenstate by performing alternating steps of Monte Carlo
sampling from a high-dimensional quantum state followed by gradient-based optimization.
By exploiting neural networks as trial wavefunctions, Carleo and Troyer [24] showed
that VQMC can achieve state-of-the-art results for the ground state energies of physically
interesting magnetic spin models. Unfortunately, the increased flexibility afforded by neural
networks comes at the cost of rendering exact Monte Carlo sampling intractable, which
necessitates the use of a Markov chain Monte Carlo (MCMC) sampling strategy.

However, MCMC sampling limits the scalability of VQMC in two ways: (1) the burn-in
process is an inherently sequential task; (2) sampling precise and uncorrelated samples
become increasingly difficult for large input dimension. Autoregressive models, in contrast,
provide efficient and exact computations for both sampling and density evaluation that are
GPU-supported. Recently, autoregressive neural quantum states have been introduced [120],
which has allowed the VQMC to enjoy the advantages that autoregressive models have
previously provided in machine learning. Inspired by the ability of autoregressive models to
eliminate the reliance of the VQMC on the MCMC, we undertake a parallelization study of
autoregressive neural quantum states, thereby improving the time-efficiency and scalability
of VQMC.
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4.1 Background

The idea of utilizing neural network quantum states to overcome the curse of dimensionality
in high-dimensional VQMC simulations was first introduced by Carleo and Troyer [24],
who concentrated on restricted Boltzmann machines (RBMs) applied to two-dimensional
quantum spin models. Sharir et al. [120, 119] introduced neural network quantum states
based on the autoregressive assumption inspired by PixelCNN [136] and demonstrated
significant improvement in performance compared to RBMs. The autoregressive assumption
was subsequently explored in VQMC using recurrent neural wavefunctions [60]. Autore-
gressive models have also been used to solve statistical mechanics models in [142]. Since
our focus is on the scalability of VQMC, particularly in situations where MCMC is expected
to struggle, unlike [24, 120, 60] we consider non-geometrically local Hamiltonians without
an underlying lattice structure. This also contrasts with the work of [91], who considered
parallelization of VQMC using MCMC sampling but assuming geometric locality. It was re-
cently shown [47, 150] that techniques from quantum VQMC literature [24] can be adapted
for approximately solving combinatorial optimization problems.

We explore the scalability of VQMC when autoregressive models [13], with exact
sampling, is used in place of MCMC. Autoregressive models estimate the joint distribution
by decomposing it into a product of conditionals by the probability chain rule, making
both the density estimation and generation process tractable. To this end, Larochelle and
Murray [75] proposed neural autoregressive distribution estimator (NADE) as feed-forward
architectures. MADE [43] improves the efficiency of models with minor additional costs
for simple masking operations. Sharir et al. [120, 119] introduced neural-network quantum
states based on the autoregressive assumption inspired by PixelCNN [136] and demonstrated
significant improvement in performance compared to RBMs.

Larochelle and Murray [75] proposed neural autoregressive distribution estimator (NADE)
as feed-forward architectures. MADE [43] improves the efficiency of models with minor
additional costs for simple masking operations. For probabilistic generative models, un-
normalized models such as RBM rely on approximate sampling procedures like MCMC,
whose convergence time remains undetermined, which often results in the generation of
highly correlated samples and deterioration in performance. Such sampling approximations
can be avoided by using autoregressive models [13] that estimate the joint distribution by
decomposing it into a product of conditionals by the probability chain rule, making both the
density estimation and generation process tractable. Kingma et al. [69] used autoregressive
models as a form of normalizing flow [70].
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Figure 4.1: Overview of our algorithms, with illustrations of the comparison between Markov chain
Monte Carlo sampling (MCMC) and autoregressive sampling (AUTO) on the left, and the VQMC
optimization procedure on the right. MCMC sampling involves k + bs/c forward passes, where k is
the number of burn-in samples, c is the number of sampling chains (c = 1 in the figure) and bs is the
batch size; AUTO only requires n forward passes to sample exactly from the distribution of interest.

4.1.1 Autoregressive Models

Now we discuss the modeling assumptions which enforce normaliztion of the differentiable
trial function ψθ : [N ]→ R, and thus eliminate the need for MCMC sampling. An elegant
method to impose normalization is to make use of an autoregressive assumption, which
has recently been generalized to neural network quantum states in [120, 60]. Since we are
targeting a ground eigenvector, which is known to be non-negative, we may assume without
loss of generality that ψθ(x) =

√
πθ(x), thereby shifting the modeling assumption into the

choice of a normalized distribution πθ satisfying the following condition,

πθ(x) =
n∏
i=1

πi(xi|xi−1, . . . , x1) . (4.1)

Many proposals for neural networks satisfying the autoregressive assumption have been
put forth. In this work we follow Germain et al. [43], who proposed the masked autoencoder
for distribution estimation (MADE) which computes all conditionals in one forward pass
using a single network with appropriate masks. Recall that a single hidden layer autoencoder
is described by the following composition of functions,

g1(x) = max{0,W1x+ b1} (4.2)

g2(x) = σ(W2g1(x) + b2) , (4.3)
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Algorithm 3 Autoregressive Sampling [43] (Batch Size 1)

Input: Randomly initialized state x0 of size n
Output: Sampled state x∗ of size n
for i-th out of n iterations do

Compute p(xi|xi−1
1:i−1) with a forward pass

Sample yi ∈ {±1} with p(·|xi−1
1:i−1)

Get xi by updating xi−1
i with yi

end for
Set x∗ = xn

and where the rectification and sigmoid functions are applied elementwise. MADE achieves
the desired autoregressive assumption by appropriate application of binary masks M1 and
M2 to the weight matrices defining the autoencoder, resulting in a MADE layer of the form

g1(x) = max{0, (M1 ⊙W1)x+ b1}

g2(x) = σ ((M2 ⊙W2)g1(x) + b2) , (4.4)

where ⊙ denotes elementwise multiplication.
In Figure 4.1, we compare the sampling procedures between MCMC and AUTO (as

described in Algorithm 3). MCMC involves k+ bs/c forward passes, where c is the number
of sampling chains and bs is the batch size. Although the number of forward passes can be
reduced by increasing the number of chains, the number of burn-in iterations k required for
convergence is undetermined and cannot be parallelized. On the other hand, AUTO only
requires n forward passes to sample exactly from the distribution of interest.

4.1.2 Quantum Hamiltonians and QUBO Problems

In this section, we consider a family of matrices motivated by quantum physics, which are
parametrized by O(poly(n)) real parameters αi, βi, βij ∈ R as follows,

H = −
∑

1≤i≤n

(
αiXi + βiZi

)
−

∑
1≤i<j≤n

βijZiZj, (4.5)

where Xi := I⊗(i−1) ⊗X ⊗ I⊗(n−i) and Zi := I⊗(i−1) ⊗ Z ⊗ I⊗(n−i) are 2n × 2n matrices
defined in terms of the following elementary 2× 2 matrices,

I =

1 0

0 1

 , Z =

1 0

0 −1

 , X =

0 1

1 0

 . (4.6)
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It is easily verified that H meets the conditions of definition 2.2.1 with sparsity parameter
s = n. In terms of the binary representation of the row index x = 2n−1x1 · · · 20xn and the
column index y = 2n−1y1 · · · 20yn, the matrix entries of H are given by

Hxy =−
∑

1≤i≤n

(
αiδx1y1 · · · δ¬xiyi · · · δxnyn + βi(1− 2xi)

)
− δxy

∑
1≤i≤j≤n

βij(1− 2xi)(1− 2xj) (4.7)

and ¬xi denotes logical negation of xi ∈ {0, 1}. For simplicity we imposed αi ≥ 0 to ensure
that the ground eigenvector can be chosen to be a non-negative vector as a consequence of
the Perron-Frobenius theorem.

In the special case where αi = βi = 0 and βij = 1
4
Lij where L is the adjacency matrix

of an undirected graph G = (V,E) of size |V | = n, the ground state problem coincides
with the Max-Cut problem, and thus VQMC can be employed as a heuristic for approximate
combinatorial optimization [47, 150], which is equivalent to natural evolution strategies
[150].

4.2 Parallelization

Unlike standard Monte Carlo methods, MCMC cannot be parallelized easily. The funda-
mental limitation is easily seen: to generate a sample xt+1 from a Markov chain, we need
to sample the transition kernel p(·|xt), which requires knowledge of the immediate past
state xt. This sequential nature of the sampling immediately precludes any direct attempt at
parallelizing the sampling process.

We could attempt to initialize multiple independent sampling chains; indeed, this is
one of the standard approaches often implemented in Bayesian inference frameworks. But
when sampling a high-dimensional distribution using a random walk Metropolis-Hastings,
it typically takes a very long time for the random walk to explore the parameter space.
This significantly slows down the convergence of the estimates (2.9) to the true expectation
value; furthermore, it is very difficult to determine a priori how many samples will be
required for this convergence within a specified tolerance. In practice, MCMC first discards
a pre-determined number of samples in each of the independent chains to avoid the transient
Markov transitions (a.k.a. burn-in) and down-samples the remainder by selecting samples at
regular intervals to reduce correlations (a.k.a. thinning). Any expectations are then computed
based on this smaller set of selected samples. Improper choice of these parameters can
severely degrade the quality of the generated estimates. Furthermore, they also reduce the
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parallel efficiency; suppose k samples are discarded as burn-in and every j-th sample is
selected during thinning. Then constructing n samples on each of L independent computing
units will lead to a parallel efficiency of

k + (nL− 1)j + 1

k + (n− 1)j + 1
= 1 +

nj

k + (n− 1)j + 1
(L− 1) = a+ bL (4.8)

for some a and b depending on k, j and n. Note that this calculation is solely focused on
the sampling task, and therefore does not take into account any communications that might
be necessary between the computing units for obtaining the final result. Even then, as the
number of burn-in samples k is increased, the slope b decays from 1 towards 0 (b = 1 is
indicative of optimal scaling).

On the other hand, an autoregressive model (AUTO) can generate exact samples from
the target distribution. Although the implementation of AUTO has a sequential nature that
scales linearly with the input dimension, it can generate independent samples from the target
distribution by transforming i.i.d. samples from a simple distribution (e.g.Gaussian). This
step is easily parallelized: as long as we have identical copies of the autoregressive model in
a number of computing units (e.g.GPUs), we can construct independent samples in parallel.
Communication between the computing units is necessary only when we need to update the
parameters of the neural network, e.g.during a stochastic gradient descent update.

Our model consists of fully connected weight matrices; therefore as we scale up the
problem size, the bottleneck for our algorithm is the memory usage. For example, assuming
a GPU can only store models with up to 10M parameters, we can set the size of the
hidden layer to 500 at maximum when solving a problem with 10K input dimensions. This
limitation can be addressed along with two complementary but independent avenues:

1. Model Parallelization: Distribute the model parameters across computing units, so
that each unit needs to store and update a small part of the model.

2. Sampling Parallelization: Use identical copies of the model across the computing
units to generate only a few samples per unit, and combine the independent samples
from all these units to construct an accurate expectation estimate.

The communication pattern between the computing units in model parallelization is in-
timately linked with the choice of the autoregressive neural network while the sampling
parallelization is model agnostic.

In this work, we restrict our attention to only parallelizing the sampling step. Consider
a quantum Hamiltonian of size N = 2n and an autoregressive model with two hidden
layers of size h. Given a total number of L computing units/GPUs and a mini-batch
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Table 4.1: Training time (measured in seconds) comparison on TIM for 300 training iterations with
one GPU. Our MCMC settings are introduced in Section 4.3.1. The running time of MADE&AUTO
scales roughly linearly with respect to the number of dimensions, due to the sequential nature of its
sampling procedure, but significantly outperforms RBM&MCMC in practice.

Model Optimizer Sampler
# of Dimensions

20 50 100 200 500

RBM ADAM MCMC 135.64 154.25 189.91 249.40 456.68
MADE ADAM AUTO 2.85 5.74 10.63 20.45 49.62

size of mbs samples to be drawn on each GPU, we end up with an effective batch size
of bs = L × mbs. Locally, each process first generates mbs samples, then computes
the physical measurements with the samples, and finally uses backpropagation to get the
gradient of the model parameters. These local gradient vectors have length d = 2hn+h+n,
which are averaged over the GPUs using a parallel reduction. Each GPU then updates its
own model parameters locally.

The computation complexity can be estimated as follows: during the local sampling
process on each GPU, the algorithm involves n forward passes for sampling, and a fixed
number of forward passes for physical quantity measurements. The dominant cost of each
forward pass is multiplication by h× n and n× h matrices, both O(hn); this leads to a total
computational cost of O(hn2 ×mbs) flops per GPU. Computing the average gradient over
GPUs using parallel reduction costs further O(hn) flops, and involves communication of
O(hn) floating point numbers. Clearly, the parallel efficiency is given by

O(hn2 × bs)
O(hn2 ×mbs) +O(hn)

=
O(hn2 × L×mbs)

O(hn2 ×mbs) +O(hn)
(4.9)

Since the constants in the O(hn2×L×mbs) and the O(hn2×mbs) are the same, this ratio
is approximately L when n or mbs are large.

4.3 Experiments

This section contains an extensive evaluation of our approach. We first compare AUTO
sampling and MCMC sampling in Section 4.3.2, where the advantage of AUTO in terms of
computational efficiency becomes clear for problems of higher dimensions. The convergence
performance is shown in Section 4.3.3. Our algorithm is competitive against the state-of-the-
art SDP solvers for small/medium scale Max-Cut problems. In Section 4.3.4, we demonstrate
the scalability of our technology by solving large-scale problems up to 10K dimensions.
We achieved near-optimal weak scaling, and the convergence of our model improves as we
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Figure 4.2: Training curves for TIM, where the red curves refer to the training loss/energy, and the
blue curves refer to the standard deviation of the stochastic objective, which should be zero when the
wave function converges to the exact ground-state. By fixing the learning rate and the total number
of training iterations, it becomes more difficult for RBM&MCMC to converge as the problem size
grows, due to the inaccurate estimation of the population energy by the low-quality MCMC samples.
The training of MADE&AUTO is stable across all problems.

increase the effective training batch size.

4.3.1 Experimental Setup

In this section, we evaluate VQMC using two non-geometrically local Hamiltonians: the
Max-Cut and the transverse field Ising model (TIM) model. In the case of Max-Cut,
the adjacency matrix was chosen by forming the n × n matrix (B + BT )/2 with Bij ∼
Bernoulli(0.5) sampled once and fixed, followed by rounding and setting diagonal entries
to zero. The second example is a disordered quantum system referred to as transverse field
Ising model model, whose Hamiltonian is of the form (4.7) with βi, βij ∼ U(−1, 1) and
αi ∼ U(0, 1) sampled once and fixed.

For Max-Cut, we compare our approach against VQMC with MCMC sampling [47,
150], as well as the semidefinite programming (SDP) relaxation approximation algorithms
including Goemans-Williamson Algorithm [46] and the Burer-Monteiro reformulation with
the Riemannian Trust-Region method [2]. As an additional baseline, each model is also
trained using the SR method. We benchmark the running time and converged energy of our
model on TIM in our scalability experiments.

Model architecture
Network architecture is chosen to be MADE and is compared against RBM, proposed by

Carleo and Troyer [24], taking the one-dimensional state as input and outputs the logarithmic

38



probability amplitude. The structure of MADE is as follows

Input
[bs,n]−−−→ MaskedFC1

[bs,h]−−−→ ReLU

[bs,h]−−−→ MaskedFC2
[bs,n]−−−→ Sigmoid

[bs,n]−−−→ Output,

and the structure of RBM is

Input
[bs,n]−−−→ FCn,h

[bs,h]−−−→ Lncoshsum
[bs]−→ Output1

[bs,n]−−−→ FCn,1
[bs]−→ Add Output1

[bs]−→ Output.

Here bs is the batch size and n is the number of dimensions. FCa,b is a fully connected
layer with input size a and output size b; and MaskedFC is the masked version of FC, to
remove the connections in the computational path of MADE. Lncoshsum refers to a series
of linear and non-linear operations involving: 1) taking natural logarithm for each entry of
the input tensor; 2) taking hyperbolic cosine for each entry of the input tensor; 3) summation
over the last dimension of the input tensor. The size of the tensor being passed to the next
operator is indicated above the right arrows.

For large-scale problems with high dimensional input size n, we need to choose a proper
latent size h to balance between the memory usage and the capacity of the model. In our
experiments, we set h = 5(log n)2 as the hidden layer size for MADE and h = n as the
number of hidden units for RBM.

Training. All models are trained for 300 iterations. In our single-GPU experiments, at each
iteration, the model is updated with a batch of 1024 training samples. For evaluation, we
draw a batch of 1024 testing samples from trained model, and report their mean energy. Two
base optimizers are considered: stochastic gradient descent (SGD) with learning rate 0.1 or
ADAM with learning rate 0.01, where the latter is our default optimizer. In addition, we
provide additional results on models trained using the SR [124] method for performance
comparison. The SR optimization was performed using a regularization parameter λ = 0.001

and a learning rate 0.1. No learning rate scheduler is applied. For scalability experiments,
each GPU is distributed with a constant mini-batch size mbs, and the effective batch size is
mbs× L, where L is the total number of GPUs available.

Our MCMC sampler is the random walk Metropolis–Hastings algorithm, running with
two chains. We expect that it takes more effort for MCMC to converge for large-scale
problems. Therefore, for each chain, we set heuristically the burn-in iterations k to scale
linearly with respect to the input dimension n, i.e., k = 3n+ 100.

Throughout the experiments, the timing benchmarks are performed on NVIDIA Tesla
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Table 4.2: Optimized objective (maximize cut number for Max-Cut, minimize ground state energy for
TIM) values for different problem sizes and different optimizers, averaged over 5 runs with different
random seeds. The first three rows in the Max-Cut section consist of results from running classical
algorithms and serve as benchmarks. For the rest of the rows in the table, the batch size is fixed to be
1024. We note that MADE&AUTO achieves satisfactory performance in the sense that it’s directly
comparable with the SDP solvers on Max-Cut. On the other hand, RBM&MCMC takes longer to
converge as the problem size grows, whereas the convergence of MADE&AUTO remains stable.

Problem Model Sampler Optimizer
# of Dimensions

20 50 100 200 500

Max-Cut

Classical: Random 27.2 ± 2.2 150.4 ± 5.8 610.4 ± 11.6 2495.8 ± 42.8 15696.0 ± 16.8
Classical: Goemans-Williamson 41.4 ± 2.0 194.2 ± 2.3 741.0 ± 11.1 2881.6 ± 14.4 17242.4 ± 37.3
Classical: Burer–Monteiro 43.0 ± 0.0 200.0 ± 0.0 754.0 ± 3.0 2928.0 ± 3.7 17416.0 ± 23.13

RBM MCMC
SGD 41.4 ± 1.5 192.0 ± 3.3 733.8 ± 13.0 2825.6 ± 5.5 15945.6 ± 44.2

ADAM 40.6 ± 1.6 190.2± 2.7 719.8 ± 6.6 2777.6 ± 14.2 16576.0 ± 30.9
SGD+SR 43.0 ± 0.0 198.8 ± 1.5 758.0 ± 1.1 2898.0 ± 22.0 15956.8 ± 29.9

MADE AUTO
SGD 42.6 ± 0.4 192.0 ± 2.4 742.2 ± 5.9 2846.0 ± 4.8 16880.0 ± 73.6

ADAM 42.4 ± 0.8 193.8 ± 3.1 733.8 ± 9.1 2847.8 ± 12.1 17006.6 ± 23.0
SGD+SR 43.0 ± 0.0 200.0 ± 1.5 758.4 ± 6.5 2909.2 ± 3.1 17176.6 ± 30.5

TIM

MCMC RBM
SGD -80.22 ± 2.79 -270.65 ± 9.64 -762.11 ± 28.58 -1981.17 ± 72.19 -976.25 ± 119.43

ADAM -80.38 ± 2.42 -265.47 ± 8.21 -756.33 ± 16.73 -2216.45 ± 31.95 -924.53 ± 121.10
SGD+SR -80.70 ± 2.10 -282.02 ± 8.37 -764.74 ± 14.67 -2234.23 ± 36.72 -1046.40 ± 334.50

MADE AUTO
SGD -80.30 ± 0.01 -281.18 ± 5.51 -767.88 ± 13.45 -1872.16 ± 41.89 -6773.97 ± 233.19

ADAM -80.48 ± 0.18 -277.11 ± 4.48 -771.11 ± 17.06 -2181.31 ± 33.39 -7597.37 ± 171.25
SGD+SR -81.25 ± 0.07 -277.23 ± 9.96 -812.33 ± 12.55 -2252.12 ± 84.00 -8673.27 ± 304.45

V100 GPUs, with 32GB of memory for each.

4.3.2 MCMC vs. AUTO: Runtime

Despite the sequential nature of both MCMC and AUTO sampling, in practice, AUTO
sampling can be operated with GPU in a straightforward fashion and exhibit superior
running time efficiency. Our results on the running time comparison is shown in Table 6.2.

The running time of RBM&MCMC scales with the total number of iterations in each
chain, which includes a fixed number of burn-in iterations that cannot be parallelized. In
our setting, we set the number of chains to be 2, and burn-in iterations k that grows linearly
with respect to the input dimension n. In principle, the running time of MCMC can be
reduced further by increasing the number of chains or choosing a smaller k. However, a
more severe problem of MCMC lies in the fact that the distribution of the samples gener-
ated by MCMC only converges to the distribution of interest asymptotically. As the input
dimension increases, it becomes more difficult for the random walk Metropolis–Hastings
algorithm to converge, which can potentially affect the quality of generated samples if k is
not properly chosen. The running time of MADE&AUTO is dominated by the sampling
time that scales linearly with respect to the input dimension n, which significantly outper-
forms its RBM&MCMC counterpart. More importantly, for AUTO, we know exactly the
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Figure 4.3: Sampling times for the TIM problem in 1K, 2K, 5K and 10K dimensions with mini-batch
sizes mbs = 512, 128, 16 and 4 samples per GPU, respectively. The minibatch sizes were chosen to
saturate GPU memory per problem dimension. All times are normalized by the execution time of the
largest GPU configuration (6× 4) for each dimension. Note that the normalized executions times are
all close to 1, indicative of near-optimal weak scaling.

computational complexity needed to get correct samples from the distribution of interest, as
opposed to MCMC that requires undetermined number of iterations to converge.

The corresponding training curves are shown in Figure 4.2, where the red curves refer to
the training loss/energy, and the blue curves refer to the standard deviation of the stochastic
objective, which approaches zero as the wave function converges to the exact ground-state.
RBM&MCMC converges reasonably well on small-scale problems, but has more difficulty
to converge as the problem scales up. On the other hand, our model converges rapidly and
stably to low energy across problems of different scales. This observation motivates us to
attempt to solve problems of even higher dimensions.

4.3.3 MCMC vs. AUTO: Convergence Study

The convergence result of our model on the Max-Cut problems is shown in Table 4.2, where
we compare MADE&AUTO against the state-of-the-art SDP relaxation approximation
algorithms developed in the past decades, as well as VQMC with RBM&MCMC.

Random Cut algorithm is a simple randomized 0.5-approximation algorithm that ran-
domly assigns each node to a partition. Goemans and Williamson [46] improved the
performance ratio from 0.5 to at least 0.87856, by making use of the semidefinite program-
ming (SDP) relaxation of the original integer quadratic program. Burer and Monteiro [22]
reformulated the SDP for Max-Cut into a non-convex problem, with the benefit of having
a lower dimension and no conic constraint. The implementation of Goemans-Williamson
Algorithm used the CVXPY [30, 3] package and the Burer-Monteiro reformulation with
the Riemannian Trust-Region method [2] used Manopt toolbox [16], which essentially
implements the optimization algorithm proposed by [65].

For evaluation, we constructed a problem instance for each Hamiltonian size n ∈
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Figure 4.4: Normalized converged energy for TIM problems of different sizes. Each GPU is
distributed a batch size of 4; the total effective batch size equals 4 times the total number of GPUs
used. The energy is normalized for each problem size (the values from each curve are divided by the
one with the largest magnitude among them). The converged energy improves as the total number of
GPUs (effective batch size) increases. The improvement saturates for smaller problems, which also
implies that a larger batch size is required for larger problems.

{20, 50, 100, 200, 500} by randomly generating parameters defined in Eq. 4.5. For each
problem instance, each algorithm was executed 5 times using 5 random seeds. In Table 4.2,
we report the averaged result over problem instances of different sizes.

In general, MADE&AUTO slightly outperforms RBM&MCMC on small-scale problems,
and the latter fails to converge for problems of input dimension 500, due to our constraint
on the number of training iterations.

The natural gradient descent [5, 124] proved essential for converging to a good local
optimum. We apply the SR to both VQMC methods and observe similar improvements:
optimizers equipped with SR are consistently improved over all architectures. On the other
hand, the performance of our algorithm with SR is competitive against the state-of-the-art
SDP solvers on Max-Cut problems.

4.3.4 AUTO: Multi-GPU Scalability

By distributing the sampling task across multiple GPUs, our method can extend to large-
scale problems (with input dimensions up to 10K) by reducing the mini-batch size mbs

distributed to each GPU. The effective batch size depends on both mbs and the number of
GPUs L available for training.

In Figure 4.3, we plot the normalized execution times for the 1K, 5K and 10K dimen-

42



sional TIM problems as we vary the number of GPUs and the GPU distribution across nodes.
We choose the minibatch sizes assigned to each GPU depending on the dimensionality of the
problem so that the GPU memory is saturated. Note that for both intra-node and inter-node
distributed sampling schemes, the execution times remain nearly constant as long as the
number of samples per GPU is kept fixed. This is indicative of near-optimal weak scaling:
consider a problem so large that we are able to generate only a few samples using a single
GPU due to memory constraints. In this scenario, by using a large number of GPUs to
generate independent sets of samples, we should be able to drive the stochastic optimization
problem to convergence.

The effective batch size increases as we scale up the number of GPUs. This improves
the convergence performance of our method. We benchmark the result in Figure 4.4, where
we train our models across different numbers of GPUs, on TIM problems of different sizes.
The improvement saturates for smaller problems as the effective batch size increases but
remains significant for larger problems. This implies that our model requires a larger batch
size to achieve optimal performance for problems of a larger scale. Intuitively, batch size
quantifies the exploration capability in the state space: the algorithm has a better chance to
discover the ground state if it is allowed to explore more.

The raw data of our experiments in this section is provided in Section 4.4.4.

4.4 Case Studies

In this section, we conduct experiments on several aspects of our settings in more detail, to
support our conclusions that MADE+AUTO significantly outperforms RBM+MCMC in
terms of the convergence rates for large-scale problems. Throughout this section, we train
our models for Max-Cut problems with ADAM optimizer on a single GPU. All results are
averaged over 5 runs with different random seeds.

4.4.1 Ablation Study: Latent Size

We conduct ablation studies on the choice of latent size for our models. Latent size refers to
the number of hidden units for RBM and the hidden layer size for MADE.

In Table 4.3, we train both MADE and RBM on Max-Cut problems with graph sizes n ∈
{50, 100, 200, 500} under different choices of latent size h ∈ {(log n)2, 3(log n)2, n, 5n, n2}.
We also cite the numbers from Table 4.2 for direct comparison, where we adopt h =

5(log n)2, n for MADE and RBM, respectively. We measure the training time of each model
for 300 iterations in seconds and present the numbers on the right side of the table. The
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Table 4.3: Ablation study on the latent size. We train the models with ADAM on Max-Cut problems.
n is the graph size. Optimal performance is obtained under a proper choice of latent size h; MADE
falls off if we push GPU to its computational limits.

Model n

Latent size h

Cut table Time table

(logn)2 5(logn)2 n n 5n n2 (logn)2 3(logn)2 n 5n n2

MADE

50 191. 193.8 - 195. 194.6 195. 7.22 7.19 7.24 7.42 7.41
100 735.8 733.8 - 734.2 731.2 726.2 13.43 13.49 13.48 13.90 13.96
200 2832.8 2847.8 - 2848.6 2821.4 2779. 26.49 25.78 26.07 26.85 57.19
500 16905.4 17006.6 - 16973.8 16872.8 16311.4 64.81 66.48 67.79 105.97 1426.92

RBM

50 193. - 190.2 192. 192.2 191.4 151.07 151.49 150.72 150.71 152.68
100 721. - 719.8 730.2 711. 705.2 181.11 180.30 180.47 182.15 183.62
200 2786.2 - 2777.6 2779.6 2765.6 2747.4 242.95 241.05 243.24 243.91 246.05
500 16568.8 - 16576.0 16652.6 16577.2 16543. 427.23 429.07 432.39 428.17 510.02

Table 4.4: Ablation study on the MCMC sampling scheme. We train the RBM with ADAM on
Max-Cut problems. n is the graph size; {n, 10n} and {×2,×5,×10} are from Scheme 1 and Scheme
2, respectively.

Model n

Sampling scheme
Cut table Time table

n 3n+100 10n ×2 ×5 ×10 n 10n ×2 ×5 ×10

MCMC

50 190.8 190.2 193.8 191.6 192.6 192.8 110.44 197.02 199.64 500.02 1004.96
100 700.2 719.8 733. 706.8 720. 729.8 124.01 296.83 201.52 507.65 1011.51
200 2674.8 2777.6 2795.4 2670.4 2720.6 2736.8 143.76 492.31 206.91 514.80 1023.43
500 16205. 16576.0 16626.6 16022.2 16066.6 16156.6 212.86 1103.18 207.43 508.43 1021.21

results are averaged over 5 runs with different random seeds.
Several observations can be made. First, optimal performance is obtained under a

reasonable choice of h, between 3(log n)2 and n; models with a latent size that is either
too large or too small do not perform well. Second, the time complexity usually does not
scale with the model size when running on GPU. However, MADE falls off if we push
GPU to its computational limits, e.g., AUTO sampling bs = 1024 samples from MADE
with O(n3) parameters. This is in practice not a serious concern for MADE with latent size
h = O((log n)2) as it will always face its memory bottlenecks first by storing the batch of
high dimensional inputs as the problem size increases. Third, we re-did the experiments on
RBM with n hidden units and obtain slightly different results in Table 4.2, due to different
choices of random seeds and machines that the model is trained on.

4.4.2 Ablation Study: MCMC Sampling Scheme

We conduct ablation studies on the choice of MCMC sampling schemes. In particular, we
consider:

• Scheme 1: the sampler discard the first {n, 10n} samples in the chain and keep the
next bs samples.
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Table 4.5: Time elapsed to reach the target performance, measured in seconds. We train the RBM
with ADAM on Max-Cut problems. At every iteration, after the training updates, we sample another
batch of samples for evaluation; the algorithm terminates if the evaluation score surpasses the target
score. Evaluation time is not taken into account.

Method
# of Dimensions (Targeted cut number)

20(41) 50(190) 100(730) 200(2800) 500(16800)

MADE+AUTO 3.14 3.61 20.08 3.25 6.27
RBM+MCMC 126.84 154.09 247.91 612.76 1096.08

• Scheme 2: the sampler takes every {2, 5, 10}th sample in the chain until bs samples
are collected in total.

In Table 4.4, we train RBM on Max-Cut problems with graph sizes n ∈ {50, 100, 200, 500}
under different choices of MCMC sampling schemes {n, 10n,×2,×5,×10}. We also cite
the numbers from Table 4.2 for direct comparison, where we discard the first k=3n+100
samples in the MCMC chain. We measure the training time of each model for 300 iterations
in seconds and present the numbers on the right side of the table. The results are averaged
over 5 runs with different random seeds.

Several observations can be made. First, schemes 10n or ×10 with longer MCMC chains
result in better performance, at the cost of longer running time. Second, when running with
GPU, the time complexity only scales with the length of the MCMC chain, but not the O(n2)

model size.

4.4.3 Comparison of Hitting Time

In addition to showing the running time with a fixed number of iterations in Table 6.2, we
demonstrate that MADE+AUTO also significantly out-performs RBM+MCMC in the sense
that the former reach a target performance faster.

In Table 4.5, we train MADE and RBM on Max-Cut problems with graph sizes
n ∈ {50, 100, 200, 500}with target performance {41, 190, 730, 2800, 16800} that are heuris-
tically chosen based on the results in Table 4.2. The performance is measured in seconds and
the results are averaged over 5 runs with different random seeds. RBM+MCMC requires a
significantly longer time to converge to a target performance for large-scale problems.

4.4.4 Raw Data from Multi-GPU Scalability Experiments

We distribute the sampling task across multiple GPUs, our method can extend to large-scale
problems with input dimensions up to 10K dimensions, by reducing the mini-batch size mbs
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Table 4.6: Converged energy and running time for TIM problems of different dimensions. Each
GPU is distributed with a batch size of 4; the total batch size equals to 4 times the total number of
GPUs used. Paralleling experiments are done across different GPU configurations, where L1 × L2

refers to a total L1 number of nodes with L2 GPUs in each node, and the a total number of GPUs is
L = L1 × L2 . The converged energy improves as the batch size (total number of GPUs) increases.

# GPUs Metric
# of Dimensions

20 50 100 200 500 1000 2000 5000 10000

1 × 1
Energy -69.64 -225.53 -656.91 -1511.22 -3862.86 -9642.54 -21962.55 -56337.84 -89733.83

Time (s) 2.85 5.74 10.63 20.45 49.62 98.01 204.18 514.14 1067.56

1 × 2
Energy -70.59 -260.91 -626.55 -1788.10 -4666.89 -12056.95 -24274.07 -73938.23 -142214.93

Time (s) 3.06 6.00 10.81 20.36 49.47 97.29 200.32 512.39 1065.71

1 × 4
Energy -82.79 -257.26 -702.94 -1778.35 -5587.58 -13797.55 -29219.47 -79650.12 -165364.75

Time (s) 3.14 6.13 10.90 20.95 49.33 98.22 202.02 507.40 1066.03

2 × 2
Energy -82.79 -257.26 -702.94 -1778.35 -5418.66 -13286.22 -28886.57 -74508.23 -159416.64

Time (s) 3.29 6.16 10.81 20.63 49.59 98.01 204.90 512.80 1068.00

2 × 4
Energy -81.49 -261.31 -766.29 -1984.61 -5886.93 -14826.83 -31665.81 -94311.98 -190800.37

Time (s) 5.26 7.91 11.10 20.68 49.95 100.95 206.12 515.03 1085.33

4 × 2
Energy -81.49 -261.31 -766.29 -1929.95 -5834.87 -14464.15 -33929.40 -93814.81 -200729.03

Time (s) 3.55 6.22 10.92 20.60 49.86 97.98 202.73 513.87 1075.07

4 × 4
Energy -81.70 -261.91 -776.00 -1892.16 -6348.56 -15636.99 -44506.68 -111165.27 -229567.37

Time (s) 3.25 6.14 13.44 21.15 49.43 98.11 203.58 514.16 1068.51

8 × 2
Energy -81.70 -261.89 -776.00 -1892.15 -5975.69 -15928.98 -46415.26 -120381.78 -224738.12

Time (s) 3.30 6.18 10.88 20.77 49.97 98.29 203.80 520.13 1072.32

6 × 4
Energy -80.99 -276.52 -769.72 -1950.40 -6672.37 -17105.77 -38496.40 -127652.29 -261517.21

Time (s) 3.22 6.22 11.14 21.12 50.43 101.30 206.36 521.97 1067.83

distributed to each GPU. The effective batch size depends on both mbs and the number of
GPUs L available for training. Here, we provide the raw data for our distributed computing
experiments in Section 4.3.4.

In Table 4.6, we show the converged energy and running time for TIM problems of
different dimensions. Each GPU is distributed with a batch size of 4; the total batch size
equals to 4 times the total number of GPUs used. A number of different GPU configurations
were used; L1×L2 indicates L1 nodes with L2 GPUs per node were utilized. The converged
energy improves as the batch size (total number of GPUs) increases.

In Table 4.7, we show the running time (seconds) for TIM problems of different di-
mensions. Different from the experiments in Table 4.6, each GPU is distributed with the
maximum number of batch size that can be accommodated on its memory. We note that for
each dimension, the run times remain constant even as we increase the number of GPUs,
increasing the effective batch size. This is indicative of near-optimal weak scaling.
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Table 4.7: Running time (seconds) for TIM problems of different dimensions. Each GPU is distributed
with the maximum number of batchsize that can be accommodated on its memory. A number of
differnt GPU configurations were used; L1 × L2 indicates L1 nodes with L2 GPUs per node were
utilized. We note that for each dimension, the run times remain constant even as we increase the
number of GPUs, increasing the effective batch size. This is indicative of near-optimal weak scaling.

# GPUs

# of Dimensions

20 50 100 200 500 1000 2000 5000 10000

# of Samples per GPU

219 217 215 213 211 29 27 24 22

1 × 1 77.34 73.34 62.70 62.67 110.37 159.51 263.05 558.93 1058.85

1 × 2 76.30 73.74 62.88 62.24 110.93 160.24 263.14 562.30 1060.62

1 × 4 76.57 73.86 63.11 62.47 110.82 160.64 260.21 556.15 1054.41

2 × 2 76.24 73.82 63.02 62.56 111.20 160.94 265.71 575.51 1068.28

2 × 4 77.56 75.29 64.50 64.65 113.94 161.15 265.01 575.77 1075.45

4 × 2 76.32 73.86 63.03 62.35 111.31 164.54 266.81 566.73 1070.02

4 × 4 76.61 76.15 65.15 64.91 112.19 160.87 265.47 562.93 1071.24

8 × 2 77.01 75.13 64.59 65.27 112.46 163.78 269.40 572.13 1077.35

6 × 4 79.83 75.39 65.08 65.61 111.97 165.30 268.52 576.37 1073.62

4.5 Conclusion

Motivated by recent developments in VQMC made possible by autoregressive sampling, we
implemented a distributed variant of VQMC and applied it to solving large-scale quantum
systems for which standard random-walk Markov chain Monte Carlo sampling fails to
converge. The main advantage of AUTO compared to MCMC lies in its ability to sample
exactly from the distribution of interest, unlike MCMC for which the quality of the generated
samples is plagued by unknown convergence time, which becomes a severe problem as the
dimension of the problem increases. Empirically, we demonstrated that AUTO significantly
outperforms MCMC in terms of the convergence rates for large-scale problems. Training
of AUTO is also more stable than that of MCMC, finding converged solutions that are
competitive against the state-of-the-art baselines for Max-Cut. The above findings motivated
us to explore large-scale problems up to 10K dimensions. For that purpose, we built large
models and chose a batch size to exhaust the memory usage of each GPU to be distributed.
The optimality of our results is only limited by the computational resources available at
hand: while the convergence performance quickly saturates for small-scale problems, it
continues to improve for larger-scale problems as we scale up the number of GPUs.
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Chapter 5

Application: Quantum Chemistry

Quantum many-body systems describe a vast category of physical problems at microscopic
scales. In the context of ab-initio Quantum Chemistry (QC), the central topic is to unravel
the quantum effects determining the structure and properties of molecules by solving the
many-body time-independent Schrödinger equation describing the interaction of heavy
nuclei with orbiting electrons. However, the exponential complexity with respect to the
number of particles makes the analytical computations about system impractical [135].

Classical strategies discretize the problem using a finite number of basis functions, ex-
panding the full many-body state in a basis of anti-symmetric Slater determinants. Because
of the exponential scaling of the determinant space, however, exact approaches that system-
atically consider all electronic configurations such as the full configuration interaction (FCI)
method, are typically restricted to small molecules and basis sets. Coupled cluster (CC)
techniques [29, 9] are approximate methods routinely adopted in QC electronic calculations,
however, the accuracy of CC is intrinsically limited in the presence of strong quantum
correlations, in turn restricting the applicability of the method to regimes of relative weak
correlations. Recently neural-network quantum state (NQS) methods [28, 8] have proven
to be successful variational ansatz for finding the ground state of molecular systems up to
30 qubits (Li2O). However, significant scalability challenges of the NQS approach arise
when considering molecules of larger scales. The scalability issue stems from two sources,
which we refer to as local energy parallelism and sampling parallelism. (i) The complexity
of the computation of local energy scales linearly with respect to the number of terms in the
molecular Hamiltonian, which induces out-of-memory (OOM) issues for larger problems.
(ii) In order to achieve satisfactory performance, one needs to sample exact and accurate
configurations from the targeted distribution, which becomes expensive or even impossible
for existing approaches such as Markov chain Monte-Carlo as the dimensionality rises.

In order to address local energy parallelism for large-scale molecules, we use an efficient
tensor representation of the second quantized spin Hamiltonian generated from chemical
data so that the computation of the local energy is efficiently supported by GPUs. We further
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employ identical copies of the model across the computing units to generate only a few
samples per unit and combine the independent samples from all these units to construct an
accurate expectation estimate. In addition, memory consumption is reduced through gradient
accumulation, which splits the batch of samples used for training the model into several
mini-batches of samples that will be run sequentially on each device under parallelization.
The proposed parallelization scheme for large batch computation is particularly important for
chemical molecules with a large number of terms in its electronic Hamiltonian formulation,
where the calculation of local energy becomes prohibitive.

The basis of our approach to achieving sampling parallelism is our utilization of a
wavefunction based on Masked Autoencoder for Distribution Estimation (MADE) [43].
Using MADE as our base model enables the development of a parallelization scheme based
on [152]. Unlike restricted Boltzmann machines (RBMs) [111] and NADE [75], which
have formed the basis of previous ab-initio studies, MADE is known to be lightweight and
scalable to high-dimensional inputs. On the one hand, it overcomes both the asymptotical
convergence issues o MCMC sampling using autoregressive sampling. On the other hand,
it bypasses the inherently sequential nature of NADE with the minor additional cost of
simple masking operations. In addition, we further improve the performance of our model
through the autoregressive sampling of the state entries in an order that roughly matches the
entanglement hierarchy among the involved qubits. Our experiments demonstrate that the
proposed algorithm effectively works for molecules up to 76 qubits with millions of terms
in its electric Hamiltonian.

The section is organized as follows: In section 5.1 we begin by summarizing the
existing state-of-art in neural-network quantum state research as applied to ab initio quantum
chemistry. Section 5.2 provides mathematical details about the nature of the Hamiltonians
under consideration as well as stochastic approximation strategy based on neural networks.
The proposed neural-network quantum state architecture is elaborated in section 6.2 and the
parallel evaluation strategies are subsequently detailed in section 5.4. Experimental results
for molecules up to 76 qubits are described in section 6.3, including abalative studies on the
relevant factors controlling performance of the algorithm.

5.1 Background

Variational Monte-Carlo and Autoregressive Quantum States. The idea of utilizing
neural-network quantum states to overcome the curse of dimensionality in high-dimensional
VQMC simulations was first introduced by Carleo and Troyer [24], who concentrated on
restricted Boltzmann machines (RBMs) applied to two-dimensional quantum spin models.
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However, RBM relies on approximate sampling procedures like MCMC, whose convergence
time remains undetermined, which often results in the generation of highly correlated
samples and deterioration in performance. Such sampling approximations can be avoided
by using autoregressive models [13] that estimate the joint distribution by decomposing
it into a product of conditionals by the probability chain rule, making both the density
estimation and generation process tractable. To this end, Larochelle and Murray [75]
proposed neural autoregressive distribution estimator (NADE) as feed-forward architectures.
MADE [43] improves the efficiency of models with minor additional costs for simple
masking operations. Sharir et al. [120, 119] and Hibat-Allah[60] introduced neural-network
quantum states based on the autoregressive assumption inspired, respectively by PixelCNN
[136] and recurrent neural networks, respectively, and demonstrated significantly improved
performance compared to RBMs.

Application in Quantum Chemistry. Many approximate methods specific to the QC
problem [55, 74] have been discovered by researchers. The Hartree-Fock approximation
treats each electron in the molecule as an independent particle that moves under the influence
of the Coulomb potential due to the nuclei, and a mean-field generated by all other electrons.
It calculates the expansion coefficients of the linear combination of atomic orbitals. Config-
uration interaction methods [121] use a linear combination of configuration state functions
built from spin orbitals to restrict the active space to configuration strings. Coupled cluster
approaches [29, 9] construct multi-electron wavefunctions using the exponential cluster
operator to account for electron correlation, but cannot parameterize arbitrary superpositions
and occasionally lead to unphysical solutions. Choo et al. [28] proposed an RBM-based
NQS variational ansatz, leveraging the power of artificial neural networks that have recently
emerged in the more general context of interacting many-body quantum matter [24]. This
approach provides a compact, variational parameterization of the many-body wave func-
tion. Barrett et al. [8] subsequently proposed a novel autoregressive NQS architecture for
ab-initio QC based on NADE [75] with hard-coded pre-and post-processing that enables
exact sampling of physically viable states. These advances ultimately allow their approach
to scale to systems up to 30 qubits, surpassing what was previously possible using RBMs,
while still falling short of large-scale applications. Empirically, we have found that the
approach of [8] encounters significant scalability challenges in generalizing to molecular
systems of yet larger size.
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5.2 Problem Formulation

We will work under the assumption of the so-called Born-Oppenheimer approximation

[15], which treats the nuclei as fixed point charges. Indeed, the specification of a molecular
geometry implicitly assumes such an approximation. When the positions of the nuclei are
specified, the electronic structure problem can be restated as finding the ground eigenstate
of the electronic Hamiltonian operator and consequently the ground state electronic energy
becomes a parametric function of atomic positions. Here, the molecule’s electronic Hamil-
tonian is commonly represented using the second-quantization formalism, with a chosen
basis of atomic orbitals which describe the wave function of electrons in the molecule. In
order to identify the Hamiltonian for a compound, we start by fetching the information
required to build the target molecule object, then employ established solvers to compute the
second-quantized Hamiltonian and store the result in a string format.

In the second-quantized formulation, the Hamiltonian is represented as a complex
conjugate-symmetric (Hermitian) matrix H of side length 2n where n represents the number
of orbitals, and the basic problem is to determine the ground energy of H and a description
of an associated eigenvector. Since storage and manipulation of such matrices is prohibitive,
a common practice is to exploit the fact that H admits an efficient description in terms
of superpositions of tensor products of 2× 2 matrices drawn from the set {σ0, σ1, σ2, σ3},
where

σ0 =

1 0

0 1

 , σ1 =

0 1

1 0

 , σ2 =

0 −i
i 0

 , σ3 =

1 0

0 −1

 (5.1)

In fact, any Hermitian matrix H ∈ C2n×2n admits a unique decomposition of the form

H =
∑

p∈{0,1,2,3}n
αp Pp (5.2)

where Pp := σp1 ⊗ · · · ⊗ σpn denotes a tensor product of Pauli matrices, and the real-valued
coefficients entering the sum are determined by the formula αp = 1

2n
tr(HPp). Since each

matrix Pp is row-sparse with exactly one nonzero entry per row, the number of nonzero
entries per row of H is bounded by the number of nonzero coefficients K entering the
above sum, which could be as large as 4n for typical matrices. The matrices of relevance to
quantum chemistry are far from typical, however, and consequently enjoy a high level of
row sparsity, which will be a crucial property in our subsequent algorithm development.

Beyond the assumption of row-sparsity, additional features of H can be determined

51



from the structure of the constituent Pauli strings p, which in turn depend on the choice of
encoding map from the chemical Hamiltonian to the qubit representation. Efficient qubit
encoding maps are an active field of research, and the most common examples in usage are
Jordan-Wigner [64] and Bravyi-Kitaev [19], which are equivalent isospectrally. In this work,
we will adopt the Jordan-Wigner encoding because of its simplicity and the fact that it has
shown success in prior work on VMC applied to ab-initio quantum chemistry [28, 8]. In the
particular case of Jordan-Wigner transformation, we point out that many of the tensor factors
of terms appearing in the sum (5.2) are the identity matrix and are moreover organized in a
hierarchical structure.

Following the standard neural-network variational Monte Carlo procedure, we postulate
a family of trial wavefunctions whose complex amplitudes relative to the standard basis are
computed by the output of a neural network, parametrized by variational parameters θ ∈ Rd.
Thus, given a function of the form

f : {0, 1}n × Rd −→ C (5.3)

which is differentiable in the second argument, we define an associated family of trial
quantum states |fθ⟩, which are differentiably parametrized by θ ∈ Rd, as follows

|fθ⟩ :=
∑

x∈{0,1}n
f(x, θ)|x⟩ (5.4)

where |x⟩ := |x1⟩ ⊗ · · · ⊗ |xn⟩ is a shorthand to denote the standard basis vectors for C2n .
In this work, following [8], we assume that the function f is chosen in such a way that |fθ⟩
is unit-normalized for all θ ∈ Rd, and that exact sampling from the probability distribution
πθ := |f(·, θ)|2 is computationally tractable. Using the unit vector (5.4) as a trial vector in
the Rayleigh quotient for H , we obtain a differentiable objective function L : Rd −→ R,
which upper bounds the minimal eigenvalue λmin(H) as a consequence of the Rayleigh-Ritz
principle,

L(θ) := 1

2
⟨fθ|H|fθ⟩ (5.5)

and whose value can be estimated at the Monte Carlo rate using the following estimator

L(θ) = 1

2
E[lθ(x)] , lθ(x) :=

⟨x|H|fθ⟩
f(x, θ)

, x ∼ πθ (5.6)

where lθ is referred to as the local energy. Minimization of L is performed using stochastic
gradient-based optimization techniques. In particular, the gradient of L can be estimated at
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the Monte Carlo rate using,

∇L(θ) = ReE
[(
lθ(x)1− b

)
σθ(x)

]
, σθ(x) :=

∇θf(x, θ)

f(x, θ)
, x ∼ πθ (5.7)

where b ∈ Rd×d is an arbitrary baseline matrix that can be set to b = E[lθ(x)].
Eq. (5.7) demonstrates that an integral component of the algorithm is the computation

of the local energy, which is required both to perform stochastic gradient updates of the
model and to estimate the value of the objective function. The computational complexity of
computing the mapping x 7−→ lθ(x) for a minibatch of size B is evidently O(BK) where
recall that K denotes the number of terms in the Hamiltonian expansion (5.2). Despite
the fact that the sparsity parameter satisfies K ≪ 4n, the computation of local energy still
suffers from severe OOM issues in practice since 4n can be extraordinarly large even for
modestly sized molecules. For example, in the case of Methanol with n = 28 orbitals we
have 4n ≈ 7.2 × 1016 while K = 52887. This implies that for Methanol, given a modest
batch size B = 1024, the local energy needs a forward pass of 54M samples of input size
28. This computational bottleneck is inevitable as large batch sizes are essential to ensure
the precision of the Monte-Carlo approximation of the energy objective in Eq. (5.6), which
directly influences the performance of the algorithm. Therefore, efficient sampling and
local energy computation become the key issue for scaling the neural-network variational
approach to large compounds.

5.3 Autoregressive Modeling of Molecular Quantum States

Motivated by the fact that solving high dimensional molecular quantum systems is still a
difficult problem with existing variational techniques, we consider the base model from
Zhao et al. [152], which was shown to be capable of solving quantum systems of very high
dimensions. Adaptation of this work to chemistry problems involves generalizing from real-
valued to complex-valued wave functions, as well as adjusting the sampling process to handle
larger numbers of configurations and accommodate domain priors. In addition, following
[8], we enforce constraints necessary to ensure that the generated samples correspond to
physical electronic states.

Architecture. Since the ground state of the targeted problem is in general complex-valued,
we consider the complex generalization of the model in [152] by splitting the output of
the wave function into modulus and phase parts, learned by two sub-models separately as
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follows

Modulus sub-model: Input
[B,N ]−−−→ MaskedFC1

[B,h]−−−→ ReLU

[B,h]−−−→ MaskedFC2
[B,N ]−−−→ Sigmoid

[B,N ]−−−→ Output,

Phase sub-model: Input
[B,N−2]−−−−−→ MaskedFC1

[B,h]−−−→ ReLU (5.8)
[B,h]−−−→ MaskedFC2

[B,4]−−→ Output.

The modulus model predicts N conditional probabilities for each configuration, and the
phase model predicts the phases for each of the four configurations that are identical
in the first N − 2 entries, which is a N − 2 dimensional vector being fed as the input.
Here B is the batch size, n is the number of dimensions, h is the hidden layer size and
MaskedFC is the masked fully connected layer, which removes the connections in the
computational path of MADE. The outputs of modulus sub-model are the conditional
probabilities {πi(xi|xi−1, . . . , x1)}ni=1, which together define a joint probability function
π : {0, 1}n −→ [0,∞) for input strings x. Normalization follows automatically from the
autoregressive assumption,

π(x) =
n∏
i=1

πi(xi|xi−1, . . . , x1) . (5.9)

On the other hand, we model the phase ϕ : {0, 1}n −→ [0, 2π) of the wavefunction directly
by feeding the input x into a two-layer MLP. It follows that the complex logarithm of the
model output f(x, θ) can be written in a computationally tractable form as

f(x, θ) = eiϕ(x)
n∏
i=1

√
πi(xi|xi−1, ..., x1), (5.10)

log f(x, θ) = iϕ(x) +
1

2

n∑
i=1

log πi(xi|xi−1, ..., x1) (5.11)

where θ ∈ Rd denotes the concatenation of parameters describing the neural networks ϕ and
π.

Sampling. Standard autoregressive sampling techniques such as NADE [75] have a sequen-
tial nature that updates a batch of randomly initialized states entry by entry following a
pre-fixed order. In practice, this approach is highly inefficient as the sampled batch usually
contains repeated samples. Instead, we keep track of a sample buffer throughout the sam-
pling process, associated with a counter storing the number of occurrences for each sample
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in the buffer. We start with a buffer containing only one random initialized sample. At each
of the n iterations, we first double the size of the buffer by alternating ±1 value for existing
samples at a fixed entry. Then, we update the counter for all samples in the buffer through
Bernoulli sampling with probabilities computed by forward pass. Finally, we eliminate the
samples in the batch that have the lowest numbers of occurrences in the counter, to avoid
the exponential growth of the buffer size.

In addition, as a consequence of the Jordan-Wigner encoding, many of the tensor
factors appearing with high qubit index are given by the identity factor, which leads to the
expectation that high index qubits are comparatively less correlated compared to those with
at low indices. Motivated by this observation, in an effort to ease the training of the model
we performed autoregressive sampling in a reversed order beginning with the nth qubit.

Constraints. Recall that the unconstrained model assigns nonzero probability mass to all
2n possible bit-strings representing possible states of a multi-electron system. However,
in quantum chemistry problems we considered, only ne ≤ n out of the n single-electron
spin-orbitals are occupied with electrons, and the net charge C of the molecular system
determines the number of unpaired electrons. It follows that the numbers of electrons with
up-spins and down-spins n↑, n↓ respectively should satisfy

n↑ + n↓ = ne, n↑ − n↓ = C. (5.12)

This corresponds to applying Hamming weight constraints to the bit-strings, which ef-
fectively reduces the total number of candidate samples from 2n to

(
n/2
n↑

)(
n/2
n↓

)
, which

significantly reduces the complexity of the problem. We adopted techniques from simi-
lar work [60, 8] to enforce the constraints. Define the hamming weight constraint of the
configuration x ∈ {0, 1}n to be

n/2∑
i=1

x2i−1 = n↑,

n/2∑
i=1

x2i = n↓, (5.13)

where the even and odd indices correspond to the up-spin and down-spin electrons in the
orbitals. The idea to enforce the constraint in the autoregressive sampling process is to
assign nonzero probabilities only to samples that satisfy Eq. (5.13), for which the sufficient
and necessary condition is that the kth entry xk must satisfy

n↑ − (n/2− ⌈k/2⌉) ≤
⌈k/2⌉∑
i=1

x2i−1 ≤ n↑, n↓ − (n/2− ⌈k/2⌉) ≤
⌈k/2⌉∑
i=1

x2i ≤ n↓, (5.14)
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for all k ∈ 1, 2, ..., N . Condition (5.14) can be enforced at every iteration k during the
sampling process by introducing the following modified probability distribution,

π̂(xk = 1|xk−1, ..., x1) =



1, if
∑⌈k/2⌉

i=1 x2i−1 < n↑ − (n
2
− ⌈k/2⌉)

1, if
∑⌈k/2⌉

i=1 x2i < n↓ − (n
2
− ⌈k/2⌉)

0, if
∑⌈k/2⌉

i=1 x2i−1 ≥ n↑

0, if
∑⌈k/2⌉

i=1 x2i ≥ n↓

π(xk = 1|xk−1, ..., x1), o.w.,

(5.15)

which has the property that for any x violating the constraints, we have

π̂(xk = x|xk−1, ..., x1) = 0, π̂(xk = 1− x|xk−1, ..., x1) = 1. (5.16)

The modified probabilities still normalize to one by design.

5.4 Parallelization

We apply parallelization to our algorithm from two perspectives. We parallelize the training
by trunking the input batch across the GPUs, where the model parameters are replicated
on each GPU, which handles a portion of the full batch. During the backward pass, gra-
dients from each node are averaged. Locally within each process, we tensorize the entire
computational pipeline so that the computation of local energies is fully GPU-supported.

5.4.1 Tensorized Computation of Local Energy

The form of the local energy has the property that it can easily be parallelized, which
becomes increasingly important with increasing molecular system size since the Hamiltonian
can potentially involve a large number of terms. We implemented an efficient tensor
representation of the second quantized spin Hamiltonian generated from chemical data,
which capitalizes on the fact that the matrix corresponding to an arbitrary product of
Pauli operators Pp is extremely sparse In particular, for each row index x ∈ {0, 1}n there
is exactly one column index xp ∈ {0, 1}n, for which the corresponding matrix entry
⟨x|Pp|xp⟩ is nonzero1. If we denote the subset of Pauli strings with nonzero coefficient by

1The formula for the associated matrix entry in terms of x is given in [28].
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S = {p ∈ {0, 1, 2, 3}n : αp ̸= 0}, then the local energy simplifies to

lθ(x) =
∑
p∈S

αp⟨x|Pp|xp⟩
f(xp, θ)

f(x, θ)
(5.17)

The goal is now to efficiently compute Eq. (5.17), in which the number of summands K =

|S| is very large. The idea, depicted in Fig. 5.1, is to extract the key information required
to perform the computation from the molecular Hamiltonian and store the information as
tensors that directly support GPU computation. To this end, we constructed a string parser
that computes an Operator Matrix along with coefficients. For Pauli string, we track the
indices of Pauli σ1, σ2, σ3 operators as tensors, which are later utilized to compute xp and
the corresponding matrix element ⟨x|Pp|xp⟩.

In practice, xp is computed by flipping the bits of x based corresponding to the locations
of σ1 and σ2 in Pp. To improve the efficiency, we collect the indices of σ1, σ2 operators prior
to the training and only keep a buffer of unique flippings and their corresponding number
of occurrences. This approach can effectively reduce the input size to the forward pass by
removing the repeated samples, which is particularly helpful for large-sized problems. The
matrix element ⟨x|Pp|xp⟩ admits the formula

⟨x|Pp|xp⟩ = x|σp1 ⊗ · · · ⊗ σpn|xp = (−i)r
∏

k:pk∈{2,3}

(−1)xk (5.18)

where r is the number of occurrences for the σ2 operator, i.e., r =
∑n

k=1⊮{pk=2}. Similar as
before, the indices of σ2, σ3 operators are collected prior to the training, and the product can
be calculated by the Hadamard product between the indices and x, followed by production
of all entries. Note that all computations in this subsection can be performed in parallel for
all terms with GPU.

5.4.2 Parallelization

In applications such as quantum chemistry, the Hamiltonian of even the smallest molecules
contain thousands of terms, which lead to severe OOM issues for the existing VMC platforms.
Our proposed pipeline tensorizes the information in the molecular Hamiltonian to maximize
memory efficiency. In addition, the computation of local energy is conducted term-wise
with no interaction between the terms, which motivates embarrassingly parallel algorithms
for Hamiltonians consisting of a large number of terms. We make a step toward addressing
the bottleneck by applying our sampling parallelization strategy to this problem, where we
use identical copies of the model across the computing units to generate only a few samples
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Figure 5.1: Local energy computational paradigm. The hamiltonian is parsed into an operator matrix,
which gives indices and occurrences involved in the computation of Eq. 5.18, in the form of matrices.
This formulation provides significant computational speed-up for molecular Hamiltonian with a huge
number of terms.

per unit and combine the independent samples from all these units to construct an accurate
expectation estimate. In addition, we remove the replicated configurations as described in
the previous section before the forward pass locally for each GPU to save more memory.

In more detail, recall that the energy expectation is approximated as the following double
sum

fθ|H|fθ
fθ|fθ

≈ 1

B

B∑
i=1

∑
p∈S

αp⟨xi|Pp|xpi ⟩
f(xpi , θ)

f(xi, θ)
. (5.19)

We distribute the BK summands in the above sum across L GPUs in order to perform
thhe forward and backward passes of the model with a mini-batch size of BK/L. Locally,
each GPU has access to to the necessary ingredients required to compute the corresponding
partial sums of size BK/L. We compute local gradients with forward and backward passes
within each GPU and update the model parameters with the averages of local gradients
obtained by averging over BK/L elements. In addition, we used gradient accumulation
[78] splitting the batch into several mini-batches before a single update to avoid potential
OOM issues for molecules with larger sizes.

5.5 Experiments

We now investigate the performance of our algorithm and the running time efficiency of the
proposed parallelization paradigm. We first demonstrate our main results by comparing our
algorithm with Hartree-Fock (HF) and CC with up to double excitations (CCSD) baselines,
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Name MF n N↑ +N↓ K HF Energy CCSD Ours FCI

Hydrogen H2 4 1+1=2 15 -1.06610864 -1.101150 -1.101150 -1.101150
Lithium Hydride LiH 12 2+2=4 631 -7.76736213 -7.784455 -7.784460 -7.784460
Water H2O 14 5+5=10 1390 -74.9644475 -75.015409 -75.015511 -75.015530
Methylene CH2 14 5+3=8 2058 -37.4846329 -37.504411 -37.504419 -37.504435
Beryllium Hydride BeH2 14 3+3=6 2074 -14.4432411 -14.472713 -14.472922 -14.472947
Ammonia NH3 16 5+5=10 4929 -55.4547926 -55.520931 -55.521037 -55.521150
Methane CH4 18 5+5=10 8480 -39.7265817 -39.806022 -39.806170 -39.806259
Diatomic Carbon C2 20 6+6=12 2239 -74.2483215 -74.484727 -74.486037 -74.496388
Fluorine F2 20 9+9=18 2951 -195.638041 -195.661086 -195.661067 -195.66108
Nitrogen N2 20 7+7=14 2239 -107.498967 -107.656080 -107.656763 -107.660206
Oxygen O2 20 9+7=16 2879 -147.631948 -147.747738 -147.749953 -147.750235
Lithium Fluoride LiF 20 6+6=12 5849 -105.113709 -105.159235 -105.165270 -105.166172
Hydrochloric Acid HCl 20 9+9=18 5851 -455.135968 -455.156189 -455.156189 -455.156189
Hydrogen Sulfide H2S 22 9+9=18 9558 -394.311379 -394.354556 -394.354592 -394.354623
Formaldehyde CH2O 24 8+8=16 20397 -112.354197 -112.498567 -112.500944 -112.501253
Phosphine PH3 24 9+9=18 24369 -338.634114 -338.698165 -338.698186 -338.698400
Lithium Chloride LiCL 28 10+10=20 24255 -460.827258 -460.847580 -460.848109 -460.849618
Methanol CH4O 28 9+9=18 52887 -113.547027 -113.665485 -113.665485 -113.666485
Lithium Oxide Li2O 30 7+7=14 20558 -87.7955672 -87.885514 -87.885637 -
Ethylene Oxide C2H4O 38 12+12=24 137218 -150.927608 -151.120474 -151.120486 -
Propene C3H6 42 12+12=24 161620 -115.657941 -115.885123 -115.886571 -
Acetic Acid C2H4O2 48 16+16=32 461313 -224.805400 -225.050896 -225.0429767 -
Sulfuric Acid H2O4S 62 25+25=50 1235816 -689.262656 -689.498410 -689.505237 -
Sodium Carbonate CNa2O3 76 26+26=52 1625991 -575.016102 -575.299810 -575.299820 -

Table 5.1: Best molecular ground-state energies obtained by different methods as described in the
main text over five trials. Molecules have been sorted according to the number of qubits used in the
Jordan-Wigner representation. In addition, the numbers (N↑, N↓) up- and down-spin electrons and
the number K of terms in the Hamiltonian are reported. Our method exhibits superior performance
in comparison with classical approximate methods such as Hartree-Fock and CCSD and come close
to the FCI ground truth, which is only available up to molecules of size 28 qubits.

where our performance is either on par or superior to the classical approximate methods
over a wide list of chemical molecules. Our performance is also close to the ground truth
FCI energies up to molecular systems with 28 qubits, where the results for larger molecules
become increasingly hard to obtain. We then perform ablation studies to examine our
algorithm over various aspects. First, we show that increasing batch size improves the
performance, at the cost of increased algorithmic complexity. On the other hand, our
parallelization strategy can effectively reduce the running time, achieving near-optimal weak
scaling. Our proposed sampling trick also improves the performance of our model by a
noticeable margin. At last, we show that our model architecture exhibits superior running
time efficiency compared against RBM [28] and NADE [8].
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5.5.1 Experimental Set-ups

Given a target molecule ID, we fetch its corresponding PubChem Compound Identifier (CID)

from the official PubChem website [139]. CID is recognized by PubChemPy, a software
that provides a way to interact with PubChem in Python, allowing depiction and retrieval
of chemical properties, such as the geometry of atoms, number of unpaired electrons, total
charge, etc. The mapping from second-quantized Hamiltonian to interacting spinning model
is done by transforming fermion operators into qubit operators with Jordan-Wigner [64]
using OpenFermion-Psi4 [85]. Note that these solvers can also be used to estimate the
ground state energies including Hartree-Fock, CC with up to double excitations (CCSD), and
FCI. The whole data processing pipeline is automatic without further human interference.

We train the model over 10K iterations with Adam optimizer [68] by default at a learning
rate of 1×10−3 with standard decay rates for the first- and second-moment estimates of
β1 = 0.9 and β2 = 0.99, respectively; no learning rate scheduler is applied. The batch size
for the number of unique samples is fixed to be 1024 throughout our experiments unless
specified otherwise. For scalability experiments, each GPU is distributed with a constant
mini-batch size mB, and the effective batch size is mB×L, where L is the total number
of GPUs available. All experiments in this work use a single set of hyperparameters and
identical training procedures, and the results are the best energies obtained across exactly 5
seeds. Throughout the experiments, the timing benchmarks are performed on Tesla V100-
SXM2-16GB and Intel(R) Xeon(R) CPU @ 2.30GHz processors on Google Cloud Platform
(GCP).

5.5.2 Performance Benchmark

We report the performance of our implementation over a wide variety of molecules in Table
5.1. The molecules are sorted according to the number of qubits in their Jordan-Wigner
representation. We consider Hartree-Fock (HF) and CCSD energies as classical baseline
approximate methods to compare against. The FCI ground truth energy is also provided for
smaller molecules for reference.

Our model exhibits consistently strong performance on all molecules considered. In
particular, the computed energies match the ground-truth FCI result closely on all molecules
with up to 20 electrons and 28 spin-orbitals and out-perform other approximate methods on
the majority of the molecules we considered. Notice that as the size of the molecule increases,
the number of terms in the electronic Hamiltonian formulation also grows quickly, which
leads to severe computational issues such as the running time and memory consumption. As
a result, our proposed algorithm is capable of scaling up to system size with 76 qubits of
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Figure 5.2: Left: The performance of our algorthm with increasing batch size for different molecules.
The Relative Performance score is obtained by normalizing the estimated energy with respec to
the corresponding FCI ground truth. Better performance is obtained by training with larger batch
sizes, and the improvements become substantial for larger molecules. Right: Demonstration of
near-optimal weak scaling obtained by running the algorithm on the C2 molecule for 103 iterations
with different batch sizes up to 4096 and reporting the time elapsed in seconds. Upon distributing
the batch over multiple GPUs, the running time is significantly reduced. In addition, the running
times for the training with a fixed batch size per GPU are close across different settings.

which the electronic Hamiltonian is consisted of 1.6 million terms, and achieves state-of-
the-art performance.

5.5.3 Ablation Studies

In this section, we perform ablation studies to test the effectiveness of the ingredients in
our contribution. We start by validating the fact that increasing batch size is capable of
improving the performance for larger scale problems, which justifies the motivation of
our parallelization scheme that enables large-batch training for large molecules. We also
examine our proposed reverse sampling trick by comparing the performance with different
sampling orders. Finally, we tried different model architectures under the same training
framework; our model achieves the overall best running time efficiency in comparison with
RBM [28] and NADE [8].

Parallelization. As discussed in Section 5.2, the total number of input samples for the
forward pass required to compute the local energy scales with the number of terms K in the
Hamiltonian and with the batch size B, which leads to a heavy computational bottleneck as
both of these factors increase. However, sufficiently large batch size is essential to guarantee
the performance of the algorithm for molecules of larger sizes. This claim is validated in
left panel of Figure 6.2, where we train our model with batches of varying size for various
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Molecule H2 H2O NH3 C2 N2 O2 HCL

Energy Ablation study on the sampling order

Forward -1.101150 -75.015449 -55.515394 -74.4849249 -107.634908 -147.723681 -454.927860
Reverse -1.101150 -75.015511 -55.521037 -74.4860377 -107.656763 -147.749953 -455.156189
Random -1.101150 -75.014553 -55.519741 -74.4851979 -107.606417 -147.732876 -455.012498

Running time (s) Running time for 30K iterations

NADE 303.76 1087.52 4474.94 4574.30 2959.28 2821.60 1593.21
MADE 282.64 838.60 3188.31 2922.25 2295.90 2122.21 1112.70

Hitting time (s) Hitting time to the CCSD performance

NADE 117.28 352.78 2007.14 1754.10 1029.64 824.37 489.88
MADE 100.14 364.32 782.46 827.41 986.27 648.27 186.38

Table 5.2: Ablation study on reverse sampling and time efficiency tests over different architectures.

molecules. Since the ground state energies for different molecules differ from each other,
we report the performance relative the the FCI ground truth.

To examine the effectiveness of our parallelization scheme, in the right panel of Fig-
ure 6.2 we illustrate the running time as a function of batch size for C2 molecule using 103

iterations. We observe that the running time scales inversely with respect to the number of
GPUs. In particular, doubling the number of GPUs roughly corresponds to half the time
usage. We conducted additional experiments by saturating the memory on each GPU and
observe that the running time for different numbers of GPUs remains constant, indicating
that our approach achieves near-optimal weak scaling.

Reverse Order Sampling. We proposed to perform autoregressive sampling from a reversed
order to improve the training. To examine the effectiveness of this approach as well as the
impact of the sampling order on the quantum chemistry problems in general, we perform
ablation studies on the sampling order. In Table 5.2, we employ three different sampling
orders: forward sampling from 1 to n, reverse sampling from n to 1, and random sampling
by any pre-determined order between 1 to n. The results illustrate that reverse sampling
indeed improves the performance effectively as it achieves the best results consistently
across the list of molecules.

Model Architecture. Our model architecture offers significant parllelization advantages
compared to existing architectures based on RBM and NADE. Despite the sequential
nature of both MCMC and autoregreesive sampling, the latter can be executed on GPUs
in a straightforward fashion and moreover exhibits superior running time efficiency. In
addition, the distribution of the MCMC samples only converges to the distribution of
interest asymptotically, whereas autoregressive sampling yields exact samples under a
known number of iterations. NADE [75] requires n forward passes through the network to

62



F2 HCL LiH H2O CH2 O2 BeH2 H2S NH3 N2 CH4 C2 LiF PH3 LiCL Li2O
0.99980

0.99985

0.99990

0.99995

1.00000

Performance Distribution over Trials

Figure 5.3: We report our performance on different molecules for 5 trials in the form of a box plot.
For illustration purposes, we divide the results for all molecules by the corresponding FCI ground
truths, so that the reported value is normalized with a maximum value of 1. In addition, we directly
cite the numbers of the state-of-the-art and mark them in the form of red dots in the figure for
comparison purposes. We notice that for certain molecules, the performance of our method fluctuates
due to different random seeds. Nevertheless, competitive results can be obtained after sufficient
number of trials.

evaluate the probability, with n submodules for each entry. The main disadvantage of NADE
is its sequential nature in its forward pass, which contributes to running time as the input
dimension grows. In addition, computation with NADE is slower in practice compared to
MADE even in low dimension, especially for model of high depth, due to its multi-module
architectural design. In Table 5.2, we directly compare the time taken for NADE and MADE
to run for 3× 104 iterations. In addition, we measure the time taken for each architecture to
reach the performance of CCSD for each molecule. We did not include the results for RBM
for two reasons. First, the actual running times of RBM for 30K iterations are exceedingly
large, e.g., about four hours for H2 molecule, therefore the direct comparison results against
the other two architectures have no practical interest. Second, the performance of RBM is
usually inferior to CCSD, so the hitting time is not available. On the other hand, MADE
exihibits a significant computational advantage compared to NADE in both measures. We
also directly cite the numbers from the Table 1 in [8] and compare the results with ours in
Figure 5.3 for a sanity check.

5.6 Conclusion

We proposed a scalable parallelization strategy to improve the VMC algorithm in the
application of ab-initio quantum chemistry. Our local energy parallelism enables the
optimization for Hamiltonians of more complex molecules and our autoregressive sampling
techniques out-perform the CCSD baseline and exhibits an advantage against other neural-
network based algorithms in terms of running time efficiency and scalability. We further
improve the performance of our model through the sampling order of the state entries to
match the entanglement hierarchy among the molecule qubits. Our algorithm effectively

63



works for molecules up to 76 qubits with millions of terms in its electric Hamiltonian.
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Chapter 6

Application: Financial Derivative Pricing

The field of stochastic variational algorithms has undergone dramatic recent developments
based on two relatively recent, albeit independent, developments: (i) the availability of
near-term quantum computers [102] and (ii) the existence of scalable stochastic algorithms
for training deep neural networks. The former development has motivated a new research
direction called variational quantum algorithms (VQAs) [27], in which the stochastic varia-
tional character of the algorithms render them suitable for noisy intermediate-scale quantum
computers [102]. The latter holds promise to accelerate a host of scientific computing
problems including general-purpose solvers of partial differential equations (PDEs) using
physics-informed neural-networks (PINNs) [104] and has already made substantial headway
in solving the time-(in)dependent Schrödinger equation in high dimensions using variational
quantum Monte Carlo (VMC) with neural-network quantum states [24]. It is noteworthy
that there exist many shared parallels between the fields of VQAs, VMC [127, 129] and
PINNs. In particular, both VMC and VQAs hinge on the concept of adaptive stochastic
estimation of the time-independent and time-dependent variational principles originally due
to Rayleigh-Ritz and McLachlan [87], respectively. VQAs and VMC differ essentially in
the choice of parametrized quantum state and the associated adaptive sampling strategy used
to estimate quantum expectation values. PINNs can be viewed as an alternative approach
to McLachlan’s variational principle. They gained significant traction outside the quantum
physics literature and have been advocated for solving general PDEs that appear in other
areas of science and engineering. This approach involves solving a non-convex optimization
problem for the PDE residual in order to determine the space-time development of the state
variable. A large number of variants of this proposal have been subsequently put forward
targeting PDEs either in many spatial dimensions (e.g., [123, 138]) or parametric PDEs
in low dimensions (e.g., [77]). Deep backward stochastic differential equation methods
[56, 57, 12, 62] are another class of deep learning approaches that have been applied to
parabolic PDEs that arise in mathematical finance.
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In this section, we introduce a generalization of McLachlan’s variational principle
applicable to a wide variety of time-dependent PDEs and propose a variational quantum
Monte Carlo (VMC) stochastic approximate solution method utilizing autoregressive neural-
network quantum states. A closely related algorithm has been recently introduced in the
VQA literature [38, 4], which was motivated by the problem of solving linear PDEs using
digital quantum computers. Ref. [4] argued for an approximate solution concept, with respect
to which exponential quantum speedup could be achieved for state evolution, which however
is overwhelmed by auxiliary costs of state preparation and extraction of properties of the state
(see [4, Section III.C] for details). These complications of read-out and state preparation are
not relevant to the VMC-based solver, however, since the VMC computing model permits
efficient queries to arbitrary probability amplitudes. Interestingly, our generalization of
McLachlan’s variational principle is closely related to the neural Galerkin method recently
put forward in [20], which also introduced a different neural-network-based stochastic
solution method. One small difference compared to [20] is that we choose to work on
a predefined mesh, which provides a simple method to implement non-trivial boundary
conditions necessary for financial applications. The use of a mesh is not mandatory, however,
and this section paves the way toward a mesh-free generalization. Indeed, in the final stages
of preparation of this article, Ref. [107] appeared, which proposes a mesh-free flow-based
solution of probabilistic PDEs such as the Fokker-Planck equation. Unlike [107], however,
our approach does not require that the state variable of the underlying PDE corresponds to a
probability density.

The speedup obtainable by the approach advocated here has practical applications in
overcoming the curse-of-dimensionality in high-dimensional PDEs, particularly in situations
where fine-grained information about the state variable is required, such as gradients with
respect to the independent variables. One such situation is quantum many-body physics,
where kinetic energy observables depend on second-order spatial derivatives. Another
example is the pricing and hedging of contingent claims in multi-asset financial markets.
The approach is applicable to general time-dependent PDEs expressible in first-order form,
although we only consider the inhomogeneous linear case in the numerical experiments.
Specifically, we chose to focus on the multi-asset Black-Scholes PDE for pricing European
contingent claims because of its well-known relation with the time-dependent Schrödinger
equation (TDSE) as well as its importance in computational finance. This work opens the
door to free-boundary problems necessary for pricing American contingent claims.

The organization of the section is as follows: In section 6.1 we generalize the McLachlan
variational principle to general time-dependent PDEs in a model-agnostic manner, which is
applicable in the purely classical or quantum setting. In section 6.2 we describe the modeling
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assumptions involved in the passage from a time-dependent PDE to an neural quantum
state-based solution of McLachlan’s variational principle. The remainder of the section is
dedicated to numerical experiments, focusing on the problem of financial derivative pricing,
which suffers from a curse-of-dimensionality. Section 6.3 in particular provides numerical
confirmation in the case of correlated diffusions, and section 6.4 describes the application of
these results to option pricing in the Black-Scholes pricing framework.

6.1 Theory

6.1.1 Generalities of McLachlan’s variational principle

McLachlan’s variational principle [87] is an example of a time-dependent variational prin-
ciple (TDVP) that approximates the solution of the TDSE by evolution within a space of
parametrized trial functions. TDVPs for the TDSE have been devised for tensor network
states [52], neural-network quantum states (NQS) [24] and parametrized quantum circuits
[127, 7]. Ref. [129] studied TDVPs through the lens of information geometry providing a
unified perspective applicable to variational quantum algorithms (VQAs) and variational
quantum Monte Carlo with normalized neural-network quantum states. In the following
section, we further generalize TDVPs to include general time-dependent PDEs and es-
tablish additional connections with the VQA and numerical analysis literature. Given a
time-dependent PDE for the state variable u(t, x) ∈ C with (t, x) ∈ [0, T ] × Ω, together
with a choice of parametrized functions of the spatial variable {uθ : Ω −→ C | θ ∈ Rp},
the output of a TDVP is parametrized curve γ : [0, T ] −→ Rp in the space of variational
parameters such that uγ(t) optimally describes u(t, ·) in some distance metric dist(·, ·) for
all t ∈ [0, T ]. Consider the initial value problem for a general time-dependent PDE of the
form,

∂tu(t, x) = F(t, x, u) (6.1)

u(0, x) = u0 ∈ L2(Ω;C) , (6.2)

with prescribed boundary conditions on ∂Ω. In order to simplify exposition, in this section
we avoid complications of boundary conditions by assuming either Ω = Rd with suitable
decay at infinity or Ω = Td. In practice we replace the spatial domain by a mesh Ω̂ ⊂
Ω, thereby approximating square-integrable functions by square summable vectors. The
imposition of boundary conditions on the spatial mesh is then achieved via the use of source
functions. Let Φt

s denote the time evolution map for state variable such that Φt
u ◦ Φu

s = Φt
s
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and in particular u(t, ·) = Φt
0(u0). Given an initial parameter vector θ0 ∈ Rp and a step size

δt > 0, define a sequence of parameter vectors (θk)k∈N by the following iteration

θk+1 := argmin
θ∈Rp

[
dist

(
Φ

(k+1)δt
kδt (uθk), uθ

)]
. (6.3)

In quantum physics applications, a suitable distance metric is the Fubini-Study metric, as
previously argued both in VMC [24, 129] and in VQA [127, 7] literature. In this work we
choose dist(·, ·) to be the Euclidean norm. Rather than solving the discrete-time dynamical
system (6.3) directly, we consider the limit of infinitesimal step size δt −→ 0 in which
it reduces to the following system of ordinary differential equations (ODEs) with initial
condition γ(0) = θ0:

M(γ(t)) γ′(t) = V (t, γ(t)) (6.4)

where

Mij(θ) := Re

[〈
∂uθ
∂θi

∣∣∣∣∂uθ∂θj

〉]
, Vi(t, θ) := Re

[〈
∂uθ
∂θi

∣∣∣∣F(t, uθ)〉] (6.5)

and where ⟨·|·⟩, ∥ · ∥2 denote the standard inner product and the induced norm for L2(Ω,C),
respectively. Although the matrix Mij is necessarily positive semi-definite, it may be
degenerate, reflecting the possibility of multiple minima in the optimization problem (6.3).
Thus, regularization techniques are generally required in order to obtain a well-posed system
of ODEs.

6.1.2 Derivation of evolution equations

Assume that the time evolution map and the variational trial function admit Taylor expansions
of the form

Φt+δt
t

(
u
)
= u+ F

(
t, u

)
δt+O(δt2) , (6.6)

uθ+δθ = uθ +

p∑
i=1

∂uθ
∂θi

δθi +O(δθ2) . (6.7)
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Then

∥∥Φt+δt
t (uθ)− uθ+δθ

∥∥2

2
(6.8)

=

p∑
i,j=1

〈
∂uθ
∂θi

∣∣∣∣∂uθ∂θj

〉
δθiδθj −

p∑
i=1

[〈
F(t, uθ)

∣∣∣∣∂uθ∂θi

〉
+

〈
∂uθ
∂θi

∣∣∣∣F(t, uθ)〉] δt δθi + · · ·
=

p∑
i,j=1

1

2

[〈
∂uθ
∂θi

∣∣∣∣∂uθ∂θj

〉
+

〈
∂uθ
∂θj

∣∣∣∣∂uθ∂θi

〉]
δθiδθj

−
p∑
i=1

[〈
F(t, uθ)

∣∣∣∣∂uθ∂θi

〉
+

〈
∂uθ
∂θi

∣∣∣∣F(t, uθ)〉] δt δθi + · · ·
=

p∑
i,j=1

Mij(θ)δθiδθj − 2δt

p∑
i=1

δθiVi(t, θ) + · · · (6.9)

where in the last line we used the conjugate-symmetry of ⟨·|·⟩ and we have neglected
δθ-independent terms and terms higher than quadratic order in the multi-variable Taylor
expansion in δθ and δt. The first-order optimality condition 0 = ∂

∂δθi

∥∥Φt+δt
t (uθ)− uθ+δθ

∥∥2

2
,

gives, at lowest order in δθ and δt,

0 = 2

p∑
j=1

Mij(θ)δθj − 2Vi(t, θ)δt+ · · · (6.10)

and thus taking the limit δt −→ 0 gives the result.

6.1.3 Matrix representation of L

In d spatial dimensions and multi-index i = {i1, i2, . . . , id}, let i ± ek = {i1, i2, . . . , ik ±
1, . . . , id} and i±ek±ek′ = {i1, i2, . . . , ik±1, . . . , ik′±1, . . . , id}. Notice we do not allow
+1 if ik = n

d
or −1 if ik = 1. Then the elements of the matrix is given by:

[L̂]i,j =



−d
∆2 , j = i,

1
2∆2 , j = i± ek,

D
4∆2 , j = i± ek ± ek′ ,

−D
4∆2 , j = i± ek ∓ ek′ ,

0, otherwise.

(6.11)
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6.1.4 Analogy with finite element approximations

Before discussing our autoregressive neural-network quantum state implementation, it is
useful to orient within scientific computing literature by showing that the formalism shares
close parallels with the classic finite element method applied to the linear inhomogeneous
case F(t, x, u) = Lu(t, x) + f(t, x). Given a set of real basis functions {φi}mi=1, define the
variational family consisting of a weighted superposition,

uθ(x) =
m∑
i=1

θiφi(x) , (6.12)

where θ ∈ Rm is assumed here. Substituting the above into (6.4) one finds the following
ODE determining the dynamics of the weights,

Mγ′(t) = −Kγ(t) + f(t), Mij := ⟨φi|φj⟩, Kij := −⟨φi|Luj⟩, fi(t) := ⟨φi|f(t)⟩,
(6.13)

which can be recognized as the standard discrete linear systems arising in finite element
methods, with M and K the mass- and stiffness-matrix, respectively. Recall that since
finite element techniques use non-overlapping elements to discretize the spatial domain
and employ basis functions with localized support, the problem size scales as m ∼ pd in d
spatial dimensions, where p is the average number of elements per dimension. Thus, the
curse-of-dimensionality arises from need to perform increasingly high-dimensional, albeit
sparse, linear algebra in order to solve the linear system (6.13). The approach advocated in
the following section, in contrast, overcomes the curse-of-dimensionality by representing
the solution vector in terms of an autoregressive neural-network quantum state.

6.1.5 Neural-network quantum state implementation

In order to overcome the curse of dimensionality with respect to the spatial dimension
d, which is inherent in the utilization of a d-dimensional mesh Ω̂ ⊂ Ω ⊆ Rd, we utilize
stochastic estimation combined with autoregressive assumptions. In particular, we take
inspiration from both the variational quantum algorithm introduced in [4] as well variational
quantum Monte Carlo using autoregressive NQS [120, 60], by parametrizing the solution of
the PDE as uθ = αψβ where ψβ is a unit-normalized NQS with variational parameters β
and α > 0 is a scale factor, whose time-dependence must be determined from the evolution
equations along with β. The variational parameters thus consist of the augmented parameter
vector θ := (logα, β) ∈ Rp+1 where β ∈ Rp is an unconstrained vector representing the
weights and biases of the neural network. Plugging the rescaled ansatz into the evolution
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equations (6.4), one obtains an augmented system of first-order, non-linear ordinary differ-
ential equations determining the time-dependence of the augmented vector θ. The overlaps
defining M and V are estimated using the VMC importance sampling technique, where the
probability density is chosen to be the modulus-squared wavefunction |ψβ(x)|2.

6.2 Numerical Implementation

In this section, we provide detailed modeling assumptions required to implement the al-
gorithm. After describing a mesh-based encoding of the state variable into a multi-qubit
state, we then introduce the model architecture and computation mechanisms including the
forward pass and the autoregressive sampling process. Pre-training is necessary in order
to satisfy the initial condition of the PDE, and we adopt the standard approach [123] by
updating the model iteratively on batches of randomly selected mesh points. Finally, we
describe the stochastic estimation procedure used to evolve the variational trial state using
McLachlan’s variational principle.

6.2.1 Conversion to meshed form

Rather than working in the continuum, we assume spatial discretization of the function
u(t, ·) on a regular grid Ω̂ embedded in the d-dimensional domain Ω = [a1, b1]×...×[ad, bd]
with a total of 2n grid points. Without loss of generality, we assume Ω is a regular hypercube
satisfying |b1− a1| = ... = |bd− ad|, and that the mesh size along each axis is 2n/d. In order
to represent the state of the discretized field in terms of the state of an n-qubit system, we
assign each computational basis state |k1, . . . , kn⟩ ∈ C2n with (k1, . . . , kn) ∈ {0, 1}n to a
linear index defined by k =

∑n
i=1 ki2

i and then unravel the linear index to indices along
each of d axes yielding a d-tuple (k̄1, . . . , k̄d) ∈ {0, . . . , n/d− 1}d defined by

n∑
i=1

k̄i(2
n
d )i−1 = k. (6.14)

The mesh point xk ∈ Ω̂ corresponding to the linear index k ∈ {0, 1, ..., 2n − 1} is thus

xk = (a1 + k̄1∆x, ..., ad + k̄d∆x) (6.15)

where ∆x = |b1 − a1|/2
n
d . Henceforth, we do not distinguish the index k, the binary string

(k1, . . . , kn) and the corresponding coordinate xk ∈ Ω̂. The digitized representation of the
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state of the PDE at time t is thus the following unnormalized n-qubit state

|u(t)⟩ =
∑
k∈Ω̂

u(xk, t)|k1, . . . , kn⟩ (6.16)

and likewise the parametrized approximation |uθ⟩ of |u(t)⟩ is given by,

|uθ⟩ =
∑
k∈Ω̂

uθ(x
k)|k1, . . . , kn⟩ (6.17)

where uθ(·) is a function defined on Ω̂ ⊂ Ω.

6.2.2 Autoregressive assumption and sampling

In order to obtain an expressive family of trial functions uθ : Ω̂ −→ C which furthermore
admits an efficient stochastic estimation procedure, we express uθ as multiple of a unit-
normalized neural-network quantum state ψβ : Ω̂ −→ C with variational parameters
β ∈ Rp,

uθ(x
k) = αψβ(k1, . . . , kn) , ∥ψβ∥Ω̂ = 1 . (6.18)

A simple method to ensure unit-normalization and efficient sampling is to follow the work
of MADE [44] which exploited a masked version of a fully connected layer, where some
connections in the computational path are removed in order to satisfy the autoregressive
properties, In particular, if we assume a choice of variables such that the state variable is
strictly positive1 uθ(x) > 0, then a suitable choice of unit-normalized function is

ψβ(k1, . . . , kn) =
n∏
i=1

√
pβ,i(ki|ki−1, . . . , k1) , (6.19)

where pβ,i(·|ki−1, . . . , k1) is the parametrized conditional probability distribution for the ith
bit.

6.2.3 Pre-training

Before we perform the time evolution, initial variational parameters θ0 must be selected in
order to match the variational function uθ0(x) with the choice of initial condition u0(x) for
x ∈ Ω̂ in the spatial domain.

This can be achieved via optimization of the following objective function using stochastic

1This can be considered as a special case of the complex-valued case [120, 60].
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gradient descent,

J(α0, β0) =
∥∥α0|ψβ0⟩ − |u0⟩

∥∥2

Ω̂
. (6.20)

6.2.4 Evolution

In this section we discuss the details of the stochastic estimation of M and V necessary
to evolve the augmented parameter vector θ = (logα, β) ∈ Rp+1. For simplicity we only
consider the affine case

F(t, x, u) = Lu(t, x) + f(t, x) . (6.21)

Consider the decomposition,

M =

 M00 M0,1:p

M1:p,0 M1:p,1:p

 , V =

 V0

V1:p

 .
(6.22)

It is convenient to introduce the following helper functions. In particular, define the Born
probability distribution ρβ(x) ∈ [0,∞), the wavefunction score σβ(x) ∈ Cn and the local
energy lθ(t, x) ∈ C as follows,

ρβ(x) := |ψβ(x)|2 , σβ(x) :=
∇βψβ(x)

ψβ(x)
, lθ(t, x) :=

(Lψβ)(x)
ψβ(x)

+
f(t, x)

α
.

(6.23)
By straightforward calculus, we obtain

M00 = α2,M1:p,0 =M0,1:p = α2Re

[
E

x∼ρβ
σβ(x)

]
,M1:p,1:p = α2Re

[
E

x∼ρβ
σβ(x)σβ(x)

T

]
,

(6.24)
and

V0 = α2Re

[
E

x∼ρβ
lθ(t, x)

]
, V1:p = α2Re

[
E

x∼ρβ
σβ(x) lθ(t, x)

]
. (6.25)

The expectation values over x are approximated using Monte Carlo sampling. In practice,
the batch of randomly generated samples is represented in the form of a buffer B = {xi}Bi=1

that stores the unique samples in the batch and a counter C = {ci}Bi=1 that records the
number of occurrences of each of the corresponding samples. Expectation values are then

73



approximated by sums of the following form,

E
x∼ρβ

[g(x)] ≈ 1∑B
i=1 ci

B∑
i=1

cig(xi). (6.26)

Computation of per-sample gradient. The computation for both M and V requires direct
access to the per-sample gradients {∇βψβ(xi)}Bi=1, which is typically not directly accessible
during a traditional backward pass by some deep learning software. In order to avoid
inefficient forward and backward passes for each of the B samples, we utilize BackPack
which collects the quantities necessary to compute the individual gradients and reuses them
to compute the per-sample gradient without significant computational overhead.

Parallel extraction of matrix elements. Given a sample x ∈ Ω̂, corresponding to a
particular row-index of the operator L̂ ∈ C2n×2n , the calculation of the local energy lθ(t, x)
defined in (6.23) involves determining the nonzero entries of L̂ in that row. Fortunately, the
structure of the PDE problem ensures that the location and values of these entries can be
determined in O(poly(n)) time.

We exploit CPU parallelization to determine the nonzero row entries for each sample
in the batch. Note that the maximal number of nonzero entries per row is determined in
advance; e.g. 2n2 + 1 for diffusion operator with Dirichlet boundary conditions.

Boundary Conditions. Boundary conditions are implemented on the grid using an appro-
priate choice of source function. In the case of Dirichlet conditions, for example, we choose
the source function as follows

f(t, x) = u(t, x)1∂Ω(x) (6.27)

where 1∂Ω denotes the indicator function for the set ∂Ω. Parameter update. The network

can be trained by incrementing the parameters using a Euler scheme in the direction
δθ ∈ Rp+1 given by the solution of the following linear system

Mδθ = V δt, (6.28)

where M,V are computed as discussed before. In practice, M is usually ill-conditioned
due to the fact that it’s essentially a sum of B rank one matrices. To stabilize the inverse
operation, we consider the singular value decomposition M = UΣW T , and remove the
diagonal values of Σ smaller than a small threshold ϵ = 10−12 to obtain Σr of size r×r,
as well as Ur,Wr of size (p + 1)×r. The direction vector is therefore approximated by
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WrΣ
−1
r UT

r V δt.

6.3 Diffusion with Gaussian Initializations

In this section, we show various numerical experiments demonstrating the convergence
and run time analysis of our proposed approach. Here, we consider the d-dimensional
heat equation for which L = D∇ · ∇ in (6.21) (diffusion constant set to D = 0.1) with
either periodic or Dirichlet boundary conditions on ∂Ω. For benchmarking purposes, we
employ a finite difference method with the standard central difference scheme to discretize
L (formulas given in Section 6.1.3) and forward Euler for time-stepping.

6.3.1 Experimental setup

For initialization we chose a discrete isotropic Gaussian, expressed in terms of the modified
Bessel function Ix(t) of integer order x,

u0(x) =
d∏
i=1

e−tIxi(t) , (6.29)

where t > 0 is a parameter controlling the width of the Gaussian, and x ranges from 0 to
2n−1. Pre-training was performed using Adam optimizer [68] for 50k iterations with batch
size 128, β1 = 0.9, β2 = 0.999, and ϵ = 10−8. The learning rate was warm-started for the
first 1/10 total training iterations, then decayed by a factor of 10 at 3/7, 5/7 of the total
training iterations.

After completion of pre-training, the state was evolved for a total evolution time T = 1

using a step size of δt = 5×10−5 and a batch size of B = 1024 for Monte Carlo estimation
on each iteration. The time development of the state was compared to the result of Euler
time-stepping the initial condition (6.29) using the same step-size. Due to the exponential
scaling of the matrix L̂, we only establish this baseline for the number of qubits n ≤ 16. All
reported numerical results are averaged across exactly 5 seeds, each trained for 20k steps.

Table 6.1 reports the relative error between our method and forward Euler method over
20k iterations, for diffusion problem with Dirichlet boundary conditions. The relative error
of the obtained solution is computed by comparing the norm of the space-time history of the
variational state with the result of Euler development,

error :=
1

T

∑
t∈T̂

∥∥|u(t)⟩ − |uγ(t)⟩∥∥Ω̂∥∥|u(t)⟩∥∥
Ω̂

. (6.30)
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Table 6.1: Average relative error of our method in comparison with forward Euler method over
20k iterations. The proposed algorithm solution is compared with a Euler forward method for the
diffusion equation over 20k iterations. For forward Euler method, the time step is 5×10−5 with a total
time of 1. The relative error is computed as 1

T

∑T
t=1

∥u(t,x)−f(x;θt)∥
∥u(t,x)∥ .

Operator Boundary Condition n/d
# of Dimensions d

1 2 3 4

Diffusion Dirichlet 4 5.13×10−3 7.92×10−3 3.12×10−2 1.47×10−1

Diffusion Dirichlet 5 2.91×10−3 9.91×10−3 7.24×10−2 -

Table 6.2: Average running time over 2k iterations. The batch size used here is 500. Forward Euler
method suffers from the exponential complexity, whereas our method, despite having an overhead
running time, enjoys a polynomial scaling. Note that we cannot apply Euler for higher dimensions
due to the memory constraint.

Operator Method n/d
# of Dimensions d

1 2 3 4 5 6 7 8 9

Diffusion Euler 4 0.024 0.137 1.559 305.92 - - - - -
Diffusion Euler 5 0.031 0.225 68.827 - - - - - -

Diffusion Ours 4 29.52 55.76 138.88 230.02 360.80 518.00 792.63 1214.09 1812.94
Diffusion Ours 5 32.53 88.75 173.43 311.82 507.93 847.85 1355.16 2379.86 4123.61

In general, the overall solution obtained using our method matches well with that obtained
using forward Euler method. Their discrepancy increases as the dimensionality of the
problem increases; nonetheless, within a tolerable threshold (e.g., less than 10%). One
remedy is to simply increase the batch size, for example, we show in Section 6.3.4 that the
relative error improves from 15% to around 3% with a batch size that is ten times larger.

6.3.2 Running Time Analysis

Since we discretize the domain Ω using a grid of size |Ω̂| = 2n, the time complexity of
forward Euler method, expressed in terms of n is O(T×22n), where T is the number of
iterations. The proposed VMC algorithm, in contrast, scales as O(TB poly(n)), where B
is the batch size. In more detail, the forward pass scales as O(TBn2), and the sampling
is O(TBn3), due to the sequential nature of the auto-regressive sampling process. This
polynomial scaling comes at a price of the approximate nature of the time evolution step,
and the implicit access to entries of the state vector compared to the forward Euler method
which offers O(1) lookup to entries of the state.

In Table 6.2, we report the average running time of both forward Euler method and
our method for 2k iterations (one-tenth of the total running time). The batch size B of
our method is fixed to be 500. Note that we cannot apply Euler for higher dimensions
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Figure 6.1: Snapshots of the evolution obtained using our algorithm for diffusion equation with
Dirichlet and periodic boundary conditions and different choices of initialization.

due to the memory constraint. Although forward Euler method is effective for small-scale
problems, its complexity suffers from the exponential growth with respect to dimension
d. The computational cost of our method originates from four sources: sampling, forward
pass, per-sample gradient computation (backward pass), and extraction of matrix element
information. All these sources contribute to the overhead time that causes our method
to run slower in comparison with respect to forward Euler method for problems in lower
dimensions. However, as the dimensionality increases, the run time of our method grows
only at a polynomial rate. It can be seen from Table 6.2 that our method is already faster
than forward Euler for problem sizes characterized by n = 16 qubits.

6.3.3 Convergence Visualization

We provide snapshots of our method for 2D diffusion problems with periodic boundary
conditions over 20k iterations. We run our algorithm with five distinct initializations and
record the snapshot every 2k iterations. In particular we do not employ any regularization
techniques to enforce that the solution satisfies the boundary condition. It can be observed
in Figure 6.1 that our method successfully obeys the periodic boundary conditions.

6.3.4 Ablation Study on Batch Size

Recall that M and V are approximated with Monte Carlo sampling using batches of unique
samples. Intuitively, a larger batch size yields a better approximation to the exact expectation
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Figure 6.2: We report the running time and the average relative error with the forward Euler method
over various batch sizes, for qubit sizes n = d× n

d , where d is the dimensionality of the problem.
The running time grows with respect to the batch size and the problem size. On the other hand, the
performance is greatly improved when training with larger batch sizes.

value, thereby providing more accurate model updates. In this section, we study the effect
of batch size on the performance of our method. In the LHS of Figure 6.2, the running time
of our algorithm increases for both larger problem sizes and batch sizes. Note that the actual
running time does not grow linearly with respect to the batch size in the plot due to the cache
and parallelization. In the RHS of Figure 6.2, we report the average relative error between
the forward Euler method and the VMC method with various batch sizes. Given a fixed
problem size (e.g., 4 dimensions with 4 qubits per dimension), we observe a performance
improvement by increasing the batch size, which verifies our hypothesis that increasing the
batch size does effectively improve the performance. Given a fixed batch size, our method
performs worse as the dimensionality of the problem increases. This result implies that we
need a larger batch size to guarantee good performance for problems in higher dimensions.

6.4 Option Pricing

In this section, we explain how our results can be used to price options. We start with the
well-known Feynman-Kac representation theorem and then describe how the numerical
results obtained in Section 6.3 can be applied to the multi-dimensional Black-Scholes model.

6.4.1 The Feynmam-Kac representation theorem and option pricing

The Feynman-Kac stochastic representation formula links between a parabolic PDE and
stochastic differential equations. Namely, consider a PDE of the form:∂u

∂t
(t, x) + µ(t, x) · ∇xu(t, x) +

1
2
trace[σTHσ](t, x)− r(t, x)u(t, x) + f(t, x) = 0,

u(T, x) = Φ(x), (t, x) ∈ [0, T ]× Rd,
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where µ : [0, T ] × Rd → Rd, σ : [0, T ] × Rd → Rd×d, r, f : [0, T ] × Rd → R, and
Φ : Rd → R are given measurable functions and H stands for the Hessian matrix of u:

Hij =
∂2u

∂xi∂xj
.

Then, under a second order integrability condition, the solution to this equation takes the
form:

u(t, x) = E
[ ∫ T

t

e−
∫ τ
t r(s,Xs)dsf(τ,Xτ )dτ + e−

∫ T
t r(s,Xs)dsΦ(XT )

∣∣∣Xt = x
]
, (6.31)

where (Xt)t∈[0,T ] is the solution to the following stochastic differential equation with
(Wt)t∈[0,T ] being a d-dimensional standard Wiener process:dXt = µ(t,Xt)dt+ σ(t,Xt)dWt,

Xt = x.

One of the many applications of this representation is in derivative pricing. Consider
multi-asset with price dynamics (St)t∈[0,T ] given by the multi-dimension geometric form:dSt = Diag[St]µ(t, St)dt+ Diag[St]σ(t, St)dWt,

S0 = s0 > 0,

where Diag[x] is a diagonal matrix with the vector x on the diagonal, W is d-dimensional
standard Wiener process, µ : [0, T ] × [0,∞) → Rd and σ : [0, T ] × [0,∞) → Rd×d are
measurable and satisfy basic conditions that lead to a unique strong solution to the stochastic
differential equation above. Consider also the interest rate r : [0, T ] × [0,∞) → R. A
risk-neutral measure is a probability measure Q, such that the discounted price of the asset
(e−

∫ t
0 r(s,Xs)dsXt)t∈[0,T ] is a martingale under Q. The dynamics of the multi-asset under Q

are given by: dSt = r(t, St)Stdt+ Diag[St]σ(t, St)dW
Q
t ,

S0 = s0 > 0,

where WQ
· := W· −

∫ ·
0
(µ(t, St)− r(t, St))dt is a standard Wiener process under Q. Then,

the price of a simple contingent claim with terminal payment Φ(ST ) at any given time
t ∈ [0, T ], when the multi-asset prices are St = s is given by u(t, s), which satisfies the
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PDE: ∂u
∂t
(t, s) + r(t, s)s · ∇xu(t, s) +

1
2
trace[σTHσ](t, s)− r(t, s)u(t, s) = 0,

u(T, s) = Φ(s), (t, s) ∈ [0, T ]× (0,∞)d,

and can be expressed as the conditional Q-expectation as follows:

u(t, s) = EQ
[
e−

∫ T
t r(u,Su)duΦ(ST )

∣∣∣St = s
]
.

The most celebrated example is the Black-Scholes model, where the dynamics of the
underlying asset follows a geometric Brownian motion and the interest rate is fixed. In
dimension 1, the associated PDE admits an explicit solution, which is known as the Black-

Scholes formula. Aside from the fact that the solution of the PDE is the contingent claim
price, its partial derivative ∂u/∂x is used in order to construct a delta-hedging portfolio.
Furthermore, its partial derivatives, known as the Greeks are used to construct a robust
portfolio against small changes, when moving from the continuous- to the discrete-time
world.

6.4.2 Option pricing in Black-Scholes model

We now demonstrate how our algorithm applied to the multidimensional heat equation can
be used to price options. For this we consider the Black-Scholes model that consists of a
risk-free asset with a constant risk-free return r > 0 and d risky assets whose dynamics are
given by

dSit = µiS
i
tdt+ σiS

i
tdW

i
t , i = 1, . . . , d.

The parameters µi and σi, i = 1, . . . , d are constants, and {W i}di=1 are Wiener processes
with quadratic covariation [W i

t ,W
j
t ] = ρijt.

Consider further a European option, whose payment at (the predetermined) expiry time
T > 0 is Ψ(S1

T , . . . , S
d
T ), for some measurable function Ψ. Let V be the conditional price

of this option, i.e., V (t, x1, . . . , xd) is the price for the option at time t, given that Sit = xi

for i = 1, . . . , d. It is well-known that V satisfies the following Black-Scholes PDE:∂V
∂t

+
∑d

i=1 rxi
∂V
∂xi

+ 1
2

∑d
i=1 σ

2
i x

2
i
∂2V
∂x2i

+
∑

i ̸=j
1
2
ρijσiσjxixj

∂2V
∂xi∂xj

− rV = 0,

V (T, x1, . . . , xd) = Ψ(x1, . . . , xd). (t, x) ∈ [0, T ]× (0,∞)d

Following Guillaume [50], we may reduce this n-dimensional equation to the n-dimensional
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Figure 6.3: Ablation study on volatility σ, interest rate r, strike price K and initial price. We fix a
base setting with hyper-parameters σ = 0.3, r = 0.03,K = 1.25, and run our algorithm on each
setting with only one hyper-parameter deviated from the base setting. In addition, we plot the wave
function under the base setting. We compare our solution at the execution time T versus forward
Euler method and the corresponding analytic ground truth. Our method is robust under all settings
and achieves satisfactory performance.

standard heat equation. To this end, set

u(t, y1, . . . , yn) = V (T − t, eσ1y1 , . . . , eσnyn)e
∑n

i=1 −aiσiyi−bt,

where ai and b satisfy the following system of equations:

d∑
i=1

ai

(
r − σ2

i

2

)
+

1

2

d∑
i=1

a2iσ
2
i +

∑
i ̸=j

1

2
ρijσiσjaiaj − r − b = 0,

r − σ2
i

2
+ aiσ

2
i +

∑
j ̸=i

ρijσiσjaj = 0, i = 1, . . . , d.

Then, u satisfies the following heat equation∂u
∂t

= 1
2

∑d
i=1

∂2u
∂y2i

+
∑

i ̸=j
1
2
ρij

∂2u
∂yi∂yj

, (t, y) ∈ [0, T ]× Rd,

u(0) = Ψ(eσ1y1 , . . . , eσdyd)e−
∑
aiσiyi .

with u(0) = Ψ(eσ1y1 , . . . , eσdyd)e−
∑
aiσiyi .

6.4.3 Numerical Experiments

In this section, we apply our algorithm to option pricing in Black-Scholes model across
different settings using the numerical solution to the heat equation and the translation from
the heat equation to the Black-Scholes equation from the previous subsection. We test the
performance of our algorithm as well as show a calculation of the option price for higher
dimensions.

In Figure 6.3 and Table 6.4 we provide examples to test the performance of our algorithm.

81



Option Type Payoff Function at expiry Ψ(s)

1D Call max(s−K, 0)

Basket Call max(
∑

wisi −K, 0)

Basket Put max(K −
∑

wisi, 0)

Rainbow Max Call max(max si −K, 0)

2D Spread Put max(K − (s1 − s2), 0)

Table 6.3: Payoff functions for our experiments.
We consider basket call and put, Rainbow max call,
and spread put options.
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Figure 6.4: Ablation study on dimensionality,
following the base settings in Figure 6.3, σ =
0.3, r = 0.03,K = 1.25.

In both we include 1D examples for the price of a European call option, whose value at the
expiry time T is V (T, s) = Ψ(s) = max{s−K, 0}, where K is a predetermined constant,
called the strike price. We vary the volatility σ, strike price K, interest rate r, expiry time
T , and initial price of the stock S. In Figure 6.3, we compare against the forward Euler
method and the ground truth Black-Scholes formula, which admits an analytical solution in
1D. Specifically, it is given by

V (t, s) = N(d+)s−N(d−)Ke
−r(T−t), (6.32)

where N is the cumulative distribution function of the standard normal distribution and

d± =
ln s

K
+ (r ± σ2

2
)(T − t)

σ
√
T − t

.

Our method is robust under all settings and achieves satisfactory performance. In Table
6.4 we compare our accuracy against the forward Euler method, where we use the same
analytical solution. Although the performance of our algorithm is inferior to that of Euler, it
still achieves good accuracy and the margin can be treated as a price to pay for reducing
the exponential scaling down to a polynomial one. Our approach is valuable for high
dimensions, where other methods, such as the forward Euler method, suffer from the curse
of dimensionality. Table 6.4 also includes 2D examples with four different options: Basket

European call and put, rainbow max European call, and spread European put, whose payoffs
are listed in Table 6.3. Note that as we don’t have an analytical solution for this case, the
relative errors with respect to Euler solutions are reported instead. In Figure 6.4, we provide
a graph for the price of a basket European call option with up to five underlying stocks as a
function of the strike price K. As expected the prices are convex with K.

Note that the Black-Scholes PDE lives on the positive orthant of Rd while its translation
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Table 6.4: List of experiments for the application of our algorithm to Black–Scholes equation. The
hyper-parameters for the experiments are listed. We compute the relative error of our method (Ours)
at expiration time T with analytical ground truth in the 1D case and Euler solution in the 2D case,
respectively. For 1D, we also report the relative error of the forward Euler method with respect to the
analytical ground truth (Euler) for comparison. Our algorithm achieves robust performance across
various settings.

Problem Initial & Boundary Cond. d D T r K σ Ours Euler

Black–Scholes 1D 1D CALL 1 - 1 0.03 1.25 0.3 0.011781 0.002494

Black–Scholes 1D 1D CALL 1 - 1 0.03 1.25 0.1 0.032792 0.000930
Black–Scholes 1D 1D CALL 1 - 1 0.03 1.25 0.2 0.017272 0.002389
Black–Scholes 1D 1D CALL 1 - 1 0.03 1.25 0.4 0.011560 0.001392

Black–Scholes 1D 1D CALL 1 - 1 0.03 1.05 0.3 0.086764 0.001750
Black–Scholes 1D 1D CALL 1 - 1 0.03 1.15 0.3 0.013365 0.002521
Black–Scholes 1D 1D CALL 1 - 1 0.03 1.35 0.3 0.012260 0.000328
Black–Scholes 1D 1D CALL 1 - 1 0.03 1.45 0.3 0.012626 0.000845

Black–Scholes 1D 1D CALL 1 - 1 0.01 1.25 0.3 0.010436 0.002538
Black–Scholes 1D 1D CALL 1 - 1 0.02 1.25 0.3 0.010599 0.002515
Black–Scholes 1D 1D CALL 1 - 1 0.04 1.25 0.3 0.014192 0.002477
Black–Scholes 1D 1D CALL 1 - 1 0.05 1.25 0.3 0.017423 0.002463

Black–Scholes 1D 1D CALL 1 - 0.5 0.03 1.25 0.3 0.022481 0.018385
Black–Scholes 1D 1D CALL 1 - 1.5 0.03 1.25 0.3 0.012049 0.014881

Black–Scholes 2D 2D BASKET CALL 2 0.1 1 0.03 1.25 0.3 0.053477 -
Black–Scholes 2D 2D BASKET PUT 2 0.1 1 0.03 1.25 0.3 0.043926 -
Black–Scholes 2D 2D RAINBOW MAX CALL 2 0.1 1 0.03 1.25 0.3 0.057949 -
Black–Scholes 2D 2D SPREAD PUT 2 0.1 1 0.03 1.25 0.3 0.031574 -

to the heat equation lives on Rd. Thereby, all numerical algorithms, including ours, require
artificial truncation of the domain. We choose the hypercube domain to be [sl, su]

d =

[Ke−3σi
√
T , Ke3σi

√
T ]d. This choice implies that sl is small (close to 0+) and su is large

(close +∞). On the faces of the hypercube, we use the time-discounted payoff functions, as
they are reasonably accurate approximations of boundary values of the options considered.
Given the number of qubits n and the hypercube input domain for the heat equation [Ll, Lu]

d,
which is approximately [−5, 5]d, the mesh size of each axis is (Lu − Ll)/(2n/d + 1).

6.5 Conclusions

In summary, we introduced a generalization of McLachlan’s variational principle applicable
to generic time-dependent PDEs as well as a quantum-inspired training algorithm based on
neural-network quantum states which can be used to perform approximate time evolution
in high dimensions, overcoming the curse-of-dimensionality. Although we focused on a
mesh-based formulation in which the quantum state vector is represented by n qubits, it
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is clear that the mesh is not mandated by the formulation and it would be very interesting
to pursue meshless variants based on continuous-variable neural-network quantum states
including normalizing flows [129] and to address non-trivial boundary conditions. There
exist a number of directions in which the results in this section can be potentially improved.
Since we only considered a first-order Euler approximation of the ODE (6.4) it would be
natural to incorporate high-order time stepping schemes (e.g., Runge-Kutte methods). As an
alternative, it would be interesting to pursue a direct solution of the discrete-time dynamical
system (6.3) which has proven successful in both the VMC [51] and VQA [7] literature.
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Chapter 7

Multi-Fidelity Active Learning in High
Dimensional Space

Many tasks in scientific and engineering applications require a large number of labeled
instances, which are very difficult, time-consuming, or expensive to obtain. The labeling
source can be complex black-box simulation [21, 89] or sophisticated human expert [153].
To make the problem tractable, practitioners often replace the source with a surrogate model
that generates low-cost approximations. In this chapter, we investigate the approach that
constructs the surrogate through data-fitting [103]. Our work is closely related to Surrogate-
Based Optimization (SBO) [39], where the objective is to locate the global maximum of
an underlying expensive-to-evaluate function. We are interested in estimating the decision
boundary of an unknown classifier, which has applications arising in several domains, such
as Reliability Analysis [10, 14], Aeroelastic modeling [32, 84], Classification-Based Black-
Box Optimization [143, 146], Computerized electrocardiogram (ECG) interpretation [58],
skin cancer classification [34], drug classification [110], etc.

A large dataset is required to train high-performance surrogates, however, generating
even a small training set from the source might be extremely expensive [82]. Active
learning [116] attempts to overcome the bottleneck by only selecting and labeling the most
informative instances through some information measure, i.e., the acquisition function. The
algorithm aims to achieve high accuracy using as few labeled instances as possible, thereby
minimizing the total data generation cost.

In many applications, besides the expensive-to-evaluate high-fidelity (HF) source, we
also have access to cheaper approximations evaluated by different means. For example,
medical image classification data is expensive because it requires expert knowledge from
physicians; however, cheaper but occasionally incorrect labels can also be obtained from
medical residents. In dynamical-system simulation, examples of low-fidelity (LF) sources
include inexact solutions arising from the early termination of an iterative method, numerical
simulations characterized by simplifying physical assumptions, or a coarse discretization.
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(a) Ground Truth (b) RD sampling

(c) AL sampling (d) MFAL sampling

Figure 7.1: Visualizations of surrogates trained with (b) Latin Hypercube random (RD) sampling,
(c) Active Learning (AL) sampling, and (d) our Multi-Fidelity Active Learning (MFAL) sampling.
The ground truth is given in (a), which is a 32 × 32 contour plot of three classes, indicated by
red, blue, and green, where each point in the plot is a classification result from 2D Cahn-Hilliard
simulation parametrized by a temperature coefficient (horizontal axis) and a diffusion coefficient
(vertical axis). The experiments are done in the low-data regime: RD and AL make 25 HF queries,
whereas MFAL makes 20 HF queries and 40 LF queries, represented by triangles and diamonds
respectively. Although LF queries sometimes provide inaccurate information, our algorithm can
leverage them effectively and improve the surrogate’s performance significantly with fewer HF
queries. See Section 7.3.2 for more details.

We refer to these as different information sources (ISs), where each IS may have its advantage
in estimating the true value of a quantity of interest, at a given cost. Multiple ISs provide
extra flexibility to establish the optimal cost-efficient strategy for data sampling and labeling.

One branch of the multi-fidelity modeling literature focuses on predicting statistics of the
information sources using sampling approaches, where the expensive multi-fidelity Monte
Carlo methods are proposed to reduce the variance of the classical Monte Carlo estimator [45,
54, 48]. Another branch considers the scenario where the multi-fidelity models admit a
multi-level hierarchy structure, e.g., the hierarchies of fine- and coarse-grid discretizations,
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shifting most of the sampling budget onto the cheap lower-fidelity models but correcting or
co-training with a few from the expensive high-fidelity model [132, 53, 67]. On the other
hand, for closely related topics such as multi-fidelity optimization, majority of the work
uses Gaussian process (GP) surrogates for regression tasks [40, 131, 72, 73, 101]. However,
the Gaussian likelihood assumption used in the formulation of GP is not appropriate for
modeling discrete class labels, and no analytic inference scheme can be derived for training
or inferencing [105]. Besides, GPs are known not to be robust in providing uncertainty
estimates for high-dimensional inputs with large training sets, especially in classification
tasks [134, 63].

In this chapter, we propose a Multi-Fidelity Active Learning (MFAL) algorithm to maxi-
mize the cost-efficiency in data collection for surrogate training. More precisely, given the
ability to interactively make label queries to HF source at a higher cost or several LF sources
at lower costs, our goal is to optimally select and label the instances in the input domain
such that the classifier with the highest performance can be trained under a fixed labeling
budget. Our work follows a direct data-driven approach that learns the correlations across the
instance and fidelity domains, which, together with a generalized multi-fidelity acquisition
function, provides global uncertainty estimates for instance sampling and querying.

Our contributions lie as follows. First, we propose a simple learning framework with
neural networks that is capable of handling large-scale high-dimensional data generated by
an arbitrary number of ISs, and is significantly more efficient than the GP approach [109].
Second, we propose MFAL, an augmented active learning algorithm that selects both the
instance and the source to query at every iteration. MFAL applies to any choice of acquisition
function in the active learning literature for probabilistic models and does not make any
assumptions on the LFs other than there may exist some unknown correlations among the
HF and LFs. Our experiments show that MFAL out-performs Latin Hypercube random
sampling and Active Learning sampling by a noticeable margin.

7.1 Background

Multi-Fidelity Bayesian Optimization with Gaussian Processes has been studied exten-
sively in the literature. [73, 131, 83] propose different designs of cost-sensitive acquisition
functions to utilize cheap auxiliary task in the minimization of an expensive primary task.
[101, 72, 109] use Co-Kriging methods to fuse the information from multi-fidelity sources.

For the application of GP models on physics-based simulation and engineering calibra-
tion, Parish and Carlberg [97] proposes a Time-Series Machine-Learning Error Modeling
(T-MLEM) for modeling the error incurred by approximate solutions to parameterized dy-
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namical systems. Perdikaris et al. [99] develops a framework for multi-fidelity information
fusion through stochastic autoregressive schemes and frequency-domain machine learning
algorithms, on benchmark problems up to 105 input dimensions and 105 training points.
Perdikaris et al. [98] and Sarkar et al. [114] apply their multi-fidelity Gaussian process
model on applications such as stochastic burgers equation, stochastic incompressible flow,
design optimization of compressor rotor, etc.

For classification tasks, Zhang and Chaudhuri [149] considers an active learning algo-
rithm from a weak and a strong labeler with probabilistic models and analyzes its statistical
consistency. Dribusch et al. [32] introduces a multi-fidelity approach for the construction
of explicit boundaries with SVM; the methodology defines an envelope encompassing a
lower fidelity boundary in order to limit the number of high fidelity calls. Donmez and
Carbonell [31] builds a decision-theoretic framework with logistic regression that casts the
multi-oracle optimization problem as a utility optimization problem subject to a budget
constraint.

Existing methods in the literature either assume the hierarchical relationships among
the sources or rely on the heuristic design of the cost-weighted acquisition function that is
either problem-dependent or practically intractable. We propose a flexible Multi-Fidelity
Active Learning algorithm that is applicable to any designs of acquisition function, without
any restrictive assumptions on the LFs.

7.2 Algorithm

7.2.1 Problem Statement and Notations

Given a hypothesis class H , an instance domain X , and the ability to interactively make
label queries to a high-fidelity (HF) source at a higher cost or several low-fidelity (LF)
sources at lower costs, the objective is to train a high-performance classifier in H , by
selecting an optimal dataset under a fixed budget. In this work, the instance domain X is
assumed to be a hypercube [0, 1]n, for some integer n > 1. The set of ISs is denoted by
G = {gλ}λ∈Λ, where the fidelity space Λ is finite, specified by the index set {0, 1, ...,M}.
Each IS is a function that maps from X to the discrete label set Y = {1, 2, ..., C}. The
surrogate model is a neural network denoted by f . To fix the idea, we assume there is
one HF source g0 that we would like to approximate, and {gλ}Mλ=1 are the LF sources to
help with the approximation. However, this assumption is not required for our proposed
algorithm.
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Algorithm 4 Active Learning
Input: Query budget N , source g, instance domain X , acquisition function A
Initialize: Train surrogate with initial dataset D.
while Query budget is not exhausted do

Sample m query candidates {x(j)}mj=1 from X .
Compute the acquisition scores {A(x(j))}mj=1.
Find the query instance x∗ with the maximum score.
Query g for x∗ to obtain label y∗.
Update dataset D with (x∗, y∗).
Re-Train surrogate with D.

end while

7.2.2 Active Learning

We consider the scenario of pool-based sampling [76], where a small set of labeled data is
available, sampled from a large static domain X of unlabeled instances. Instances are greed-
ily drawn from X , according to an acquisition function which evaluates the informativeness
of unlabelled instances. There have been many approaches on the formulation of acquisition
function, the most favorite two are Uncertainty sampling [76] and Query-By-Committee
(QBC) algorithm [117]. A comprehensive review and benchmarks on active learning can be
found in [116, 144].

Entropy [118] is an information-theoretic measure that represents the amount of infor-
mation needed to “encode” a distribution, with an interpretation as a measure of uncertainty
or impurity in machine learning. We adopt the general uncertainty sampling strategy using
entropy as an acquisition function A for uncertainty measure:

A(x) = H(Y |x) = −
∑
y∈Y

p(y|x) log p(y|x), x ∈ X . (7.1)

In Bayesian’s framework, the predicted probability p(y|x) is the posterior distribution
on the class label y with a training dataset D:

p(y|x,D) =
∫
θ

p(y|x, θ)p(θ|D)dθ. (7.2)

However, this integral cannot be evaluated in a closed form for large scale neural networks,
i.e., very high-dimensional parameter variable θ. One practical approach [122] is to approxi-
mate the parameter posterior p(θ|D) by some tractable distribution, and approximate the
integral through sampling. We use Dropout [125], a technique that induces stochasticity
to the parameters, by randomly dropping units from the neural network. More precisely,
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consider a random binary mask variable M of the model parameter θ, with each entry
following Bernoulli(p) for some probability p ∈ (0, 1). We approximate the integral in
Eq. (7.2) by the average over T samplings:

p(y|x,D) = 1

T

T∑
i=1

p(y|x, θi), (7.3)

where θi = θ ⊙mi, {mi}Ti=1 are realizations of M with entries drawn from Bernoulli(p).
The probabilities p(y|x, θi) are computed from the logits vector η = f(x|θi) and the
softmax function p(y = j|x; θi) = eηj/

∑C
c=1 e

ηc . It’s been shown that neural networks
with Dropout applied after every weight layer is mathematically equivalent to GP [41].

At every iteration, the maximizer x∗ = argmaxx∈XA(x) is selected as the query in-
stance. However, for continuous instance domain X , searching the maximizer is itself an
optimization problem. In practice, one samples m query candidates from X randomly and
select the one with a maximum score by A. The algorithm is summarized in Algorithm 4,
where the query budget is the total number of queries allowed.

A naive execution of Algorithm 4 sometimes yields sampled instances that are geomet-
rically too close to each other. Besides, the surrogate f might be over-confidence in its
predictions over some regions of the instance domain X which are in fact incorrect; these
regions will never get the attention from the entropy-based method. To address this problem,
we occasionally explore the unexplored region by solving

A(x) = minx′∈Dx
⋃
∂Xd(x− x′), (7.4)

where Dx is the collection of the sampled instances and ∂X is the boundary of X . The
distance metric d is usually taken to be the Euclidean norm ∥·∥2.

Finally, we remark that since our instance domain X is continuous, we do not explicitly
remove the sampled instance from the domain like what classical active learning algorithm
does, as the probability that the same instance is sampled more than once is zero. Instead,
Eq. (7.4) can be considered as a regularizer to Eq. (7.1), with an interpretation of discouraging
the clustering of sampled data. We adopt this trick for some of our experiments.

7.2.3 Multi-Fidelity Active Learning

The sampling efficiency can be further improved if additional less accurate but cheap ISs are
available. For example, suppose we would like to know the label gλ1(x) of the instance x at
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Algorithm 5 Multi-Fidelity Active Learning

Input: Query budgets {Ni}Mi=0, sources {gi}Mi=0, instance domain X , acquisition function
A
Initialize: Train surrogate with initial dataset D.
while Query budgets are not exhausted do

Sample m instances {x(j)}mj=1 from X randomly.
Sample m fidelities {λ(j))}mj=1 from Λ with scaled probabilities.
Compute the acquisition scores {A(x(j), λ(j))}mj=1.
Find x∗, λ∗ with the maximum score.
Query the source gλ∗ for x∗ to obtain label y∗.
Update dataset D with (x∗, λ∗, y∗).
Re-Train surrogate with D.

end while

a high-fidelity λ1, instead of querying gλ1 directly, we can save some money by querying a
cheaper source gλ2 to obtain the label gλ2(x). If, in addition, we have some understanding
on the correlation between gλ1 and gλ2 , then gλ1(x) can be inferred from gλ2(x).

We propose a novel learning framework with multi-fidelity sources G = {gλ}λ∈Λ. The
sources are approximated with a single surrogate function f : X × Λ 7→ Y , where f(·, λ)
estimates gλ(·) for each fidelity index λ ∈ Λ. The direct output of f is a logits vector
η = f(x, λ|θ) of size C and the predicted label is the index of the largest entry of η. The
purpose of this design is to allow the model to learn the correlations in both instance space
X and fidelity space Λ. Conceptually, we have just extended the input dimension by one.
However, in practice, simply feeding the concatenation of the instance vector and the fidelity
index (or its one-hot encoding) into a model is not feasible, as discrete representations are
not informative enough to describe the complex relationships between fidelities. To address
this problem, we transform the fidelity indices into embeddings, which are vectors of the
instance dimension. The instance and embedding are concatenated along an extra channel
dimension before feeding into the model. This idea is originally proposed to describe the
multiple degrees of similarity among words [90], which are discrete in nature.

In the multi-fidelity active learning, we need to select the instance to query as we do
in active learning, and also a source in G. The acquisition function in the multi-fidelity
setting is defined to be a function that maps both instance and fidelity level to a score, i.e.,
A : X × Λ 7→ R+. At every iteration, we find the maximizer (x∗, λ∗) of A in the product
space X × Λ, and query the source gλ∗ indexed by λ∗ for the instance x∗.

So far, we have not taken consideration of the costs associated with the sources, which
should play a role in our algorithm to prevent us from querying the expensive high-fidelity
source recklessly. One straight forward approach is to introduce a heuristic regularizerR
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that balances between the score and the cost, i.e.Ã(x∗, λ) = R (A(x∗, λ), cost(λ∗)), where
A is some information measure, and Ã realizes the concept of the information gain per
cost [72, 131, 83, 31, 114]. However, the choice of the regularizer in this approach is highly
problem-dependent and may require a lot of engineering work, e.g., the cost needs to be
scaled carefully to balance the scores from A.

We propose a strategy with the ease of no hyper-parameter tuning. Assume the user has a
planned the number of queries Nλ to each individual source gλ, and define {Ni}Mi=0 to be the
query budgets. At each iteration, given the current statistics of queries {ni}Mi=0, the remaining
queries are {Ni−ni}Mi=0. We samplem query candidates in the form {(x(i), λ(i))}mi=0, where,
for each i, x(i) is sampled from X randomly, and λ(i) is sampled from the fidelity space

Λ = {i}Mi=0 under the scaled probabilities
{
(Ni − ni)/(

∑M
j=0Nj − nj)

}M
i=0

. In particular,
if the query budget for the source gi is exhausted, i.e., Ni = ni, the fidelity index i is sampled
with zero probability, and the algorithm will not query gi anymore. The information of the
cost is implied by the query budget from the user: the cheaper a source is, the larger query
budget that user might assign to this source. The overall MFAL procedure is outlined in
Algorithm 5.

7.3 Experiments

Throughout the experiments in this section, we evaluate the surrogate at fidelity 0, i.e.,
f(·, 0), as an approximation of the HF source g0. However, the inference scheme is flexible:
in the applications where the credibility of the information sources is unknown, one can
predict with the weighted average score from f(·, λ), for all λ ∈ Λ. The timing benchmarks
are evaluated on a single core of an 8-core processor, Intel(R) Xeon(R) CPU E5-2686 v4 @
2.30GHz, with 64 GB of memory.

7.3.1 Synthetic Data

Our experiments on synthetic data consider the setting where one HF source and one or two
LF sources are available. The instance domain X is a hypercube and the direct output of the
source is some real number. We define x ∈ X to be of class c if g0(x) ∈ [ac−1, ac], for some
pre-defined threshold values −∞ = a0 < a1 < a2 < ... < aC = ∞. For evaluation, we
consider the benchmarks Trig-2, De-2, Friedman-5 and CNN-d, where the dashed number
indicates the dimension of the input. See Section 7.3.3 for more details.

A multilayer perceptron (MLP) is trained to fit the sampled data with Adam opti-
mizer [68] for 400 epochs at max. For multi-fidelity models, we use an additional embed-

92



ding layer [90] to transform the fidelity index into an embedding vector that matches the
dimension of the instance. The input is obtained by concatenating the instance and fidelity
representation along the channel axis. Our model architecture is designed as follows:

Input − fc(Dim, 500) − ReLU − fc(500, 200) − ReLU − ReShape − fc(200 ×
NumChl,NumCls).

We also conduct sanity checks on the expressiveness of our model and the complexity of
the benchmarks in Section 7.3.3. Our result shows that the model can learn from the sampled
data effectively. Therefore, its accuracy on testing data is a legit measure to evaluate the
data sampling algorithms.

7.3.1.1 Active Learning with Multi-Fidelity Sources

The main results for synthetic data benchmarks are presented in Figure 7.2, where we set
the total number of HF queries to be 100, 200, 2k, 10k for De-2, Friedman-5, CNN-20,
CNN-100, respectively, and set the total number of queries from each LF source to be
the same. Four sampling algorithms are considered, which are Latin Hypercube random
sampling (RD), Active Learning sampling (AL), Multi-Fidelity Latin Hypercube random
sampling (MFRD), and Multi-Fidelity Active Learning sampling (MFAL). We compare
the performance of these algorithms by plotting the testing accuracy of our model over
the number of HF queries. Note that in a multi-fidelity experiment, performance is only
recorded when the HF source is queried.

The advantage of active learning is clear in lower-dimensional problems but is dimin-
ishing as the dimension grows [134, 63]. However, data from less accurate and cheaper
information sources improves the performance of the surrogate by a noticeable margin, in
comparison against both the LF sources and the surrogate trained with the HF source only.
We further illustrate the sampling dynamics of MFAL in Section 7.3.4.

7.3.1.2 Compare with Gaussian Process

Gaussian process is a popular approach for uncertainty estimation, and is used to build
the acquisition function in active learning. However, for classification tasks, the Gaussian
likelihood assumption on the data is not appropriate. In particular, one must resort to
approximate inference techniques, such as the widely used Laplace approximation and the
expectation propagation algorithm. Markov-chain Monte Carlo (MCMC) methods provide
a powerful alternative to approximate posterior inference, but standard sampling schemes
such as Gibbs and Metropolis-Hastings suffer from slow convergence rates due to strong
correlations in the Gaussian process posterior.
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Figure 7.2: Accuracy over the number of HF Queries. The credibilities of the LF sources are
indicated by the horizontal dotted lines. The query budgets for the benchmarks are {100,100,100},
{200,200,200}, {2k,2k,2k}, {10k,10k,10k}, for De-2, Friedman-5, CNN-20, CNN-100, respectively.
Results are computed from 10 trials. Active learning exhibits advantages in the low-dimensional
problems, whereas multi-fidelity data is increasingly helpful in the high-dimensional problems. Our
MFAL algorithm out-performs the baselines by a noticeable margin.

In Table 7.1, we compare our algorithm with the sparse version of Gaussian Process
Multi-Fidelity Active Learning (sGPMFAL) algorithm proposed in [109], on Trig-2 bench-
mark. We initialize with 10 HF instances and 45 LF instances (30 inducing points) by Latin
Hypercube random sampling and run the algorithm until 34 HF instances are sampled in
total. For Gaussian process, the first 1k samples are used to tune the step size of the sampler,
and the parameters are estimated by the subsequent 1k samples, collected with one chain;
the target accept probability is set to be 0.95. The active learning samplings are chosen
from 1k candidates, and the inference is made with 100 posterior predictive samples. The
code is open-sourced by Sahli Costabal et al. [109], where the sampler is implemented in
PyMC3 [113].

Our experiments in Table 7.1 show that MLP performs on-par with GP. However, our
algorithm is faster since the inference from MLP only requires a single forward pass,
instead of the expensive MCMC sampling. Besides, GP suffers from the cubic and linear
complexities with respect to the number of training data and output classes, respectively. On
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Method Query Budget Train Time (s) Sample Time (s) Inference Time (s) Test Acc (%)

GPAL {34} 711 904 39 91.19

sGPMFAL {34, 45} 12,594 2,007 94 97.26

AL {34} 969 27 5× 10−2 94.2

MFAL {34, 45} 1,251 34 5× 10−2 96.83

Table 7.1: Performance comparison between our MLP training and GP training. The test accuracy is
averaged from 5 trials. The training and inference of MLP are faster, with competitive performance.

the other hand, the time required for MLP training admits linear scaling to the number of
training data and can be easily adapted to any input dimension and number of classes, upon
proper modification of the input header layer and classification layer of the model.

7.3.2 Real Data - 2D Cahn-Hilliard for Spinodal Decomposition of A-B
Binary Alloy

We apply our algorithm to a two-dimensional phase-field simulation of the spinodal de-
composition using Cahn-Hilliard equation [23]. This simulation describes the spinodal
decomposition in an A-B binary alloy: if a high-temperature mixture of two metallic com-
ponents is rapidly cooled to a lower temperature, then the mixture starts to unmix from
one thermodynamic phase to two coexisting phases. Visualizations of the simulation are
provided in Section 7.4.

Consider a spinodal decomposition in a virtual A-B alloy governed by a two-dimensional
phase-field simulation of the spinodal decomposition using Cahn-Hilliard equation. The
temporal evolution of the concentration c of the B atom is derived from the Cahn-Hilliard
equation given as

∂c

∂t
= ∇ · (Mc∇µ) . (7.5)

Here, µ is the diffusion potential of B atom

µ =
δG

δc
= RT [log(c)− log(1− c)] + L(1− 2c)− ac∇2c, (7.6)

with the total free energy G of a system, gas constant R, atom interaction constant L, and
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Method Query Budget Query Time (s) Train Time (s) Sample Time (s) Test Acc (%)

Exp1: Early Termination

AL {25} 126,366 2,410 101 84.82

MFAL {20,20} 116,711 2,521 177 95.31

Exp2: Coarse Discretization

AL {25} 135,490 1,849 90 83.61

MFAL {20,20} 127,366 2,228 162 93.77

Table 7.2: Performance comparison between our AL and MFAL algorithms. The accuracies of the
LF sources are 79.58% and 82.32% for Exp1 and Exp2, respectively. The test accuracy is averaged
from 3 trials. To demonstrate the advantage of MFAL, the query budgets are selected in a way that
MFAL takes less query time. With the help of LF queries, MFAL out-performs AL by a significant
margin.

temperature T . And the diffusion mobility Mc of B atom is given by

Mc =
DA

RT

[
c+

DB

DA

(1− c)
]
c(1− c), (7.7)

where DA and DB are the diffusion coefficients of A and B atoms, respectively.
The numerical simulation1 is performed on the square domain of size 60× 60 nm2 with

periodic boundary conditions. The first order Euler method is used for time-integration and
the second order central finite difference method is used for spatial derivatives. Influential
factors for this diffusion process are the absolute initial temperature T and the diffusion
coefficients DA,DB of the A,B atoms, respectively. We fix the diffusion coefficient of
the A atom to be DA = 0.00015 m2/s and consider a parameter domain of (T,DB) ∈
[550°, 700°] × [0.00001m2/s, 0.0001m2/s]. The objective is to model the phase of the B
atom at the midpoint of the spatial domain in the long run, which is categorized into three
classes by the concentration thresholds 1

3
, 2
3
.

7.3.3 Benchmarks

We evaluate our algorithm on several benchmarks defined as follows:
In Trig-2 Benchmark [109], the sources are functions of the form gλ(x1, x2) = βλ0 +

sin(βλ1πx1)/β
λ
2 − x2, for xi ∈ [−π, π], i ∈ {1, 2}. The source parameters βλ for fidelities

0, 1 are defined as β0 = (0.5, 2.5, 3)T , β1 = (0.45, 2.2, 2.5)T . The intermediate threshold
value is 0 for two classes. The accuracy of g1 is 87.09%.

1http://web.tuat.ac.jp/˜yamanaka/pcoms2019/Cahn-Hilliard-2d.html
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Figure 7.3: (L) Performance of 500-200 MLP over the number of HF queries. The model is trained
with Adam for 400 epochs. The high training accuracy implies the model has sufficient capacity to
fit the training data; testing accuracy increases as more training data is available. (R) Performance
over MF query budgets of the form {N,αN,αN}, where N is 25,50,100,200 for De-2, Friedman-5,
CNN-10, CNN-20, respectively. Testing accuracy increases as more LF data is available.

In De-2 Benchmark, the sources are functions of the form gλ(x1, x2) = βλ0 sin(x1) +

βλ1x
4
2 sin(x1), for xi ∈ [−π, π], i ∈ {1, 2}. The source parameters βλ for fidelities 0, 1, 2

are defined as β0 = (1, 0.1)T , β1 = (1.3, 0.07)T , β2 = (0.7, 0.13)T . The intermediate
threshold values are ±0.80 for three classes. The accuracy of g1, g2 is 86.08%, 82.60%,
respectively.

In Friedman-5 Benchmark, the sources are functions of the form g0(x1, x2, x3, x4, x5) =

βλ0 sin(πx1x2)+βλ1 (x3−βλ2 )
2+βλ3x4+βλ4x5, for xi ∈ [0, 1], i ∈ {1, 2, 3, 4, 5}. The source

parameters βλ for fidelities 0, 1, 2 are defined as β0 = (0.4, 0.8, 0.5, 0.4, 0.2)T , β1 =

(0.48, 0.75, 0.55, 0.35, 0.25)T , β2 = (0.32, 0.85, 0.45, 0.45, 0.15)T . The intermediate thresh-
old values are 0.50, 0.66 for three classes. The accuracy of g1, g2 is 81.35%, 79.91%, respec-
tively.

In CNN-d Benchmark, the HF source is built with a randomly initialized deep convolu-
tional neural network that takes inputs in the hypercube X = [0, 1]d and outputs one of the
three classes. The LF sources are obtained by perturbing the weights of the HF source.

The training and testing accuracy of the MLP defined in Section 7.3.1 on random HF
queries are presented in Figure 7.3(L). Our chosen architecture has enough capacity to fit up
to 10k training data with more than 95% accuracy. This indicates that the model can learn
from the data efficiently, and its accuracy on testing data is a legit measure to evaluate data
sampling algorithms. For the benchmark of a higher dimension, the model requires more
data to achieve a certain level of testing accuracy. This is expected as high-dimensional
learning is a challenging task.

In Figure 7.3(R), we fix the number of HF queries to be N and consider query budgets
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Figure 7.4: Sampling dynamics of MFAL. The ground truths for HF, LF1, LF2 are in the first row
from left to right and the corresponding predicted contour plots are in the second row. MFAL focuses
on sampling the “bottleneck” region at the center, where the disagreement among the sources arises.

of the form {N,αN, αN}, with some multiplier α ≥ 0. Multi-fidelity data is randomly
sampled according to the query budget and the accuracy is reported for different αs, ranging
from 0 to 8. In particular, α = 0 implies learning with HF source only. In this experiment,
N is chosen to be 25, 50, 100, 200 for benchmarks De-2, Friedman-5, CNN-10, CNN-20,
respectively.

When extra information sources are available, we can query the noisy but cheaper
sources to obtain a multi-fidelity dataset that improves the surrogate’s performance. For
example, in Figure 7.3(L), it takes 100 random HF queries to achieve about 78% accuracy
on the Friedman-5 benchmark. However, as shown in Figure 7.3(R), we get a model with
85% accuracy if we make 50 HF queries and 400 queries for each of the LF sources. More
LF queries often improve the performance of the surrogate, as they help to learn from the
LF sources and their correlations with the HF source.

7.3.4 Learning the Region of Disagreement

In Figure 7.4, we present the De-2 example to illustrate how data is sampled and its impact
on the surrogate training. The decision regions of the ground truths (GT) and surrogate
trained with MFAL sampled data are shown in the first and second row respectively, where
the columns from left to right are the associated fidelities: HF, LF1, LF2. Note that for the
surrogate f , we compute f(X , 0), f(X , 1), f(X , 2) over a discretized grid of X to estimate
the decision boundary at each fidelity level. The queried points sampled at each fidelity are
also shown in the graph.

In classical active learning, the points sampled tend to be near the decision boundary
of the ground truth, where the prediction uncertainty arises. In multi-fidelity learning, one

98



1 steps 1k steps 2k steps 3k steps 5k steps 7k steps 9k steps

Figure 7.5: Visualizations of 2D Cahn-Hilliard simulation. Blue and red indicate high concentrations
of A atom and B atom, respectively.

(a) Exp1 HF (b) Exp1 LF (c) Exp2 HF (d) Exp2 LF

Figure 7.6: The decision regions of the ground truths on solutions at the midpoint of the domain from
2D Cahn-Hilliard (CH) simulation parametrized by a temperature coefficient (horizontal axis) and a
diffusion coefficient (vertical axis). The solution is categorized into three classes by the concentration
thresholds 1/3, 2/3. (ab) Ground Truths for Exp1. The query times of HF (a) and LF (b) are 5038
and 543 seconds, respectively. The accuracy of LF is 75.98%. (cd) Ground Truths for Exp2. The
query times of HF (c) and LF (d) are 5970 and 595 seconds, respectively. The accuracy of LF is
82.32%.

makes a prediction based on the noisy information from the LF sources, therefore, it’s
important to judge how reliable LF data is for HF prediction. MFAL focuses on the regions
of disagreements among the information sources, e.g., the “bottleneck” region at the center.
Surrogate trained with data sampled from MFAL is less likely to be distracted from the
incorrect LF labels, as it’s made aware of the difference among the sources.

7.4 2D Cahn-Hilliard for Spinodal Decomposition of A-B
Binary Alloy

Two experiments are conducted in Table 7.2. In the first experiment, HF and LF sources
are the solutions at 20k and 2k time steps of the simulation at the midpoint of the domain
discretized by 31 × 31 grids, respectively. The time step sizes are adjusted to ensure the
convergence; HF simulation takes 5038 seconds and LF simulation takes 543 seconds. In
the second experiment, HF and LF sources are the solutions at 10k and 2.5k time steps
of the simulation at the midpoint of the domain discretized by 41× 41 grids and 27× 27

grids, respectively. HF simulation takes 5970 seconds and LF simulation takes 595 seconds.
Visualizations of the ground truths are provided in Section 7.4. To demonstrate the advantage
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of MFAL over AL, we design query budgets so that the overall query time for MFAL is
lower. The training and sampling time of our algorithm is negligible in comparison with
simulation time, and MFAL out-performs AL with less query time. The benefits of MFAL
become more significant as the input dimension or the domain size grows, where the HF
query time scales up.

7.5 Conclusion

We construct a Multi-Fidelity learning framework with neural networks for surrogate train-
ing on classification tasks. Our training is faster than Gaussian process training with on-par
performance. Also, we propose a Multi-Fidelity Active Learning algorithm to further im-
prove the efficiency of the sampled data under a limited budget. The proposed methodology
significantly out-performs Active Learning and Multi-Fidelity Random sampling.
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