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ABSTRACT

Hyperbolic PDE can be used to describe the macroscopic dynamics of traffic flow. Models

of traffic flow with conservation laws begin with conservation of mass. Equilibrium models

(also called first order models) are scalar conservation laws with an explicit closure relation,

called the Fundamental Diagram (FD), describing velocity as a function of density. The

FD is largely approximated from observation, and in general velocity is a non-increasing

function of density. Driver behavior, however, differs among drivers and over time; this

variability is not captured by deterministic models. Real data suggests that while one may

identify ‘mean’ driver behavior due to non-equilibrium effects and general variability in

driving style there is some distribution around the mean. To model driver variability, we

introduce a driver-related parameter that describes deviation from the mean and create a

family of fundamental diagrams that provide velocity as a function of both density and

this parameter. The parameter is governed by an advection diffusion equation with white

noise forcing and a relaxation to mean behavior. The resulting models adhere to accepted

principles for traffic modeling and are capable of reproducing a richer set of traffic flow

phenomena. Most notably, they illustrate that small perturbations may grow into large

coherent wave structures, including the formation of jams and emergence of stop-and-go flow

patterns, in equilibrium models. Dynamic generalizations have been proposed by numerous

authors and describe a velocity that does not instantaneously adjust to traffic density, but

instead is governed by an additional equation. In addition to modeling driver variation

xii



as an auxiliary variable, these models also permit variation of velocity through a direct

modification to the velocity equation. In the present work equilibrium and non-equilibrium

traffic models with a stochastic behavior variable are presented, as is a direct stochastic

velocity perturbation.
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CHAPTER I

Overview of Macroscopic Continuum Traffic Modeling

One approach to traffic modeling is to describe the evolution of macroscopic quantities

(e.g. density) with hyperbolic PDE. ‘Macroscopic’ means that we will attempt to prescribe

dynamics to space-averaged quantities rather than ‘microscopic’ quantities pertaining to

relationships between individual vehicles. An analogy can and will frequently be made

between the two approaches (see Table 1.1). Though not the focus of this work, we will

include a discussion of microscopic car-following models (Appendix A) to the extent that

they are analogs to the PDE models developed herein. There are macroscopic models that

are not PDE models, including many with stochasticity (e.g. supply/demand [3, 7, 20, 35]

and cellular automata models [17, 47, 56, 44, 1]). Mesoscopic models, describing dynamics

Headway (hn)

Inter-vehicle Spacing (sinter)

vn

xn

vn+1

xn+1

Figure 1.1: An illustration of the traffic quantities in Table 1.1.
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Table 1.1: Microscopic traffic quantities and their macroscopic analogs. Some of these
quantities are illustrated in Figure 1.1.

Microscopic Quantities Macroscopic Quantities

Position of car n xn Density ρ

Velocity of car n vn Velocity v

Inter-vehicle Spacing sinter
n = xn+1 − xn − `c Mean Inter-vehicle Spacing 1

ρ
− `c

Minimum Intervehicle Spacing sinter
min

Maximum Density ρjam =
1

`c + sinter
minVehicle Length `c

Headway hn = xn+1 − xn Spacing s =
1

ρ

as probability densities in the position-velocity plane (e.g. those by [12]) have also been

developed. This thesis will focus solely on traffic modeling with systems of PDE that are

first order and quasilinear in time. Ultimately we would like to introduce a framework for

incorporating stochastic driver variation into hyperbolic PDE traffic models. Other authors

have also proposed approaches for doing so, including [10, 9, 8, 33, 42, 46]; the approach

suggested here differs significantly in that it is the first approach (to the author’s knowledge)

to be based on a mesh-independent numerical process in in Eulerian coordinates.

The goal of this project was to model a broader range of phenomena than are possible

without modeling driver inhomogeneity. First and foremost, the spontaneous growth and

potential dissolution of congestion is by nature not a deterministic process, nor are these

phenomena straightforward to simulate with existing models. A related phenomena difficult

to capture with traditional models is capacity drop, the tendency for congestion to persist in

a manner that manifests itself as a change to the fundamental diagram [31, 63]. The models

in this thesis provide novel techniques for modeling spontaneous congestion and provide

interesting paths forward in the modeling of other phenomena.
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1.1 Lighthill Whitham and Richards (LWR)

The earliest macroscopic PDE models for traffic flow were derived from work on kinematic

waves [48, 43]. Traffic modeling by nature relies heavily on assumptions about human

behavior. The one fact that is known absolutely is that vehicles are not created or destroyed;

this means the number of cars in some region may only change when cars leave that region

to enter another or enter the present region from an adjacent region. The number of vehicles

in the interval (x, x+ ∆x) at time t is

x+∆x∫

x

ρ(y, t) dy. (1.1)

The number of vehicles to move past a point in space x from time t to time t+ ∆t is

t+∆t∫

t

ρ(x, t′)v(x, t′) dt′. (1.2)

The quantity ρv is called flux. It follows from conservation of mass

x+∆x∫

x

ρ(y, t+ ∆t) dy

︸ ︷︷ ︸
cars later

−
x+∆x∫

x

ρ(y, t) dy

︸ ︷︷ ︸
cars now

=

t+∆t∫

t

ρ(x, t′)v(x, t′) dt′

︸ ︷︷ ︸
cars in

−
t+∆t∫

t

ρ(x+ ∆x, t′)v(x+ ∆x, t′) dt′

︸ ︷︷ ︸
cars out

. (1.3)

When the solution is smooth, the fundamental theorem of calculus may be used to obtain

x+∆x∫

x

t+∆t∫

t

(
∂

∂t
ρ+

∂

∂x
(ρv)

)
dt′ dy = 0. (1.4)
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It follows

∂

∂t
ρ+

∂

∂x
(ρv) = 0. (1.5)

The collection of smooth and non-smooth solutions to Equation 1.5 are called ‘weak solu-

tions’. Though this notion is vital to the work done in this thesis, the required background

can be found in a variety of reference material, e.g. [13]. To close the model we need to define

velocity. The simplest approach is to choose velocity as a function of density; the resulting

function

v = V (ρ) (1.6)

is called the fundamental diagram, and is ubiquitous in traffic modeling. Discussion of the

fundamental diagram can be found in Section 1.2. The resulting traffic model is called the

Lighthill, Whitham, and Richards (LWR) [43, 54] model

ρt + (ρV (ρ))x = 0. (1.7)

In Chapter III we will modify Equation 1.7 by introducing an additional, small variable z

and instead closing Equation 1.5 by specifying a function

v = V (ρ, z). (1.8)

Both LWR and LWR augmented with auxiliary equations will be referred to as equilibrium

models. Another way to close Equation 1.5 is to provide a PDE describing the dynamics of

velocity; this approach will be discussed in Chapter IV and extended in Chapter V.

Theoretical tools for analyzing scalar conservation laws like Equation 1.7 [13, 57] as

well as numerical methods for approximating solutions [39, 40] are widely available. We

will briefly summarize properties of Equation 1.7 as they relate to traffic flow and utilize

numerical methods for approximating solutions to interrogate our stochastic modifications.

While solutions remain smooth, Equation 1.7 can be solved using the method of charac-
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teristics. If we consider the solution ρ(c(t), t) along curves c(t) we compute

d

dt
ρ(c(t), t) = ρt(c(t), t) + c′(t)ρx(c(t), t)

and observe that ρ is constant along these curves (i.e. d
dt
ρ(c(t), t) = 0) if we choose

c′(t) = V (ρ(c(t), t)) + ρ(c(t), t)V ′(ρ(c(t), t)). (1.9)

λ(ρ(c(t), t)) = c′(t) is called the characteristic speed. These smooth transients are called

‘simple’ or ‘rarefaction’ waves. It is reasonable to assume that traffic velocity does not

increase when density increases. Under this assumption

λ = V (ρ) + ρVρ(ρ) ≤ V (ρ) (1.10)

so these disturbances may not move forward faster than the speed of traffic. The notion that

information should not travel faster than the speed of traffic is a widely accepted principle

of traffic dynamics [11, 2].

Equation 1.7 also admits discontinuous solutions moving at speed s satisfying the Rankine-

Hugoniot condition

ρRV (ρR)− ρLV (ρL) = s(ρR − ρL). (1.11)

These discontinuous solutions are called shock waves. Because in general discontinuities

develop in finite time from smooth initial data, these discontinuous solutions must be al-

lowed. Rapid deceleration observed when driving has a shock-like character, providing an

interpretation of these discontinuities. However, allowing both rarefaction waves and shock

waves leads to solutions that are not unique. Solutions from this set are called weak solu-

tions. There are a variety of ways to choose a single solution to resolve this ambiguity. One
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approach is to introduce a small viscous regularization

ρt + (ρV (ρ))x = ερxx (1.12)

and take ε → 0+; these are called vanishing viscosity solutions. Another is to introduce an

entropy condition like that of Lax

λ(ρL) > s > λ(ρR) (1.13)

requiring that characteristics may go into but not emerge from shock waves [39]. A third

is to prescribe dynamics for entropy, a quantity that is conserved in smooth solutions but

decreases at discontinuities. Under the proper conditions this guarantees unique solutions

as well.

The case of traffic flow is complicated by a variety of factors. Riemann problems for

scalar conservation laws with flux functions that are either strictly concave or strictly convex

consist of either one rarefaction wave or one shock wave, whereas in the general case more

complex wave structures are possible. For traffic systems the flux functions in question

are, if anything, concave. However, we will use the terms interchangeably to mean strictly

concave or strictly convex. The flux function f(ρ) = ρV (ρ) is, in general, not convex.

Moreover, some fundamental diagrams approximating real data are not convex (e.g. [58]). It

should also be noted that most fundamental diagrams are bounded below by zero. Though

an otherwise concave flux that is truncated at zero is not, strictly speaking, concave, in

most cases densities greater than the first at which velocity is zero are unattainable. The

truncation at zero velocity does however matter in some perturbed cases. This theoretical

consideration is also important numerically, as we must ensure our numerical Riemann solver

is robust enough to create these structures when required.

Second, the vanishing viscosity solution implies some amount of isotropy [40]. LeV-

eque [40] proposes a resolution to this problem based on the conditions for wave speeds in
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Figure 1.2: Mean density-velocity relationship and standard deviation computed from the
NGSIM [50] data. This data does not provide accurate velocities at low densities.

traffic flow, requiring that

s ≤ V (ρR) (1.14)

holds across shocks, or equivalently

V (ρL) ≥ V (ρR). (1.15)

If we accept Leveque’s assertion that Equation 1.15 is sufficient to select a unique solution,

then we can resolve both our problem with information propagation speed and our problem

with uniqueness with a single condition.

1.2 The Fundamental Diagram

Determining accurate fundamental diagrams is a difficult problem in traffic modeling for

a variety of reasons. First and foremost, most of the data available comes from inductive

loop sensors. These sensors determine when a point on the road is or is not covered by
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a vehicle. These sensors are often paired to yield accurate velocity information [63]. In

principle, such a sensor pairing allows for estimation of both velocity and vehicle length at

each vehicle crossing [63]. However, accurately determining spatial averages from complex

time series data is a challenging problem. Even if we assume perfect data at sensor locations,

the fundamental diagram varies by time of day, driver, and is likely unique to that portion

of the road itself. This is true independent of density fluctuations. The difference between

day and night even at similar densities is well documented (e.g. [63]). The goal of this

work is to account for driver variation in a certain class of models. A qualitative picture of

what a fundamental diagram parameterized by driver behavior should look like is required,

but accurately matching models to data is not the focus of this work. For a matching of

parameterized fundamental diagrams to data, see [14].

The fundamental diagram provides an average traffic velocity at each density. It has

been observed [65, 42, 51] that the variance in velocity is density dependent. This can also

be seen in the Next Generation SIMulation (NGSIM) data provided by the US Department

of Transportation [50] (Figure 1.2). For the modeling in the remainder of this thesis we

will need a prototype fundamental diagram that yields a function mapping from a ‘behavior

parameter’ to an equilibrium velocity at each density (i.e. a function V : R2 → R). In this

chapter we will review commonly used fundamental diagrams (Section 1.2.1) and present

prototype fundamental diagrams that vary with an additional parameter (Section 1.2.2 and

Section 1.2.3). As a convenience, we will sometimes write V (ρ) = V (ρ, 0).

1.2.1 Classic Fundamental Diagrams

A variety of prototype relationships have been proposed for the fundamental diagram.

The earliest is the linear relationship proposed by Greenshields [22]

V GS(ρ) = vmax

(
1− ρ

ρjam

)
. (1.16)
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Figure 1.3: A selection of well known fundamental diagrams (Equations 1.16 through 1.18).

Another early fundamental diagram was proposed by Greenberg [21]

V (ρ) = c log

(
ρjam

ρ

)
.

A simple modification to obtain a more reasonable bounded version of Greenberg’s funda-

mental diagram is to take

V GB(ρ) = min

(
vmax, c log

(
ρjam

ρ

))
(1.17)

instead. A later influential fundamental diagram used by Kerner [30] is of the form

V K(ρ) = vmax



(

1 + exp

(
ρ

ρjam
− c
w

))−1

− k


 (1.18)

where parameters are chosen such that V K(ρjam) = 0. A depiction of these fundamental

diagrams and corresponding flux functions can be found in Figure 1.3.

There are several reasonable conditions that may be put on the fundamental diagram.
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Figure 1.4: The ‘linearized’ fundamental diagram V LF (ρ, z) = V LF
0 (ρ) + zV LF

1 (ρ) plotted
with parameters shown in Table 1.2.

Perhaps the most obvious is that the fundamental diagram should be positive, bounded, and

non-increasing, i.e.

0 ≤ V (ρ+ ε) ≤ V (ρ) ≤ vmax (1.19)

for all ρ and ε > 0. As previously mentioned, a convex flux is also desirable and equivalent

to the condition that

2Vρ(ρ) + ρVρρ(ρ) ≤ 0 (1.20)

for all ρ. Though convexity simplifies many mathematical aspects of the scalar conservation

law, there is no real-world reason to expect traffic flux to be convex. Further, it is difficult to

build fundamental diagrams that agree with data and meet this requirement; indeed some

data driven fundamental diagrams (e.g. [58]) do not. We will not require that fundamental

diagrams yield convex fluxes.
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Table 1.2: Parameters used in the linearized fundamental diagram (Equation 1.21).

Free Flow

vmax 63.0

sf 0.06

Congested Flow

a 10607.41

p 1.36

k 5.45

Deviation

h 5.8

c 50.0

w 22.0

b 3.2

j 260.0

1.2.2 A Linearized Fundamental Diagram

Recall that we ultimately need to define a prototype family of fundamental diagrams that

yields an equilibrium velocity for each pair consisting of a density and a driver dependent

parameter (ρ, z). Often only the standard deviation of velocity is available or easily computed

from published traffic data, and for this reason it is convenient to identify this parameter with

the standard deviation of velocity at a particular density. This identification is a convenient

proxy for driver variation, but it does not solely represent driver variation. Because we

have not established a well-understood meaning of the deviation parameter consistent with

the models presented in Chapters III and V, this decision is arbitrary. It should also be

emphasized that, while convenient for crafting prototype fundamental diagrams, we cannot

justify this identification quantitatively.

For simplicity we will define a fundamental diagram (Figure 1.4) that is linear in z and

has the qualitative features of the deviations shown in [42, 51]. It may be possible to extract

parameterized families of fundamental diagrams from data but the far simpler linearized
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fundamental diagram V LF (ρ, z) will be used throughout most of this work. We define

V LF (ρ, z) = V LF
0 (ρ) + zV LF

1 (ρ) (1.21)

V LF
0 (ρ) = min

(
vmax − fsρ,max

(
a

ρp
− k, 0

))
(1.21a)

V LF
1 (ρ) = max

(
h exp

(
−
(
ρ− c
w

)2
)

+ b

(
1− ρ

j

)
, 0

)
(1.21b)

where p > 1 and vmax, fs, a, k, h, c, w, b, j are positive constants. Adopting this form

of the fundamental diagram simplifies some computations as we can directly and explicitly

relate the deviation parameter z to the actual velocity V LF (ρ, z) at any fixed density ρ. The

shape of V LF
1 is chosen to be reminiscent of the standard deviation in real data (see Fig-

ure 1.2 as well as [42, 51]), but there is no reason to expect that deviations in behavior are

proportional to these values. Behavior variation is a part of the cause of deviations from

the mean, but not the entirety of it. It is impossible to collect ‘equilibrium’ traffic data; any

variance in the data collected reflects velocity differences in driver behavior and differences

due to traffic dynamics. The ‘z’ parameter introduced here does not have a physical inter-

pretation that can be easily identified with the magnitude of the standard deviation in any

sense.

However, in equilibrium models, structuring the fundamental diagram in this way does

produce more variation in the density regimes where it is expected, even if not for the right

reasons. An additional comment on the variations in traffic dynamics due to the influence

of z in the fundamental diagram and variations due to non-equilibrium phenomena will be

made in Section 3.4. An alternative justification is that deviations at these density regimes

can be explained by deviations in parameters like intended time headway or tolerance for

speeding. These deviations produce a fundamental diagram (Section 1.2.3) with larger vari-

ation in the same regimes, thus providing a potential partial explanation, but the linearized

form is simpler. The largest disadvantage to a linearized fundamental diagram is the loss of

monotonicity for large values of z. We will aim to stay away from regimes in which mono-
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tonicity is lost, but due to the nature of the processes discussed in Chapter II this cannot

be guaranteed.

1.2.3 An Idealized Fundamental Diagram

The quest for a more accurate fundamental diagram requires making a multitude of

decisions, but also provides several interesting opportunities to introduce uncertainty in a

sensible way. Drivers are typically told to obey three constraints:

1. do not exceed the speed limit,

2. maintain a given time between the front bumper of a car and the back bumper of the

leading car, and

3. do not collide with the driver in front.

We will measure this time from front bumper to back bumper (i.e. the time to traverse the

intervehicle spacing) rather than the ‘time headway’ as it is often defined in traffic flow.

This is not only (arguably) more true to what drivers measure, but also has the advantage

of producing a velocity of zero at high enough densities. The first of these is easily satisfied

by requiring

v ≤ vmax. (1.22)

The second and third are satisfied by requiring

1

v

(
1

ρ
− 1

ρjam

)

︸ ︷︷ ︸
time to leading vehicle

≥ timin ⇐⇒ v ≤ 1

timin

(
1

ρ
− 1

ρjam

)
. (1.23)

This also ensures it always takes a finite time to reach the back bumper of the leading vehicle.

We can then make small modifications to adapt this to what real data is known to look like

(e.g. [58]). We introduce a small slope fs in the free part (Equation 1.22) and a general power

p in the congested part (Equation 1.23). If it is assumed driver variation appears in the the
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Figure 1.5: A new fundamental diagram with dependence upon a deviation parameter z.

14



desired maximum velocity and the desired time between vehicles, a resulting fundamental

diagram, illustrated in Figure 1.5, is

V p(ρ, z) = max

(
min

(
vmax − fsρ+ vdev

maxz,
1

(timin − γz)

(
1

ρ
− 1

ρjam

)p)
, 0

)
. (1.24)

1.3 Traffic Experiments

It is useful to consider a handful of test cases or ‘experiments’ that reveal the behavior of

these traffic models in common scenarios, including cases designed to demonstrate the behav-

ior we expect the proposed stochastic models to exhibit. The simplest and most well known

test case in traffic modeling is what we will call the ‘ringroad experiment’ (Section 1.3.1).

This is of particular relevance to us because it has been shown experimentally [60] that

large ‘stop and go’ structures spontaneously arise from initial uniformity; this is precisely

the type of phenomenon we would hope to observe with stochastic driver variation. We

will also consider a case in which the speed limit decreases (Section 1.3.2). Because we aim

to develop new models capable replicating traffic phenomena, we will focus on qualitative

features rather than quantitative comparison to data or parameter estimation.

We will primarily visualize the results of these traffic experiments through macroscopic

fields (e.g. density and velocity) and vehicle trajectories, i.e. curves xk(t) such that ẋk(t) =

v(xk(t), t). Vehicle trajectories are always a representation of the velocity field and relative

changes in density (they are streamlines), but they may or may not be an accurate represen-

tation of true density or vehicle spacing. In the context of traffic flow, vehicle trajectories

have the added benefit of corresponding to probe data, allowing for qualitative comparison

to phenomena seen in the literature.

1.3.1 The Ringroad Experiment

It is well known that congested patterns arise spontaneously from uniform or nearly uni-

form flow. This is often observed as ‘phantom jams’ on the highway. A simple test case that
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(a) Initial condition. (b) Backward moving disturbance.

Figure 1.6: Illustration of the ringroad experiment initial condition (a) and the congested
pattern that evolves (b).

exhibits this phenomenon (at a lower velocity) is the ‘ringroad’ experiment, a controlled ver-

sion of which was conducted by Sugiyama et al [60]. In the experiment, drivers are spaced

uniformly along a circular road (Figure 1.6a) and asked to follow the driver in front at a

speed of approximately 30 kilometers per hour (18 miles per hour). After a short period

of time a stop-and-go pattern develops (Figure 1.6b).There is disagreement about the pre-

cise mechanism for this. Particular authors (e.g. Kerner [31, 29] and Trieber [63, 64]) have

worked extensively to develop a ‘physics’ of traffic flow with the aim of classifying traffic

states (called ‘phases’) and transitions between them. However, the causes for congestion

without bottlenecks are not agreed upon. As with most experiments, it is extremely difficult

to find quantitative agreement between models and experiment. For quantitative agree-

ment in models similar in spirit to the models in this thesis without stochastic terms, see

Fan et al [14, 14]. For equilibrium models obtaining quantitative agreement would require

obtaining appropriate fundamental diagrams; doing so is one of the core problems of traffic

modeling. Estimating fundamental diagrams is extremely difficult in general, but data is
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Figure 1.7: The speed drop experiment as realized by the LWR model (Equation 1.7) with
the fundamental diagram presented in Section 1.2.2. The left plot contains density profiles
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especially scarce in the low velocity regime, especially if one would like to isolate single-lane

behavior. For this reason we will provide qualitative evidence that these models exhibit

the proper phenomena and show dependence of these phenomena upon parameters and flow

regime, but leave parameter fitting as a possible avenue for future work.

1.3.2 The Speed Drop Experiment

Another case we will consider is a decrease in speed limit resulting in an increase in

density. For this experiment the fundamental diagram used must have and identifiable

parameter representing the speed limit or maximum velocity that changes sharply at x = 0.

In the case of LWR (Equation 1.7) the governing equation becomes

ρt + (ρV (ρ, vmax))x = 0 (1.25)
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where

vmax =





vlmax if x < 0

vrmax if x > 0

. (1.26)

A thorough discussion of the Riemann problem with spatially varying flux can be found

in [39, 41], among other places. Our speed drop experiment, depicted in Figure 1.7, consists

of three time periods:

Steady State We initialize the domain with a density profile

ρ0(x) =





ρl0 if x < 0

ρr0 if x > 0

(1.27)

where the constants ρl0 and ρr0 are a steady-state solution, i.e.

ρl0V (ρl0, v
l
max) = ρr0V (ρr0, v

r
max). (1.28)

For this condition to be sufficient we also need the standing shock at this disconti-
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nuity to satisfy an entropy condition. It is established as a traffic principle that this

deceleration results in a standing shock. Further, we require that

V (ρl0, v
l
max) + ρl0

∂V

∂ρ
(ρl0, v

l
max) > 0 (1.29)

so that the flow may be controlled from the inflow. For deterministic traffic models,

the solution will be constant until the second period.

High Density Pulse At some later time, the inflow density doubles to 2ρl0. This produces

a high density pulse through the domain. Upon reaching x = 0, part of this wave is

transmitted and part is reflected.

Return to Steady State Before the reflected wave reaches the inlet, the inflow density

is reverted to it’s original value ρl0. For deterministic LWR models, flow conditions

eventually revert to the initial profile.

(The word ‘phase’ may be more appropriate than the term ‘time period’, but the former has

a different accepted meaning in traffic flow.) At each phase, there are several questions of

interest:

Steady State For stochastic models, does stochasticity alone decrease flux such that backup

is observed prior to introduction of the pulse? Does the point at which sharp deceler-

ation occurs vary or does it stay precisely at x = 0?

High Density Pulse A high density pulse will, in general, result in increased travel time

(see Figure 1.8). How does the severity of this increase depend on driver variation?

How variable is this peak travel time under various models?

Return to Steady State How quickly does flow return to the initial steady state? Alter-

natively, does the flow return to the initial steady state at all? The failure of traffic

flow to return to the steady state under these conditions is an example of the capacity

drop phenomenon [63]; models for capacity drop are sought after in traffic modeling.
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1.4 Thesis Outline

The addition of driver-dependent parameters to macroscopic traffic models is a nascent

field (see e.g. [33, 14, 49]). In this thesis a novel collection of models that aim to address

some of the shortcomings are presented. We will

1. select a well-defined stochastic process that varies in space and time,

2. modify this process to better represent driver variation/noise, and finally

3. couple these stochastic processes to existing equilibrium (a.k.a. first order) traffic mod-

els and non-equilibrium (a.k.a. second order) traffic models.

While considering a random initial distribution of driver behaviors that are constant in time

is an interesting area of research, it should be noted that stochastic variation in time only is

insufficient. Varying the fundamental diagram stochastically in time but uniformly in space

results in solutions that are identical to the nominal solution evaluated at a uncertain point in

time. Though this is clear by a change of variables, this experiment was performed in [42].
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These models exhibit a richer range of phenomena when compared to their deterministic

counterparts, but are based on the same assumptions and subject to the same principles.

In Chapter II we will give an overview of stochastic processes in one space dimension and

one time dimension. In particular we will describe the stochastic heat equation as it exists

outside of traffic models. Chapter III presents equilibrium traffic models (see Section 1.1)

with a stochastic, driver-dependent parameter. Chapter IV summarizes non-equilibrium

traffic models (i.e. those with velocity that evolves in time along with traffic density) and

Chapter V will introduce a white noise source term to those models.
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CHAPTER II

A Heat Equation with White Noise Forcing

There are several different generalizations of Brownian motion to multiple dimensions.

Because there is not an underlying physical theory that provides a stochastic framework, we

will consider a few possible random processes and select one that

1. varies in both space and time;

2. has well defined, continuous, and bounded solutions that,

3. when approximated numerically, have mesh-independent statistics, and

4. may be readily modified to incorporate different physical patterns, e.g. advection with

the flow of traffic or boundary conditions.

‘Continuous’ and ‘bounded’ here should be preceded by ‘almost surely’, meaning that this

is the case except for sets of measure zero in probability space. Because every statement in

this chapter has this caveat and the goal of this chapter is to select a process to accomplish

a practical purpose rather than prove properties of stochastic processes, we will omit the

words ‘almost surely’ throughout.

2.1 Independent Processes in Each Cell

To motivate the need for this chapter, let us begin with a discussion of why adding noise

näıvely does not produce a sensible random field. Begin with the (scalar) Ornstein-Uhlbeck
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Figure 2.1: An illustration of several independent Ornstein-Uhlbeck processes at a variety of
points in space (left), contrasted to a set of stochastic processes correlated in space (right).
The examples on the right are a representation of the process and parameters found in
Section 2.2.

process

dz = − 1

τ z
dt+ η dW, (2.1)

i.e. a random increment dW with a reversion to the mean. A detailed analysis of this process

can be found in several standard texts, e.g. [53]. Consider an approach in which we add a

small random perturbation of this type in each computational cell. A simple first-order

scheme that might result is

zn+1
j = znj −

k

τ z
znj + η

√
k ξnj (2.2)

where ξnj are independent and identically distributed (i.i.d.) variables. The result is an

approximation of a different (independent) Ornstein-Uhlbeck process in each spatial cell.

Because there is no correlation from one computational cell to the next, we expect major

changes (discontinuities) in our behavior variable from one cell to the next (see Figure 2.1).
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Figure 2.2: Characterization of a variety of solutions to Equation 2.3. Compare this Fig-
ure 2.6.
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We could add an advective term to Equation 2.2 which might result in a discrete equation

of the form

zn+1
j = znj +

vk

h

(
znj − znj−1

)
− k

τ z
znj + η

√
kξnj . (2.3)

This results in what appear to be continuous realizations in space. At least in the case of

constant velocity, these approximations are made continuous by numerical diffusion. We

argue that any process we would like to use as a building block should at least make sense

in the case of constant velocity. This is illustrated numerically in Figure 2.2.

One solution to this problem is to choose a discretization and work with the discrete

model. Doing so draws a parallel between macroscopic PDE model and the resulting cellular

models, but not one that is consistent under mesh refinement. The parameters in such

models depend on cell size, and the model is no longer a discretization of a PDE. (Another

approach that has been explored by the author but was ultimately discarded in favor of the

present method was to evolve a traffic model atop a random topography generated by a

Brownian sheet and similar processes.)

In the present work we will instead choose an underlying stochastic process that pro-

vides mesh-independent statistics, then couple it to existing macroscopic traffic models.

The required regularization is ultimately achieved through a viscous term (Section 2.2).

Throughout we will state well-known facts about the stochastic processes being discussed

with references to texts on the subject but without proof; rigorous derivations of the pro-

cesses discussed in this chapter are out of the scope of this thesis.

2.2 Stochastic Heat Equation

There are several modifications we might want to make to the process we choose to use.

We would like to impose a variety of boundary conditions, advect the process with the flow of

traffic, and make local changes to the process depending on local flow conditions. It is difficult

to make these modifications to many other stochastic processes. The process described in

25



Figure 2.3: Four independent example realizations of z (Equation 2.4) using η = 5.7742 ×
10−1, κ = 2.4522× 10−4, and τ z = 3.5294× 10−2. The domain is approximated by 800 cells.
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Figure 2.4: Example realizations of the stochastic heat equation with and without advection
using η = 5.7742 × 10−1, κ = 2.4522 × 10−4, and τ z = 3.5294 × 10−2. overlaid at t = 0.02.
The domain is approximated by 800 cells.

this section is a local description of a stochastic process and boundary conditions for it

may be specified in the language of the PDE models we will couple it with. Additionally,

modifications to traffic models using this approach (Equation 2.16) yield models that closely

mirror other models involving transported traffic properties (e.g. [33, 14]) when the white

noise and diffusion terms are neglected. An alternative way to justify this approach is to

argue that the approach discussed at the beginning of this chapter is made sensible with the

inclusion of a regularizing diffusive term.

We will begin by discussing general properties of the stochastic heat equation.This equa-

tion will serve as a ‘building block’ for the addition of white noise to the LWR model in

Section 3.3. Consider

zt = κzxx + ηξ − z

τ z
(2.4)

27



where κ, η, and τ z are constants and ξ is a Gaussian white noise process such that

E
∫∫

V

ξdxdt = 0 (2.5)

E
∫∫

V

ξ2dxdt = m(V ) (2.6)

where m(V ) is the measure of the set V ⊂ {(x, t)}. Here we will ascribe units to the measure

of a set in space-time (so m(V ) has units of length-time). It follows

E[ξ(x, t)ξ(y, s)] = δ(x− y)δ(t− s). (2.7)

As in previous parts of this chapter, our goal is to utilize this underlying process for traffic

modeling; we will cite some necessary facts to justify its use without giving proof. Moreover,

the treatment here will be less rigorous in the interest of brevity and clarity; a rigorous

treatment can be found in [32] or [23].

Solutions to Equation 2.4 (almost surely) have continuous versions, and are (almost

surely) bounded in L2(R × R+) [32]. Four independent realizations showing qualitative

behavior of solutions can be found in Figure 2.3. Note that the time and length scales

have been chosen to be markedly different, and each realization shows similar qualitative

behavior. In these processes we also are seeking regions of markedly different behavior and

a clear difference in magnitude with respect to space and time, both of which are present.

2.3 Parameters

To utilize this process in the models to follow we need some understanding of the char-

acteristic length and time scales over which z changes. What follows is an extension of a
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formal calculation proposed in [23]. We begin with

zt = κzxx −
z

τ z
+ f

z(x, 0) = g(x)

(2.8)

The fundamental solution to Equation 2.8 is

Φ(x, t) =
1√

4πtκ
exp

(
− x2

4tκ
− t

τ z

)
. (2.9)

By ‘fundamental solution’ we mean

z(x, t) =

t∫

0

∫

R

Φ(x− y, t− s)f(y, s)dyds+

∫

R

Φ(x− y, 0)g(y)dy (2.10)

solves Equation 2.8 in R2.

We then set f = ηξ where ξ is a Gaussian white noise as described above. Without loss

of generality (E[z(x, t)z(y, t′)] = E[z(x− y, t)z(0, t′)]), we compute

E[z(x, t)z(0, t′)] = E




t∫

0

∫

R

Φ(x− y, t− s)ηξ(y, s)dyds






t′∫

0

∫

R

Φ(−y′, t′ − s′)ηξ(y′, s′)dy′ds′



= E
t∫

0

t′∫

0

∫

R

∫

R

η2ξ(y, z)ξ(y′, s′)

4πκ
√

(t− s)(t′ − s′)
exp

(
− (x− y)2

4κ(t− s) −
(y′)2

4κ(t′ − s′)

− t− s+ t′ − s′
τz

)
dydy′ds′ds

= η2
min(t,t′)∫

0

∫

R

1

4πκ
√

(t− s)(t′ − s)
exp

(
− (x− y)2

tκ(t− s) −
y2

4κ(t′ − s) −
t+ t′ − 2s

τz

)
dyds

= η2
min(t,t′)∫

0

1√
4πκ(t+ t′ − 2s)

exp

(
− x2

4κ(t+ t′ − 2s)
− t+ t′ − 2s

τz

)
ds.

The quantities of interest for us are a characterization of the covariance in space

σ2
xy = lim

t→∞
Ez(x, t)z(y, t) (2.11)
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and a characterization of the covariance in time

σ2
tδ = lim

t→∞
Ez(x, t)z(x, t+ δ). (2.12)

First addressing variance in the spatial variable x, we continue from above making the

substitution y = x2

8κ(t−s) :

Ez(x, t)z(0, t) =
η2

√
8πκ

t∫

0

1√
t− s exp

(
− x2

8κ(t− s) −
2(t− s)
τ z

)
ds

=
η2

√
8πκ

∞∫

x2

8κt

x2

8κy2

√
8κy

x2
exp

(
−y − 2x2

8τ zκy

)
dy

=
η2|x|
8κ
√
π

∞∫

x2

8κt

y−
3
2 exp

(
−y − x2

4τ zκy

)
dy.

We can then use a symbolic computational tool to evaluate

∞∫

c

y−
3
2 exp

(
−y − a

y

)
dy =

√
π

4a

(
e−2
√
a

(
erf

(√
a− c√
c

)
+ 1

)

+ e+2
√
a

(
erf

(√
a+ c√
c

)
− 1

))

and obtain

lim
t→∞

Ez(x, t)z(0, t) = lim
t→∞

η2

4

√
τ z

κ
exp

(
− |x|√

κτ z

)
.

For general x and y we have

lim
t→∞

Ez(x, t)z(y, t) =
η2

4

√
τ z

κ
exp

(
− 1√

τ zκ
|x− y|

)
. (2.13)

For time, assume without loss of generality δ > 0 and compute (immediately using the
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substitution y = (τ z)−1(δ + 2(t− s)))

Ez(0, t)z(0, t+ δ) = η2

t∫

0

1√
4πκ(δ + 2(t− s))

exp

(
−δ + 2(t− s)

τ z

)
ds

= η2 τ
z

2

δ+2t
τz∫

δ
τz

1√
4πκyτ z

e−ydy

=
η2

4
√
π

√
τ z

κ

δ+2t
τz∫

δ
τz

y−
1
2 e−ydy

and obtain

lim
t→∞

Ez(0, t)z(0, t+ δ) = lim
t→∞

η2

4
√
π

√
τ z

κ

δ+2t
τz∫

δ
τz

y−
1
2 e−ydy

=
η2

4
√
π

√
τ z

κ

∞∫

δ
τz

y−
1
2 e−ydy

=
η2

4
√
π

√
τ z

κ

(
Γ

(
1

2

)
−√π erf

(√
δ

τ z

))

=
η2

4
√
π

√
τ z

κ

(
√
π −√π erf

(√
δ

τ z

))

=
η2

4

√
τ z

κ

(
1− erf

(√
δ

τ z

))

or for general x

lim
t→∞

Ez(x, t)z(x, t+ δ) =
η2

4

√
τ z

κ

(
1− erf

(√
δ

τ z

))
. (2.14)

From either the space or time relations we also obtain a pointwise variance,

σ2 = σ2
xx = σ2

t0 = lim
t→∞

Ez(x, t)z(x, t) =
η2

4

√
τ z

κ
. (2.15)
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From here, we would like to determine what the ideal (potentially non-constant) coefficients

are for coupling Equation 2.4 with a traffic model and potentially fit the resulting parameters

to data. If z is to represent differences between drivers, the length scale it varies on should

be proportional to ρ−1 as a single driver exists in this space. Replacing constant coefficients

with non-constant values is discussed in Section 3.3 and Section 5.1. As for matching to

data, the timescale over which driver behavior changes is unknown; extracting this requires

separating driver bias from non-equilibrium effects. The problem of matching to data may

be fundamentally different in the equilibrium and non-equilibrium cases; the nature of equi-

librium traffic modeling does not allow for separation of an ‘intended’ velocity given by a

fundamental diagram from an actual velocity. Determining precisely how to extract driver

behavior from data in the context of an auxiliary variable of the form here will be left as

an avenue for future research. For development of fundamental diagrams dependent upon a

parameter, see e.g. [49, 42, 16, 14].

Looking forward to Chapters III and V because this property should be advected at the

velocity of traffic, we will introduce an advection term to Equation 2.4 to obtain

zt + vzx = κzxx + ηξ − z

τ z
. (2.16)

2.4 Numerical Approximation

First, let us discuss the ‘equation’

zt = ηξ. (2.17)

To numerically approximate cell averages

z̄nj =

x
j+1

2∫

x
j− 1

2

z(y, tn) dy (2.18)
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Figure 2.5: Example realizations of the stochastic heat equation with constant advection
(Equation 2.16) with velocity v = 5.0 using η = 5.7742 × 10−1, κ = 2.4522 × 10−4, and
τ z = 3.5294× 10−2. The domain is approximated by 800 cells.
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Figure 2.6: Summary statistics of example realizations of Equation 2.4 computed using the
method of Section 2.4. Note that, unlike the results shown in Figure 2.2, the behavior of
this process is consistent as the computational mesh is refined.
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we integrate over a computational cell

hz̄n+1
j − hz̄nj =

x
j+1

2∫

x
j− 1

2

z(y, tn+1) dy −

x
j+1

2∫

x
j− 1

2

z(y, tn) dy

=

x
j+1

2∫

x
j− 1

2

tn+1∫

tn

zt(y, τ) dτ dy

=

x
j+1

2∫

x
j− 1

2

tn+1∫

tn

ξ(y, τ) dτ dy

∼ N (0, hk)

where ‘∼ N (0, hk)’ is understood to mean ‘normally distributed with variance hk’. We then

have
z̄n+1
j − z̄nj

k
=

1√
h k

ξnj (2.19)

where ξnj ∼ N (0, 1). This component will be used below.

Turning our attention to Equation 2.16, a computational step is split into two parts: one

for the left hand side and one for the right hand side. The hyperbolic part (left hand side)

is advanced by a Roe-type scheme with a flux limiter. The right hand side is taken using

an explicit forward step for diffusive terms, backward Euler for the relaxation term, and

forward Euler for the noise term. Explicitly, we first take the advective half-step

Z
(1)
j = Zn

j − ν
(
Zn
j − Zn

j−1 + (1− ν)
(
Zn
j+1 − Zn

j

)
φj−1 − (1− ν)

(
Zn
j − Zn

j−1

)
φj
)

(2.20)

where

ν =
vk

h

and

φj = φ

(
Zn
j−1 − Zn

j

Zn
j − Zj−1

)
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where φ is a flux limiter. For the figures in this section the Superbee limiter

φS(r) = max (0,min(1, 2r),min(2, r)) (2.21)

was used. We then take the half-step involving the right hand side

Z
(2)
j = −

kZ
(1)
j

τ z
(
1 + k

τz

) + κ
k

2

(
Z

(1)
j+1 − 2Z

(1)
j + Z

(1)
j−1

h2

)
+ η

√
k

h
ξnj (2.22)

κ k

2

Zn+1
j+1 − 2Zn+1

j + Zn+1
j−1

h2
= Z

(2)
j (2.23)

where ξnj ∼ N (0, 1) are i.i.d. random variables. To ensure the diffusive terms are fully

resolved we choose

k < min

(
h

v
,
h2

2κ

)
. (2.24)

.

Example realizations computed using this method can be found in Figures 2.5 and 2.4b.

We can compare basic statistics resulting from these computations Figure 2.6 to the method

presented at the beginning of this chapter (Figure 2.2). For the purposes of this compar-

ison the advective term has been neglected. Unlike the case of Figure 2.2, the minimum

and maximum values are not clearly monotone with respect to mesh refinement, nor is the

variance. Because a finer mesh allows more space for variation to occur, we might expect

slightly wider ranges of minimum and maximum values at finer meshes, but nowhere near

the clear mesh dependence shown at the beginning of this chapter.
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CHAPTER III

Stochastic Equilibrium Traffic Models

In this chapter equilibrium traffic models of increasing complexity will be presented. In

this context ‘equilibrium’ means velocity reacts instantaneously to changes in density. In

these models velocity is a function of density, with the possible inclusion of other environ-

mental or behavioral parameters. Mass is conserved, resulting in an LWR type equation

with an additional parameter dependence in the fundamental diagram

ρt + (ρV (ρ, z))x = 0 (3.1)

where z is a small random parameter. In this chapter we will discuss two ways to prescribe

dynamics for z and investigate the behavior of these systems through numerical simulation.

Both are based on diffusion of white noise (Section 2.2).

At this point we have put no restrictions upon what z may be or what it may depend

on. There is no fundamental physics that prescribes the process describing z; it is our

choice. The underlying random process we choose for z should be easy to modify, simple to

compute for unknown time horizons, and bounded. As was the case in Chapter II, nearly

every mathematical statement in this thesis has the caveat of being true ‘almost surely’ and

‘almost everywhere’. For brevity and with the intended audience in mind, these caveats will

be omitted from the text. We will use a stochastic heat equation (Section 2.2) to meet these

requirements. Though a significant amount is known about the stochastic heat equation

37



with linear noise, little is known analytically about the systems to be discussed here. We

will almost entirely rely on intuition and knowledge about the constituent parts to make

inferences about existence of solutions and numerical methods. First, uncoupled stochastic

fields will be used for z; this is precisely a combination of Equation 3.1 with Equation 2.4. In

Section 3.2 we will give a more thorough discussion of this stochastic extension to LWR using

the stochastic heat equation advected with traffic as the underlying random process, and in

Section 3.3 we will choose density dependent parameters in the stochastic heat equation.

3.1 LWR on the Uncoupled Stochastic Heat Equation

Using Equation 2.4 to describe driver variation we obtain the following system of equa-

tions:

ρt + (ρV (ρ, z))x = 0 (3.2a)

zt = κzxx + ηξ − z

τ z
. (3.2b)

Because the dynamics of z do not depend on the traffic dynamics, we can think of Equa-

tion 3.2 as LWR for which the fundamental diagram is some function of space and time—an

evolving topography. Utilization of a fundamental diagram that varies over space and time

has been explored by other authors [5, 61, 33]. This approach differs in that z is (almost

surely) continuous, and the resulting methods are independent of the chosen mesh (see Fig-

ure 2.2). There is little that can be said with regard to this system beyond Section 1.1

without numerical approximation. The system conserves mass. Wave speeds are variable

with respect to a (random) function z(x, t), but do not exceed traffic velocity. This model

is the simplest of its class, and serves as a proof of concept that this combination of LWR

and the stochastic heat equation can produce interesting phenomena not present in the

unmodified equilibrium case.
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3.1.1 Numerical Methods

Because in Equation 3.2 the dynamics of z do not depend on those of the modified LWR,

z(x, t) can be computed ahead of time if we wish, and the choice of numerical method for

computing z can be made independently of the choice for ρ. We compute znj using a forward

time central space scheme for diffusive terms, forward Euler for the stochastic source term,

and backward Euler for the relaxation term. One step is given by

zn+1
j = znj +

√
k

h
ηξnj −

kznj
τ z + k

+ κ
k

h2

(
znj−1 − 2znj + znj+1

)
(3.3)

where h is the size of a cell, k is the size of a timestep, and ξnj are i.i.d. random normal

variables. The density equation is then advanced by

ρn+1
j = ρnj −

k

h

(
Fj+ 1

2
− Fj− 1

2

)
(3.4)

where Fj+ 1
2

is the numerical flux, given by

Fj+ 1
2

=





ρnj V (ρnj , z
n+1
j ) if λnj > λnj+1 and sn

j+ 1
2

> 0

ρnj+1V (ρnj+1, z
n+1
j+1 ) if λnj > λnj+1 and sn

j+ 1
2

< 0

ρnj V (ρnj , z
n+1
j ) if λnj < λnj+1 and λnj > 0

ρnj+1V (ρnj+1, z
n+1
j+1 ) if λnj < λnj+1 and λnj+1 < 0

1
2

(
ρnj V (ρnj , z

n+1
j ) + ρj+1V (ρnj+1, z

n+1
j+1 )

)
otherwise

(3.5)

where

λnj = V (ρnj , z
n+1
j ) + ρnj Vρ(ρ

n
j , z

n+1
j )

snj =
ρnj+1V (ρnj+1, z

n+1
j+1 )− ρnj V (ρnj , z

n+1
j )

ρnj+1 − ρnj
.
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The timestep is restricted to

k < min

(
max
j

h

|λnj |
,
h2

2κ
, 2τ z

)
. (3.6)

3.1.2 Parameters in the Stochastic Heat Equation
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Figure 3.1: An illustration of covariance in z with respect to differences in length and time.
These curves are fully determined by the selection of σ2 (the maximum of the two curves),
the chosen

(
ρ−1

ref , σ
2
x

)
pair (red dots on upper plot), and the (δ, σ2

t ) pair (red dots on lower
plot).

To select κ, τ z, and η it is useful to consider the Equation 2.4 detached from the traffic

system. By doing so we obtain explicit relationships for the covariance between two points
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(a) Autocorrelation of deviation of the mean ve-
locity at the local density for individual drivers
over time.

20 40 60 80 100 120

Space Difference (ft)

0.0

0.5

1.0

1.5

2.0

2.5

C
ov

ar
ia

nc
e

(b) Correlation of deviation from the mean ve-
locity at the local density as a function of dis-
tance.

Figure 3.2: Statistics of
V0(ρ)− v
V1(ρ)

for individual cars where V0(ρ) and V1(ρ) are the mean

and standard deviation respectively of velocity at a given density computed from NGSIM [50]
vehicle trajectories.

Table 3.1: Parameters used to evolve z (Equations 3.2 and 3.10) in this chapter. The tables
on the left and right are equivalent through Equations 3.7a, 3.7b, and 3.7c (or alternatively
Equations 3.25a, 3.25b, and 3.25c). Note these are the same parameters used throughout
Chapter II.

Physical Description

σ2 1.0

σ2
x 0.04

σ2
t 0.4

δ 45 / 3600

ρref 120.0

Parameter Values

η 5.7742× 10−1

κ 2.4522× 10−4

τ z 3.5294× 10−2

ρref 120.0
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with either a time or space separation (see Section 2.3):

σ2
x = lim

t→∞
Ez(x, t)z(x+ ρ−1

ref , t) =
η2

4

√
τ z

κ
exp

(
− 1√

τ zκ
ρ−1

ref

)
(3.7a)

σ2
t = lim

t→∞
Ez(x, t)z(x, t+ δ) =

η2

4

√
τ z

κ

(
1− erf

(√
δ

τ z

))
(3.7b)

σ2 = lim
t→∞

E(z(x, t))2 =
η2

4

√
τ z

κ
. (3.7c)

These curves are fully determined by the choice of a length scale ρ−1
ref , a time scale δ, the

desired correlations over those scales σ2
x and σ2

t , and a pointwise variance σ2 (Figure 3.1).

The five values ρ−1
ref , σ

2
x, δ, σ

2
t , and σ2 uniquely determine the parameters η, κ, and τ z using

Equations 3.7. This choice can be visualized per Figure 3.1 as the selection of a single curve

(black) from a family of possible curves (cyan) using these constraints (red).

We would like to choose these parameters such that, away from initial conditions, z

varies at appropriate scales in time and space. If an analogy to a car-following model in

which drivers carry their own independent z variable is made, then z would be constant over

the length of road occupied by one driver, and be entirely uncorrelated with the constant

regions ahead and behind. As a consequence of treating traffic as a continuum, this is not

possible, nor is it necessarily desired. Further, the form of correlation as a function of distance

has been determined by our choice of random process. If the stochastic heat equation is to

be used, we must choose the parameters that best adapt the class of smooth curves with

the step function that exists in the microscopic case (Figure 3.1). It is not clear what might

guide the selection of a time scale. In what follows we will choose the pointwise variance

(Equation 3.7c) to be one. This is a convenient scaling, but not one that is necessarily

equivalent to the choices made in Section 1.2.2. The work by Fan et al [14, 15] has fit similar

non-stochastic models to data.

An additional difficulty that arises in finding a proper scaling is that traffic dynamics

are qualitatively driven as much by the extrema of z over a region in space as the mean
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over a region in space. We will use a fundamental diagram that has the same form, but

not an equivalent scaling, to that of Section 1.2.2. To investigate the effect of the stochastic

parameter z, we will introduce an additional constant ω to control the amplitude of z by

replacing Equation 3.2a with

ρt + (ρV (ρ, ωz))x = 0. (3.8)

Unless otherwise noted, ω = 1.

3.1.3 The Ringroad Experiment

Figures 3.3 and 3.4 show sample realizations with periodic boundary conditions (see

Section 1.3.1). While the density fields and stochastic fields are not smooth, the integrals of

vehicle trajectories are smooth. Vehicle trajectories show that backward moving congestion

waves develop spontaneously and consistently. Typically a smoothing g̃ of noisy data g takes

the form

g̃(x) =

∫
K(x− y)g(y) dy (3.9)

where K is a kernel that must be chosen. Visualizing vehicle trajectories avoids the need

for this arbitrary choice. Though the models are very different, it is interesting to compare

the vehicle trajectories obtained by integrating a macroscopic equilibrium model like those

in Figure 3.3 or Figure 3.4 with those of the microscopic pedestrian model in [62]. This is

also the case for the figures that follow.

3.2 A Stochastic Extension to LWR with Constant Coefficients

Some previous authors have introduced driver behavior parameters [33, 38, 14]; here

we will introduce a parameter governed by a random process. If z is to correspond to

some property of an individual driver, it should be advected at the speed of traffic. To

make z behave as a property of the driver rather than a property of the road, we modify
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Figure 3.3: Four realizations of the ringroad experiment using LWR modified by a (decou-
pled) random process z (Equation 3.2). The linearized fundamental diagram (Equation 1.21)
and the parameters in Table 1.2 with ω = 1 were used with an initial density of ρ0 = 120.0.
Each row represents an independent realization. The first column shows the density profile at
the initial time, and early time, and a later (fully developed) time; the second column shows
the velocity profile at the same times; the third column shows sample vehicle trajectories.
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Figure 3.4: Four realizations of the ringroad experiment using LWR modified by a (decou-
pled) random process z (Equation 3.2). The linearized fundamental diagram (Equation 1.21)
and the parameters in Table 1.2 with ω = 1 were used with an initial density of ρ0 = 140.0.
Each row represents an independent realization. The first column shows the density profile at
the initial time, and early time, and a later (fully developed) time; the second column shows
the velocity profile at the same times; the third column shows sample vehicle trajectories.

45



Equation 3.2b to include an advection term

ρt + (ρV (ρ, ωz))x = 0 (3.10a)

zt + V (ρ, ωz)zx = κzxx + ηξ − z

τ z
. (3.10b)

One consequence of introducing a stochastic component to driver behavior is that many of

the properties desired for macroscopic traffic models [2, 18] are violated or become difficult

to analyze. In particular, the inclusion of the viscous term κzxx renders the system no longer

hyperbolic. However, introduction of the viscous regularization of the stochastic field in an

auxiliary variable avoids most of the problems typically caused by viscous terms in traffic

models. What follows is a reflection upon the traffic modeling principles outlined in [11, 2,

18] with respect to this system, followed by numerical results.

3.2.1 Hyperbolicity, Anisotropy, and Boundedness

The non-conservative form of Equation 3.10 is



ρ

z



t

+



V + ρVρ ρVz

0 V




︸ ︷︷ ︸
A



ρx

zx


 =




0

κzxx − z
τz

+ ηξ


 . (3.11)

This system has eigenvalues λ1 = V + ρVρ and λ2 = V . If Vρ ≤ 0 then λ1 ≤ λ2. As usual,

we will let

Λ =



λ1 0

0 λ2


 . (3.12)
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The corresponding eigenvectors (such that AR = RΛ) are

R = [r1 r2] =



ρ −Vz

Vρ

0 1


 . (3.13)

As one would expect, the wave corresponding to λ2 = V (ρ, z) is linearly degenerate (i.e.∇λ2 ·

r2 = 0). The wave corresponding to λ1 = V (ρ, z) + ρVρ(ρ, z) mirrors the behavior of LWR

in that

∇λ1 · r1 = ρ (ρVρρ + 2Vρ) = ρ
∂

∂ρ
(V + ρVρ) . (3.14)

From this we conclude that acceleration causes rarefactions and deceleration causes shocks,

to the same extent that is the case in LWR.

The matrix A in Equation 3.11 is diagonalizable (and the system is hyperbolic) as long

as the ratio Vz/Vρ is defined. We might expect Vρ = 0 for very low densities (free flow)

and very high densities (stationary traffic). In the case of very high densities, this condition

will be satisfied as would not expect even the most aggressive driver to accelerate with

nowhere to go. For free flow, though we may expect constant velocity, most data collected

suggests that there is a non-negligible decrease in velocity as density increases, even in free

flow (see e.g. [65, 42]). In the case that this ratio is indeterminate, i.e. in regimes where all

drivers behave identically, the system decouples as expected.

Hyperbolicity is generally considered a requirement for macroscopic traffic flow modeling

with PDE [11, 2], and any relaxation of hyperbolicity should be justified. The inclusion of

viscous terms and source terms result in a system that is not hyperbolic. We required that

solutions to our underlying stochastic process be well-defined and (a.s.) bounded, but the

coupling present in Equation 3.10 does not ensure such a result. Some authors (e.g. [33])

have taken an approach similar to the one at hand without a regularizing term in space;

it is not clear in these cases that a solution to a differential equation is being computed

(See Chapter II). The ‘regularization’ that appears on these solutions is likely dependent on
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the amount of erroneous dissipation in the numerical scheme. Including a dissipative term

allows a high-resolution treatment of the hyperbolic part and ensures the dominant part of

the regularizing diffusion is not numerical error. In Section 2.4 mesh dependence for this

type of ‘source term’ was demonstrated. In short, the justification for the viscous term is

necessary for solutions to be independent of the discretization. This is true of an approach

that includes stochasticity in space and time. Only including stochasticity in time (uniformly

across space) results only in time uncertainty [42]. Including stochastic variation in space

(or as a fixed property of drivers) has also been explored by previous authors [34, 19].

3.2.2 Vehicles have Personalities that Remain Unchanged by Motion

Daganzo [11] noted that “vehicles have personalities (e.g., aggressive and timid) that

remain unchanged by motion.” Some authors (e.g. [2, 59]) have addressed this by noting

that the second order models in question have the spirit of or are derived from car following

models, whereas some [33, 4] have included a conserved quantity representing some kind

of characteristic, addressing this point directly. The case for the regularization term has

been made in Section 3.2.1. The decision for the driver-dependent property to be advected

rather than conserved is in closer alignment to the fundamental principle that cars have

‘personalities.’

3.2.3 Numerical Methods

Unlike Equation 3.2, Equation 3.10 couples the driver variation process z with the evolu-

tion of traffic density ρ; z cannot be computed independently of ρ. For the numerical results

that follow, we discretize Equation 3.10 with an operator splitting in which the hyperbolic

part (left hand side) is handled by a first-order wave propagation scheme and the source

terms (right hand side) consists of a random increment, backward Euler for the relaxation

term, and a forward time central space scheme for the diffusion term. A computational step
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consists of the following:



ρ∗j

z∗j


 =



ρnj

znj


−

k

h

(
Rj− 1

2
Λ+
j− 1

2

αj− 1
2

+Rj+ 1
2
Λ−
j+ 1

2

αj+ 1
2

)
(3.15a)

ρn+1
j = ρ∗j (3.15b)

zn+1
j = znj +

√
k

h
η ξnj −

z∗j
1 + τz

k

+ κ
k

h2

(
z∗j−1 − 2z∗j + z∗j+1

)
(3.15c)

where h is the cell width, k is the size of the timestep, Λ+ (resp. Λ−) are the element-wise

maximum (resp. minimum) of Λ and zero,

α =



α1

α2


 =




∆ρ
ρ̄

+ V̄z
ρ̄V̄ρ

∆z

∆z


 , (3.16)

and ξnj are i.i.d. random normal variables. Wave directions, speeds, and strengths are ob-

tained from the eigendecomposition Aj+ 1
2
Rj+ 1

2
= Rj+ 1

2
Λj+ 1

2
where Aj+ 1

2
is a chosen average

of the Jacobian matrix (Equation 3.11) between cells j and j + 1. We will refer to the left

and right states as (ρL, zL) and (ρR, zR), the corresponding velocities as VL = V (ρL, zL) and

VR = V (ρR, zR), and differences as ∆ρ = ρR − ρL, ∆z = zR − zL, ∆V = VR − VL, and

∆(ρV ) = ρRVR − ρLVL. To conserve mass, we must have

∆(ρV ) = (V̄ + ρ̄V̄ρ)∆ρ+ ρ̄V̄z∆z (3.17)

= ρ̄
(
V̄ρ∆ρ+ V̄z∆z

)
+ V̄∆ρ. (3.18)

If we require

∆V = V̄ρ∆ρ+ V̄z∆z (3.19)
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then we must have

∆(ρV ) = ρ̄∆V + V̄∆ρ. (3.20)

Because there is no conserved quantity corresponding to the property z the choice of z̄ is an

unrestricted (as long as it is an average). We will use the simple arithmetic averages

ρ̄ =
ρL + ρR

2
(3.21a)

z̄ =
zL + zR

2
(3.21b)

V̄ =
VL + VR

2
(3.21c)

To choose V̄ρ and V̄z such that Equation 3.19 is satisfied we take inspiration from [45]. The

point

(x, y) = (V ∗ρ , V
∗
z ) =

(
1

2
(Vρ(ρL, zL) + Vρ(ρR, zR)) ,

1

2
(Vz(ρR, zR) + Vz(ρL, zL))

)

is projected onto the line x∆ρ + y∆z = ∆V to obtain (V̄ρ, V̄z). In other words, we choose

V̄ρ and V̄z such that

(V̄ρ − V ∗ρ )2 + (V̄z − V ∗z )2

is minimized subject to Equation 3.19 where V ∗ρ and V ∗z are averages of the partial derivatives

evaluated at the left and right states. The resulting approximations to the partial derivatives

at the cell interface are

V̄ρ =
(∆z)2V ∗ρ − (∆ρ)(∆z)V ∗z + (∆ρ)(∆V )

(∆ρ)2 + (∆z)2
(3.22a)

V̄z =
−(∆ρ)(∆z)V ∗ρ + (∆ρ)2V ∗z + (∆z)(∆V )

(∆ρ)2 + (∆z)2
. (3.22b)
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To obtain formulas that may be numerically evaluated for (∆ρ)2 + (∆z)2 ≈ 0, we rearrange

some terms and introduce a small ε > 0:

V̄ρ ≈
(

1 +
(∆ρ)2

(∆z)2 + ε

)−1

V ∗ρ +

(
(∆ρ)

(∆ρ)2 + (∆z)2 + ε

)
(−(∆z)V ∗z + ∆V ) (3.23a)

V̄z ≈
(

1 +
(∆z)2

(∆ρ)2 + ε

)−1

V ∗z +

(
∆z

(∆ρ)2 + (∆z)2 + ε

)(
−(∆ρ)V ∗ρ + ∆V

)
(3.23b)

These formulas recover the limit (V̄ρ(ρ, z), V̄z(ρ, z))→ (Vρ(ρ̄, z̄), Vz(ρ̄, z̄)) as ∆ρ,∆z → 0.

3.2.4 The Ringroad Experiment

Figures 3.5 and 3.6 show realizations of the ringroad experiment (Section 1.3.1) with

moderate and high density. At moderate density (Figure 3.5) we observe separation of traffic

into high and low density regimes. In this regime we see that blocks of traffic are forced to

deviate from the fundamental diagram to the same extent as the slowest driver. Because

the domain is small, the overall velocity decreases dramatically due to this (inevitable)

limiting driver. Figure 3.6 shows the same experiment with a higher density. In the higher

density regime we see ‘stop and go’ patterns develop; this is most clearly seen in vehicle

trajectories. The development of this pattern is remarkably consistent across realizations.

Figures 3.7 and 3.8 show the same two scenarios with 20% more variation in the fundamental

diagram, greatly exaggerating the effects discussed.

Beyond showing that individual realizations are capable of exhibiting the desired behav-

ior, as we increase the level of driver variation (through varying ω), we observe an increase

in travel time. This is can be seen in the the distribution across realizations of times taken

to traverse the domain after a period of time (Figure 3.9) and the minimum velocity across

the domain at this time (Figure 3.10). It is also of note that the variance in transit time

(Figure 3.9) increases substantially as the effect of noise ω is increased. Practical use of the

models in this section would require the stochastic parameters and fundamental diagram to

be properly estimated. Because the deviation from the mean velocity |V (ρ, z) − V (ρ, 0)| is
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Figure 3.5: Realizations of the ringroad experiment using the LWRZ model (Equation 3.10)
using the linearized fundamental diagram (Equation 1.21) and the parameters in Table 1.2.
The initial density is ρ0 = 80.0 and ω = 1.0. Each row represents an independent realization.
The first column shows the density profile at the initial time, and early time, and a later
(fully developed time); the second column shows the velocity profile at the same times; the
third column shows vehicle trajectories.

52



0.0 0.1 0.2

x

D
en

si
ty

0.0 0.1 0.2

x

V
el

o
ci

ty

0.00 0.05 0.10

x

0.12

0.14

0.16

t

0.0 0.1 0.2

x

D
en

si
ty

0.0 0.1 0.2

x

V
el

o
ci

ty

0.00 0.05 0.10

x

0.12

0.14

0.16

t

0.0 0.1 0.2

x

D
en

si
ty

0.0 0.1 0.2

x

V
el

o
ci

ty

0.00 0.05 0.10

x

0.12

0.14

0.16

t

0.0 0.1 0.2

x

D
en

si
ty

0.0 0.1 0.2

x

V
el

o
ci

ty

0.00 0.05 0.10

x

0.12

0.14

0.16

t

Figure 3.6: Realizations of the ringroad experiment using the LWRZ model (Equation 3.10)
using the linearized fundamental diagram (Equation 1.21) and the parameters in Table 1.2.
The initial density is ρ0 = 130.0 and ω = 1.0. Each row represents an independent realization.
The first column shows the density profile at the initial time, and early time, and a later
(fully developed time); the second column shows the velocity profile at the same times; the
third column shows vehicle trajectories.
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Figure 3.7: Realizations of the ringroad experiment using the LWRZ model (Equation 3.10)
using the linearized fundamental diagram (Equation 1.21) and the parameters in Table 1.2.
The initial density is ρ0 = 80.0 and ω = 1.2. Each row represents an independent realization.
The first column shows the density profile at the initial time, and early time, and a later
(fully developed time); the second column shows the velocity profile at the same times; the
third column shows vehicle trajectories.
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Figure 3.8: Realizations of the ringroad experiment using the LWRZ model (Equation 3.10)
using the linearized fundamental diagram (Equation 1.21) and the parameters in Table 1.2.
The initial density is ρ0 = 130.0 and ω = 1.2. Each row represents an independent realization.
The first column shows the density profile at the initial time, and early time, and a later
(fully developed time); the second column shows the velocity profile at the same times; the
third column shows vehicle trajectories.
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Figure 3.9: Histograms showing the distribution of the final time to traverse the domain
(i.e. the last traversal before t = 0.08) across realizations of Equation 3.10 with constant
coefficients as the amplitude of noise (ω) varies. Background density is ρ0 = 130.0. Each
histogram is compiled from 400 realizations.
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Figure 3.10: Histograms showing the distribution of minimum velocity at t = 0.08 across
realizations of Equation 3.10 with constant coefficients as the level of noise (ω) varies. Back-
ground density is ρ0 = 130.0. Each histogram is compiled from 400 realizations.
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both a function of density and a variation parameter, properly choosing the fundamental

diagram to produce useful predictions is a difficult task.

3.3 Stochastic Extension to LWR with Density Dependent Coef-

ficients

In Section 3.2 we chose a characteristic length ρ−1
ref , a characteristic time δ, and covariances

σ2, σ2
x, σ

2
t to obtain corresponding parameters κ, η, and τ z. However, the length scale upon

which we expect variation is the distance between drivers, not a fixed length. To remedy

this, we choose σ2, σ2
x, σ

2
t , and require

σ2 = lim
t→∞

Ez(x, t)z(x, t) (3.24a)

σ2
x = lim

t→∞
Ez(x, t)z

(
x+

1

ρ

)
(3.24b)

σ2
t = lim

t→∞
Ez(x, t)z(x, t+ δ). (3.24c)

(Recall ρ−1 is mean distance between vehicles.) To satisfy these conditions we need

σ2 =
η2

4

√
τ z

κ
(3.25a)

σ2
x =

η2

4

√
τ z

κ
exp

(
− 1√

τ zκ

1

ρ

)
(3.25b)

σ2
t =

η2

4

√
τ z

κ

(
1− erf

(√
δ

τ z

))
; (3.25c)

accomplishing this will require at least one of the ‘parameters’ to depend on density. We

chose to make κ depend on density by introducing new constants η′ and κ′ such that

η = η′
√
ρref

ρ
(3.26)

κ = κ′
(
ρref

ρ

)2

. (3.27)
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There are two degrees of freedom among these three constants. The advantages of including

ρref are to maintain the expected units and to make it simple to relate κ′ and η′ to κ and η in

Section 3.2 at a fixed density. In other words, we can adapt parameter sets from Section 3.2

using this nominal density. This change results in fewer oscillations in regions of low density;

this is not only more representative of the smaller number of drivers in those regions, but

also leads to somewhat better behaved results.

3.3.1 Numerical Methods

Only minor modifications to the approach presented in Section 3.2.3 are required. To

ensure stability across hundreds of realizations, a minimum density is imposed for the pur-

poses of computing κ and η. For the entirety of this Chapter that value is ρfloor = 1.0. This

minimum is reached extremely infrequently; it is a precaution. To be explicit,



ρ∗j

z∗j


 =



ρnj

znj


−

k

h

(
Rj− 1

2
Λ+
j− 1

2

αj− 1
2

+Rj+ 1
2
Λ−
j+ 1

2

αj+ 1
2

)
(3.28a)

ρn+1
j = ρ∗j (3.28b)

zn+1
j = znj +

√
k

h
ηnj ξ

n
j −

kz∗j
k + τ z

+ κnj
k

h2

(
z∗j−1 − 2z∗j + z∗j+1

)
(3.28c)

where

κnj = κ′

(
ρref

max
(
ρ∗j , ρfloor

)
)2

(3.29)

ηnj = η′
√

ρref

max
(
ρ∗j , ρfloor

) . (3.30)

3.3.2 The Ringroad Experiment

Figures 3.11 and 3.13 show example realizations in a periodic domain with moderately

high density, and are the variable coefficient analogs of Figures 3.5 and 3.7. Similarly,
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Figure 3.11: Realizations of the ringroad experiment using the LWRZ model (Equation 3.10)
with variable coefficients (Equations 3.26 and 3.27). The linearized fundamental diagram
(Equation 3.10) with parameters in Table 1.2 was used. The initial density is ρ0 = 100.0
and ω = 1.0. Each row represents an independent realization. The first column shows the
density profile at the initial time, and early time, and a later (fully developed time); the
second column shows the velocity profile at these times; the third column contains vehicle
trajectories.
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Figure 3.12: Realizations of the ringroad experiment using the LWRZ model (Equation 3.10)
with variable coefficients (Equations 3.26 and 3.27). The linearized fundamental diagram
(Equation 3.10) with parameters in Table 1.2 was used. The initial density is ρ0 = 130.0
and ω = 1.0. Each row represents an independent realization. The first column shows the
density profile at the initial time, and early time, and a later (fully developed time); the
second column shows the velocity profile at these times; the third column contains vehicle
trajectories.

61



0.00 0.05 0.10

x

D
en

si
ty

0.00 0.05 0.10

x

V
el

o
ci

ty

0.00 0.05 0.10

x

0.03

0.04

0.05

0.06

t

0.00 0.05 0.10

x

D
en

si
ty

0.00 0.05 0.10

x

V
el

o
ci

ty

0.00 0.05 0.10

x

0.03

0.04

0.05

0.06

t

0.00 0.05 0.10

x

D
en

si
ty

0.00 0.05 0.10

x

V
el

o
ci

ty

0.00 0.05 0.10

x

0.03

0.04

0.05

0.06

t

0.00 0.05 0.10

x

D
en

si
ty

0.00 0.05 0.10

x

V
el

o
ci

ty

0.00 0.05 0.10

x

0.03

0.04

0.05

0.06

t

Figure 3.13: Realizations of the ringroad experiment using the LWRZ model (Equation 3.10)
with variable coefficients (Equations 3.26 and 3.27). The linearized fundamental diagram
(Equation 3.10) with parameters in Table 1.2 was used. The initial density is ρ0 = 100.0
and ω = 1.2. Each row represents an independent realization. The first column shows the
density profile at the initial time, and early time, and a later (fully developed time); the
second column shows the velocity profile at these times; the third column contains vehicle
trajectories.
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Figure 3.14: Realizations of the ringroad experiment using the LWRZ model (Equation 3.10)
with variable coefficients (Equations 3.26 and 3.27). The linearized fundamental diagram
(Equation 3.10) with parameters in Table 1.2 was used. The initial density is ρ0 = 130.0
and ω = 1.2. Each row represents an independent realization. The first column shows the
density profile at the initial time, and early time, and a later (fully developed time); the
second column shows the velocity profile at these times; the third column contains vehicle
trajectories.
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Figure 3.15: Distribution of times taken to traverse the domain immediately before t = 0.08
under Equation 3.10 with coefficients varied according to Equations 3.27 and 3.26. The
background density is ρ0 = 130.0. Each histogram is compiled from 400 realizations.
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Figure 3.16: Distribution of minimum velocity across the domain at t = 0.08 under Equa-
tion 3.10 with coefficients varied according to Equations 3.27 and 3.26. The background
density is ρ0 = 130.0. Each histogram is compiled from 400 realizations.
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Figures 3.12 and 3.14 demonstrate behavior at very high densities and correspond to Fig-

ures 3.6 and 3.8 in the constant coefficient case. Variable coefficients clearly produce less

variation in low density regions as intended. expected. This leads to slightly more pro-

nounced differences between the high and low density regions that develop from uniform ini-

tial conditions. The aggregated results in Figures 3.15 and 3.16 correspond to their constant

coefficient counterparts, Figures 3.9 and 3.10. While the trend in transit time (Figure 3.15)

is very similar, the distribution of minimum velocities is different. This may be a result

of the procedure by which coefficients are varied, but may also be a result of parameters

not matching exactly at this density as a result of the chosen reference density ρref ; see

Equations 3.26 and 3.27 in conjunction with Table 3.1.

3.3.3 The Speed Drop Experiment

Sample realizations of the speed drop experiment can be found in Figure 3.17. These

realizations are qualitatively similar to the nominal case (Figure 1.7), with the exception of

separation in the downstream (higher density) half of the domain.

Figure 3.18 shows the expected travel time from the left side of the domain to the right

hand side of the domain as a function of start time. Here the ‘expected’ time is computed

by taking approximate travel times of vehicles spaced ρ−1 apart across 40 realizations and

projecting them onto a Haar basis with 28 basis functions. Though vehicle trajectories for

individual realizations look qualitatively similar, we observe significantly increased travel

time in realizations as with increased driver inhomogeneity.

3.4 Similarity to Non-Equilibrium Models

There is a difficulty in terminology that arises throughout this work resulting in the

use of the terms ‘equilibrium’ and ‘non-equilibrium’ rather than referring to the number of

equations (i.e. an nth order model). This may be more of a philosophical distinction than

a technical one. Consider Equation 3.10, where the right hand side of the z equation is
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Figure 3.17: Example realizations of the speed drop experiment (Section 1.3.2) using Equa-
tion 3.10 with variable coefficients. Here ω = 1.
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Figure 3.18: Average travel times from the inlet to the outlet of the speed drop experiment
as modeled by Equation 3.10 with variable coefficients averaged across 40 realizations per
value of ω.

abbreviated by sz. For the purposes of the present discussion it does not matter whether

the coefficients vary with density (Section 3.2) or not (Section 3.3). Because

Vt = ρtVρ + ztVz

and

Vx = ρxVρ + zxVz
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we have

Vt = −(ρV )x︸ ︷︷ ︸
ρt

Vρ + (sz − V zx)︸ ︷︷ ︸
zt

Vz

= −(ρV )xVρ − V Vzzx + szVz

= −ρVρVx − V Vρρx − V Vzzx + szVz

= −V (Vρρx + Vzzx)︸ ︷︷ ︸
Vx

−ρVρVx + szVz

= − (V + ρVρ)Vx + szVz. (3.31)

We can then introduce the variable v = V and write

ρt + (ρv)x = 0

vt + (v + ρVρ)vx = Vzs
z

(3.32)

If we use the linearized fundamental diagram (Equation 1.21), then V (ρ, z) = V0(ρ)+zV1(ρ);

this allows us to compute

z =
v − V0(ρ)

V1(ρ)
. (3.33)

The Jacobian matrix for this system is



v ρ

0 v + ρVρ


 (3.34)

with eigenvalues λ1 = v + ρVρ < λ2 = v, eigenvectors

r1 =




1

Vρ


 , r2 =




1

0


 . (3.35)
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This is remarkably similar to the non-equilibrium models of Section 4.1, especially the model

by Aw, Rascle, and Zhang in Section 4.3. In light of this one could argue that this is really

a non-equilibrium model with a perturbation. If this is the case, then we should more

critically examine the perturbation we make in the form of a non-equilibrium model. This

will be discussed in Section 5.2.

3.5 Higher Dimensional Representations of Driver Variation

It is possible that a single variable is not sufficient to to capture the multitude of manners

in which drivers may deviate from the mean fundamental diagram. There is no reason z

needs to be a single variable. Instead we may have

ρt + (ρV (ρ, z))x = 0

zt + V (ρ, z)zx = −Tz +∇ · (M∇z) + E dW

(3.36)

where z ∈ RN , T ∈ RN×N , K ∈ RN×N , an E ∈ RN×N . In the simplest case T = τ zI, K = κI,

and E = ηI, yielding N identical processes z1, z2, . . . , zN with independent source terms, but

this need not be the case. Utilizing equations of the form Equation 3.36 is not substantially

more difficult numerically than Equation 3.10, but finding parameters for such an equation

would require a different approach for finding a fundamental diagram and coefficients.

3.6 Conclusion

In this chapter we have modified LWR (Equation 1.7) by introducing dependence upon

an additional behavior parameter z in the fundamental diagram (Section 1.2). This behavior

parameter is governed by a stochastic heat equation (Chapter II) coupled to the LWR system.

In the second equation constant coefficients as well as coefficients that preserve a density-

dependent length scale were introduced. The resulting models (Equation 3.10) are capable of

evolving large stop-and-go traffic patterns, and these patterns persist over time. Realizations
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demonstrate consistent qualitative behavior. Transit efficiency is, in general, decreased as

inhomogeneities in behavior (as controlled by ω) increase.
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CHAPTER IV

Non-Equilibrium Traffic Models

The models referred to here as ‘non-equilibrium’, correspond to ‘second order’ models

in the traffic literature. In these models the velocity v = v(x, t) is an additional depen-

dent variable that does not instantaneously adapt to a mean (equilibrium) velocity for that

density. The modern study of non-equilibrium macroscopic traffic models follows from Da-

ganzo’s requirements for such models [11], Aw and Rascle’s response [2], and the following

discourse [26, 68, 67]. Aw and Rascle required hyperbolicity, boundedness, anisotropy—that

waves may not travel faster than traffic velocity, and wave structure—that braking must

cause shock waves and acceleration must cause rarefaction waves. Shortly thereafter, Hel-

bing developed models that include a velocity variance [24, 25]. A discussion of stability and

wave speeds for non-equilibrium models followed [26, 68].

One way to arrive at an acceleration equation is to rewrite LWR (Equation 1.7) in terms

of velocity. First, we compute

(V (ρ))t = V ′(ρ)ρt

= −V ′(ρ)(ρV (ρ))x

= −ρV ′(ρ)(V (ρ))x − V (ρ) (V ′(ρ)ρx)︸ ︷︷ ︸
(V (ρ))x

= −(V (ρ) + ρV ′(ρ))(V (ρ))x.
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Should the fundamental diagram have an inverse ρ(v) = V −1(v) (which by Section 1.2 is

likely) we can obtain an analogous equation for velocity v = V (ρ):

vt + (v + ρ(v)V ′(ρ(v)))vx = 0. (4.1)

Equation 4.1 is equivalent to LWR for smooth solutions, but does not ensure mass conser-

vation in the general case. We will find that many non-equilibrium models, especially the

form proposed by Zhang (see Section 4.10), closely mirror equilibrium dynamics.

Most of the models we will consider are derived from a car following analog. Most, with

the notable exception of Payne and Whitham’s model (Section 4.2), fit into a common frame-

work for which much of the analysis may be shared. For this reason we will begin with a

discussion of non-equilibrium models in continuum non-equilibrium models in some general-

ity (Section 4.1), then discuss the non-equilibrium models we to be extended in Chapter V.

A discussion of (microscopic) car-following models can be found in Appendix A.

4.1 General Form for Non-Equilibrium Models

Requiring adherence to some established principles of traffic modeling reduces the selec-

tion of a second order traffic model to a few constrained choices. What follows is similar

in spirit to Zhang [67], but rather than setting out to find a sensible non-equilibrium traffic

model, we are setting out to find the form of all sensible second order traffic models. We

begin by requiring conservation of mass (Equation 1.5). Noting velocity is not a conserved

quantity, requiring velocity relaxes to a fundamental diagram, and requiring the system to

be hyperbolic yields the general form



ρt

vt


+



v ρ

C B






ρx

vx


 =




0

V (ρ)−v
τv


 (4.2)
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where τ v is a relaxation time. The wave speeds of this system are

λ∓ =
1

2

(
v +B ∓

√
(v −B)2 + 4Cρ

)
. (4.3)

For the system to be hyperbolic, the wave speeds must be real, i.e.

(v −B)2 + 4Cρ ≥ 0. (4.4)

To have no wave travel faster than the speed of traffic it is required

v +B +
√

(v −B)2 + 4Cρ ≤ 2v

=⇒
√

(v −B)2 + 4Cρ ≤ v −B (4.5)

=⇒ (v −B)2 + 4Cρ ≤ (v −B)2

=⇒ 4Cρ ≤ 0

=⇒ C ≤ 0. (4.6)

The combination of this fact and Equation 4.4 leads to the necessary condition

− (v −B)2

4ρ
≤ C ≤ 0. (4.7)

The author is not aware of a traffic model that is hyperbolic and satisfies the anisotropy

condition for all (ρ, v) that chooses C 6= 0. If C = 0, Equation 4.5 requires

v −B ≥ 0 ⇐⇒ B ≤ v. (4.8)

With the exception of Payne and Whitham (Section 4.2), all the models we will consider
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can be written in the form

ρt + (ρv)x = 0 (4.9a)

vt + (v − g)vx =
V (ρ)− v

τ v
(4.9b)

where g > 0 is a function that varies between specific non-equilibrium models. In none of

the models considered here does g depend on velocity. Writing second order models in this

form allows us to be more concise in our description and comparison.

Though there is no conserved analog to momentum, it is sometimes useful to have an ex-

plicit flux. Equation 4.9b corresponds to a conservation form proposed by Aw and Rascle [2]

as well as Zhang [67] (see Section 4.3)

ρt + (ρv)x = 0

(ρ(v + p))t + (ρv(v + p))x = ρ

(
V (ρ)− v

τ v

) (4.10)

where p, typically called ‘traffic pressure’, is given by

p(ρ) =

ρ∫
g(r)

r
dr. (4.11)

‘Traffic pressure’ is a velocity, also sometimes called a ‘hesitation function’ [14].

4.1.1 Properties of the Hyperbolic Part

Consider the homogeneous version of Equation 4.9



ρt

vt


+



v ρ

0 v − g




︸ ︷︷ ︸
A



ρx

vx


 =




0

0


 . (4.12)
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Eigenvalues of A are λ1 = v−g ≤ λ2 = v; for any g ≥ 0 the anisotropy condition is satisfied.

The matrix of corresponding eigenvectors is given by

R =




ρ ρ

−g(ρ) 0


 . (4.13)

Again, let

Λ =



λ1 0

0 λ2


 . (4.14)

Linearity of the first wave depends on the choice of g;

r1 · ∇λ1 = −ρ∂g
∂ρ
− g + g

∂g

∂v
. (4.15)

The second wave is linearly degenerate as

r2 · ∇λ2 = 0. (4.16)

Traffic models should produce rarefaction waves in the case of accelerating traffic and shock

waves and in the case of braking [2]. Song [59] showed the condition

r1 · ∇λ1 < 0 (4.17)

is required for this behavior. Many of the choices for g we will consider are of the form

g(ρ) = aργ + b (4.18)
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Table 4.1: Common formulas for g(ρ) for traffic models in the form of Equation 4.9.

in terms of ‘traffic pressure’ g(ρ) = ρp′(ρ)

Aw and Rascle [2] g(ρ) = γργ

Zhang [67] g(ρ) = −ρV ′(ρ)

Song and Karni [59] g(ρ) = 1
τv

(
siminρ

jam

ρ
+ `c

)

where γ ≥ −1, a ≥ 0, and b ≥ 0. For these choices we have

r1 · ∇λ1 = −a (γργ + ργ)− b = −a(γ + 1)ργ − b (4.19)

Aw and Rascle [2] choose γ > 0 and b = 0 in analogy with fluid pressure. Zhang [67] presents

a derivation in which g(ρ) = −ρV ′(ρ); for a range of fundamental diagrams of the type in

Section 1.2.3 based on the notion of maintaining a constant travel time between vehicles,

this has the form of Equation 4.18. Jiang [27] chooses a = 0 and b > 0 (see Section 4.3).

Song and Karni [59] choose γ = −1 with b > 0 (Section 4.4). All of these choices satisfy the

condition in Equation 4.17. The two Riemann invariants, i.e. Rk such that ∇Rk ·rk = 0, are

R1 = v + p

R2 = v

(4.20)

where p is ‘traffic pressure’ (Equation 4.11).

4.1.2 Stability

The stability region for systems in the form of Equation 4.9 can be approximated through

the dispersion relation for a linearized system [30, 27, 52]. First, we linearize our equations
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around a (constant) equilibrium state



ρ

v


 =



ρe

ve


+ ε



ρ′

v′


 (4.21)

where ve = V (ρe, 0). We have

g(ρ)vx = εg(ρe)v
′
x +O(ε2)

V (ρ, 0)− v = ε (Vρ(ρe, 0)ρ′ − v′) +O(ε2)

(ρv)x = ε(ρev
′
x + veρ

′
x) +O(ε2)

resulting in linearized equations

ρ′t + ρev
′
x + veρ

′
x = 0 (4.22a)

v′t + (ve − g(ρe))v
′
x =

Vρ(ρe, 0)ρ′ − v′
τ v

. (4.22b)

From here we will abbreviate

c = ve − g(ρe),

Vρ = Vρ(ρe, 0).

and look for solutions of the form



ρ′

v′


 =



ρ0

v0


 e

γt+ikx. (4.23)
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We obtain

γρ0 + ρev0ik + veρ0ik = 0 (4.24a)

γv0 + cv0ik =
Vρρ0 − v0

τ v
. (4.24b)

Eliminating v0 yields

γ2 +

(
(c+ ve)ik +

1

τ v

)
γ +

ik

τ v
(ve + Vρρe)− cvek2 = 0. (4.25)

Note ρ0 is eliminated. Taking γ = a+ ib and separating real (Equation 4.26a) and imaginary

(Equation 4.26b) parts we obtain

0 = a2 − b2 +
a

τ v
− (c+ ve)kb− cvek2 (4.26a)

0 = 2ab+ (c+ ve)ka+
b

τ v
+

k

τ v
(ve + Vρρe)︸ ︷︷ ︸

q

. (4.26b)

Following [30] we take |a| → 0 to find the boundary of the stability region. Equation 4.26b

in the |a| → 0 limit yields b = −kq, which we substitute into Equation 4.26a:

ρ0

ρe
= −Vρ(ρe)ρ0

g(ρe)
. (4.27)

In this step we divide by k2; this excludes the unperturbed case from any determination of

instability. See [27] for a similar stability condition. Surprisingly, this condition does not

depend on τ v or ρ0! The numerator of this fraction is Vρ(ρe)ρ0 ≈ V (ρe+ρ0, 0)−V (ρe, 0) and

the denominator is the wave speed relative to traffic. Loosely speaking, the relative size of

the perturbation must be bounded by the response in the fundamental diagram relative to

the backward wave speed. A less general result of this type was presented and demonstrated

in [27]. A numerical demonstration requires a particular choice of g(ρ); this is postponed

until Section 4.4.
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4.2 Payne

One of the earliest (1971) second order models derived for traffic flow was proposed by

Payne [52]. Payne presented a Taylor expansion of the optimal velocity car-following model

(Equation A.2 in Appendix A)

ẍn =
V ((xn+1 − xn)−1)− ẋn

T
(4.28)

about the point x = (xn + xn+1)/2 resulting in the continuum model

ρt + (ρv)x = 0 (4.29a)

vt +
V ′(ρ)

2ρT
ρx =

V (ρ)− v
T

. (4.29b)

Interestingly this is an example of a case in which A in Equation 4.2 is nonzero. For hyper-

bolicity we require (see Equation 4.4)

− V ′(ρ)

2T
≤
(v

2

)2

. (4.30)

Because V ′(ρ) ≤ 0, the validity of the model is restricted to a region in the (ρ, v) plane.

However, where the model is hyperbolic, it does satisfy the anisotropy condition as

v

2
±
√(v

2

)2

+
V ′(ρ)

2T
≤ v (4.31)

(V ′(ρ) ≤ 0). Some later works (e.g. the aforementioned [30]) replace V ′(ρ)/(2T ) with a

constant. This simplifies some of the analysis as the resulting equation in terms of ρv

becomes linear and the region in which the system is hyperbolic becomes easier to identify.

Some later authors (including [30] among others) also included viscous terms in the velocity

equation.
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4.3 Aw, Rascle, and Zhang

Aw and Rascle [2] arrive at Equation 4.10 using an analogy to fluid pressure, initially

presenting it in the non-conservative form

(v + p)t + v(v + p)x = 0 (4.32)

where the velocity p = p(ρ) is called a ‘traffic pressure.’ Zhang [67] obtains nearly the

same model by beginning with the proportional control car-following model (Equation A.1

in Appendix A)

ẍn =
ẋn+1 − ẋn

T
(4.33)

and asserting that the ‘traffic sound speed’ is g(ρ) = −ρV ′(ρ) as it is in the equilibrium case

(Equation 1.10). Moreover, Zhang asserts

V ′(ρ) = − 1

ρ2T
. (4.34)

The family of fundamental diagrams in which a constant time headway or constant time to

traverse the intervehicle space is maintained (e.g. Section 1.2.3) have the form

V (ρ) =
a

ρ
− b (4.35)

where a > 0 and b ≥ 0. Zhang’s proposed wave speed (Equation 4.34) is consistent with this

family of fundamental diagrams. From Equation 4.11 we obtain the corresponding traffic

pressure p(ρ) = −V (ρ). Both authors present a model in which the deviation from from

some density dependent velocity is advected (Equation 4.32). Aw and Rascle chose to advect

deviations from a traffic ‘pressure’ p(ρ) = ργ, but did not claim this was necessarily the cor-

rect relation. Zhang chose to advect deviations from the equilibrium velocity (fundamental

diagram). Aw and Rascle impose p ∼ ργ as ρ→ 0 and ρp′′ + 2p′ > 0 (convexity of ρp); this
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condition is not met for constant sound speed.

It could also be argued that the models of Chapter III are in this same spirit. Not only

is z an advected variable representing deviation from mean or equilibrium behavior, but

it was shown in Section 3.4 that, for certain forms of V (ρ, z), very similar equations are

obtained. The possibility of relaxation toward an equilibrium velocity was acknowledged

but not explored by Aw and Rascle. The omission of relaxation toward an equilibrium

velocity was intentional by Zhang, as it allows propagation of non-decaying non-equilibrium

structures [67]. We will include a relaxation toward the equilibrium velocity in all non-

equilibrium models.

4.4 Song and Karni

Jiang [27, 28] proposed the ‘full velocity difference’ car-following model discussed in

Appendix A along with the corresponding continuum model that is the topic of this section.

The approach taken by Jiang arrives at the model

ρt + (ρv)x = 0 (4.36a)

vt + (v − c0)vx =
V (ρ)− v

τ v
(4.36b)

whereas Song [58, 59] arrived at

ρt + (ρv)x = 0 (4.37a)

vt +

(
v − h(ρ)

τh

)
vx =

V (ρ)− v
τ v

(4.37b)

where headway h(ρ) is given by

h(ρ) =
siminρ

jam

ρ
+ `c (4.38)
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where simin is the minimum intervehicle spacing, `c is the length of a vehicle, and τh is a

reaction time. Equation 4.36 is an instance of Equation 4.9 with

g(ρ) =
1

τh

(
ρjamsimin

ρ
+ `c

)
. (4.39)

Equation 4.37 is based on a Taylor expansion of Equation 4.36 [58, 59]. Here we will

repeat that derivation with attention given to additional terms. Assume there is some smooth

extension of the discrete velocities vn+1 and vn such that vn = v(xn(t), t). If we expand the

velocity difference between the two vehicles we obtain

vn+1 − vn =

(
vn + h∂xvn +

h2

2
∂xxvn +

h3

6
∂xxxvn + · · ·

)
− vn

= h∂xvn +
h2

2
∂xxvn +

h3

6
∂xxxvn + · · · (4.40)

where h = xn+1 − xn. An evolution equation for the velocity equation can then be found by

setting

∂tv + v∂xv ≈ ẍn

≈ V (h)− ẋn
T

+
ẋn+1 − ẋn

τ

≈ V (h)− ẋn
T

+
1

τ

(
h∂xvn +

h2

2
∂xxvn +

h3

6
∂xxxvn + · · ·

)

Song and Karni defined h in a manner not exactly equal to xn+1 − xn = 1
ρ

(Equation 4.38).

Headway is by definition the distance from one vehicle to the next including the length of

one of the two vehicles; the corresponding macroscopic quantity is ρ−1. While Equation 4.38

is not a correct formula for headway in the strict sense it may very well be an excellent rep-

resentation of perceived headway, and produces sensible results in the macroscopic context.

If h is taken to be the true headway ρ−1, then the viscosity varies as ρ−2. This mirrors the

viscous scaling from Section 3.3. Using the relationship given by Equation 4.38, the viscosity
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Table 4.2: Parameters used for the model proposed by Song and Karni (Equation 4.37) and
its stochastic counterparts (Equation 5.1).

τ v 0.00125

simin 0.000833

`c 0.0025

ρjam 300.0

τh 0.000125

Table 4.3: Parameters used for the fundamental diagram given by Equation 1.18 in Fig-
ure 4.1. These parameters are similar to those used in [27, 59].

vmax 60.0

ρjam 300.0

c 0.25

w 0.06

k 3.72× 10−6

still increases dramatically at low densities.

As an illustration of the stability result in Section 4.1.2, Figure 4.1 shows the quantity

ρe +
g(ρe)

Vρ(ρe)

evaluated at a variety of densities using the parameters in Table 4.2. A positive value

represents a prediction of instability from the linearized analysis (Equation 4.27). Fig-

ures 4.2 through 4.4 show corresponding solutions with periodic boundary conditions and a

set of small initial disturbances; these are analogs to the figures shown in Jiang [27]. The

numerical solutions provide evidence that the linearized analysis is predictive of the develop-

ment of wave structures. This does not necessarily mean the linearized analysis is predictive

of the stochastic modifications of the model to come later, but it does inform our choices in
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Figure 4.1: Evaluation of ρe+ g(ρe)
Vρ(ρe)

for a variety of densities ρe, g(ρ) given in Equation 4.39,

and fundamental diagrams given by Equation 1.18 (left) and Equation 1.21 (right). Pa-
rameters can be found in Tables 4.3, 1.2, and 4.2. The densities appearing in Figure 4.2,
Figure 4.3, and Figure 4.4 are marked with red dots.

that regard.

4.5 Numerical Considerations

To compute numerical solutions, we use a linearized Riemann solver. An approximate

solution to the linearized Riemann problem [39, 41] is

ŵ
(x
t

)
= ul +

∑

λ̂p≤xt

αpr̂p (4.41)

where

ur − ul =
∑

p

αpr̂p. (4.42)
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For Equation 4.9 wave strengths α are

α =



α1

α2


 =




0 −1
g

1
ρ

1
g




︸ ︷︷ ︸
R−1




∆ρ

∆v


 =



−∆v

g

∆ρ
ρ

+ ∆v
g


 . (4.43)

The simple average 

ρ̄

v̄


 =

1

2






ρL

vL


+



ρR

vR





 (4.44)

satisfies

v̄∆ρ+ ρ̄∆v = ρLvL − ρRvR, (4.45)

preserving the jump condition in density. Because there is no physically conserved quantity

involving velocity, there is no reason to preserve any particular jump condition in that field.

For all non-equilibrium models in this thesis a simple average will be used.

For the figures in this chapter a second order scheme

Un+1
j = Un

j −
k

h

(
Rj− 1

2
Λ+
j− 1

2

(
αj− 1

2
− hβj− 1

2

)
+Rj+ 1

2
Λ−
j+ 1

2

(
αj+ 1

2
− hβj+ 1

2

))

− k

2h

(
Rj+ 1

2
|Λj+ 1

2
|
(

1− k

h
|Λj+ 1

2
|
)

Φj+ 1
2
αj+ 1

2

−Rj− 1
2
|Λj+ 1

2
|
(

1− k

h
|Λj+ 1

2
|
)

Φj− 1
2
αj− 1

2

)
(4.46)
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where

Φj+ 1
2

=



φj+ 1

2
,1 0

0 φj+ 1
2
,2


 , (4.47)

φj+ 1
2
,i =





φ

(
α
j+1

2 ,i

α
j− 1

2
,i

)
if λj+ 1

2
,i > 0

φ

(
α
j+1

2 ,i

α
j+3

2
,i

)
if λj+ 1

2
,i < 0

, (4.48)

αj+ 1
2
,i and λj+ 1

2
,i are linearized wave strengths and eigenvalues in the i-th field (i.e. com-

ponents of αj+ 1
2

and Λj+ 1
2

respectively), Λ+
j+ 1

2

(resp. Λ−
j+ 1

2

) are the element wise maximum

(resp. minimum) of Λj+ 1
2

and zero, |Λj+ 1
2
| = Λ+

j+ 1
2

− Λ−
j+ 1

2

, βj+ 1
2

is the projection of the

source terms onto the eigenvectors

Rj+ 1
2
βj+ 1

2
=

1

2







0

V (ρj)−vj
τv


+




0

V (ρj+1)−vj+1

τv





 , (4.49)

and φ(r) is the van Leer limiter

φ(r) =
r + |r|
1 + |r| . (4.50)

4.6 Generalized Second Order Models (GSOM)

Lebacque [37] proposed a framework for the Generic Second Order Model (GSOM),

prescribing conservation of mass and advection of an unspecified quantity I:

ρt + (ρv)t = 0

(ρI)t + (ρvI)x = 0

v = F(ρ, I).

(4.51)
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For example, the ARZ model (Section 4.3) falls under this framework for I = v + p(ρ) and

F(ρ, I) = I − p(ρ). Though not the intent of this formulation, equilibrium models can

be written this way with F(ρ, I) = V (ρ). It is not specified whether I must be a present

driver state or a behavior parameter. For example, in [15, 14], this additional property was

representative of the maximum velocity parameterizing a class of fundamental diagrams. The

models of Chapter III are in this spirit where I = z, F(ρ, I) = V (ρ, I), and additional source

terms and viscosity exist. Another more subtle difference between the models in Chapter III

and the GSOM models is that ρI is not conserved in Chapter III; this leaves us free to choose

shock speeds other than the one imposed by Equation 4.51. We have chosen to make the

meaning of z almost entirely arbitrary as long as it is a monotone change in driver behavior,

but other authors have introduced stochastic source terms to the conservation equation for

I in other ways [5, 33, 55]. The present work differs in that we argue a more careful selection

of stochastic process including viscosity (Chapter II) is required, there is no reason to be

concerned with conserving the driver dependent quantity, and the model is improved by

making the behavior of the stochastic process dependent upon density (Section 3.3).
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Figure 4.2: Numerical solutions to Equation 4.37 using the fundamental diagram found in
Kerner [30] (Equation 1.18), parameters in Tables 4.2 and 4.3, and a small initial disturbance.
The mean densities from top to bottom are ρ0 = 60.0, ρ0 = 70.0, and ρ0 = 90.0. Solutions
for higher densities are shown in Figure 4.3.
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Figure 4.3: Numerical solutions to Equation 4.37 using the fundamental diagram found in
Kerner [30] (Equation 1.18), parameters in Tables 4.2 and 4.3, and a small initial disturbance.
The mean densities are ρ0 = 110.0 (top) and ρ0 = 120.0 (bottom). For lower densities see
Figure 4.2.
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Figure 4.4: Numerical solutions to Equation 4.37 using the linearized fundamental diagram
(Equation 1.21), parameters in Tables 4.2 and 1.2, and a small initial disturbance. The mean
densities from top to bottom are ρ0 = 40.0, ρ0 = 50.0, ρ0 = 60.0, ρ0 = 70.0, ρ0 = 80.0.
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CHAPTER V

Stochastic Non-Equilibrium Traffic Models

We will consider two approaches to introducing stochasticity into non-equilibrium traffic

models. The first is to couple an auxiliary equation describing dynamics of a a behavior

parameter z in a manner very similar to Chapter III. This method is far simpler for the

non-equilibrium models we will consider, as the fundamental diagram only appears as a

source term. The second system that will be considered is a result of perturbing the accel-

eration directly. In Chapter III we required an auxiliary equation to ensure conservation of

mass. Because no momentum-like quantity is truly conserved, perturbing velocity directly

is considered. The difference between these approaches is subtle, but important. In the

first case we assume drivers have behavior that can be modeled as a stochastic process, and

this behavior influences the equilibrium behavior (i.e. the fundamental diagram) for that

driver. In the second case, we assume that acceleration is directly subject to white-noise

perturbations.

Other authors have introduced a stochastic white noise to non-equilibrium traffic models.

Khoshyaran et al [33] introduced a perturbation directly to acceleration in the Lagrangian

frame. Because there is no viscous regularization it is unclear if the discretization of this

method maintains consistent statistics under mesh refinement, but because it is discretized

in the Lagrangian frame the method of lines discretization could be viewed as a car-following

model of the form discussed in Appendix A. Gerster et al [19] considered (stochastic) param-
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eter variation in ARZ. This work characterizes the distribution of solutions across possible

parameter configurations and yields a method for quantifying parameter sensitivity, but not

variation of parameters across a single realization. The goal of this chapter is to propose

a set of models that provide consistent statistics under mesh refinement and demonstrate

richer phenomena than their deterministic counterparts. To this end we will first introduce

an auxiliary equation to the model proposed by Song and Karni [59] mirroring Section 3.2

and Section 3.3. A direct perturbation to velocity will be considered in Section 5.2.

5.1 Stochastic Second-Order Models with an Auxiliary z Equation

Consider the model

ρt + (ρv)x = 0 (5.1a)

vt + (v − g(ρ))vx =
V (ρ, ωz)− v

τ v
(5.1b)

zt + vzx = κzxx −
z

τ z
+ ηξ (5.1c)

This equation mirrors Equation 4.9. A parameter ω ≈ 1 is again included so that the

influence of the magnitude of response of the equilibrium velocity to changes in the parameter

z can be observed. Unless otherwise stated, ω = 1. We will discuss results for κ, τ z, and

η constant and for coefficients varied as a function of density in a manner analogous to

Section 3.3.

The system (Equation 5.1) takes the form




ρt

vt

zt




+




v ρ 0

0 v − g(ρ) 0

0 0 v




︸ ︷︷ ︸
A




ρx

vx

zx




=




0

V (ρ,ωz)−v
τv

κzxx − z
τz

+ ηξ




. (5.2)
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The matrix A has eigenvalues λ1 = v − g(ρ) < λ2 = λ3 = v, satisfying the anisotropy

condition, and eigenvectors

R = [r1, r2, r3] =




ρ ρ 0

−g(ρ) 0 0

0 0 1




. (5.3)

This system has one genuinely nonlinear wave (corresponding to λ1 = v − g(ρ)) and two

linearly degenerate waves (corresponding to λ2 = λ3 = v). The third equation (governing

the dynamics of the driver variation parameter z) is coupled to the deterministic model only

through the relaxation to the fundamental diagram and the advection of z. For the work in

this chapter we will only consider g(ρ) as given by Equation 4.39. To preserve hyperbolicity

R (Equation 5.3) must be full rank; this requires g(ρ) 6= 0. We will impose this condi-

tion upon g(ρ) in general. The ‘traffic principles’ satisfied by this non-equilibrium model,

like acceleration and deceleration causing rarefaction waves and shock waves respectively,

the anisotropy condition, and behavior at very high densities follow from the deterministic

version (Equation 4.37).

Unlike the equilibrium models discussed in Chapter III, emergence of large congestion

patterns like stop-and-go traffic does occur in deterministic non-equilibrium models with-

out additional ‘driver variation’ variable z. In Chapter III the possibility of large structures

spontaneously appearing was of interest. Here, large structures are expected for small pertur-

bations of the underlying deterministic model; the question of interest is how these structures

are different from the deterministic case. Following Section 3.10, we introduce density de-

pendent coefficients κ = κ(ρ) and η = η(ρ) in the right hand side of Equation 5.1c. In

general, the effects also mirror that of Section 3.3; the stop-and-go structures that develop

are more pronounced.

94



5.1.1 Numerical Approximation

The numerical handling of Equation 5.1 is a combination of the handling of the determin-

istic equation (Section 4.5) and the handling of the source terms in the equilibrium models

(Section 3.2.3). A first order operator splitting is used to split Equation 5.1 into

ut + Aux =




0

V (ρ,ωz)−v
τv

0




(5.4a)

ut = κzxx −
z

τ z
+ ηξ (5.4b)

The first half step is discretized using a Roe-type scheme (see e.g. [41]) with a flux limiter.

The second half step uses backward Euler for relaxation terms, forward Euler for the integral

of noise, and an explicit forward time central space step for diffusive terms.

In the first half step, we project state differences and the relaxation to the velocity

specified by the fundamental diagram onto eigenvectors:

αj+ 1
2

= R−1
j+ 1

2




∆ρ

∆v

∆z




=




− ∆v
g(ρ

j+1
2

)

∆ρ
ρ
j+1

2

+ ∆v
g(ρ

j+1
2

)

∆z




(5.5)

βj+ 1
2

= R−1
j+ 1

2




0

1
2

(
V (ρj ,ωzj)−vj

τv
+

V (ρj+1,ωzj+1)−vj+1

τv

)

0




(5.6)

Letting Λ, Λ+, and Λ− be as they were in Section 3.2.3 and Section 4.5 and |Λ| = Λ+ −Λ−,
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the first half step is given by

U∗j = Un
j −

k

h

(
Rj− 1

2
Λ+
j− 1

2

(
αj− 1

2
− hβj− 1

2

)
+Rj+ 1

2
Λ−
j+ 1

2

(
αj+ 1

2
− hβj+ 1

2

))

− k

2h

(
Rj+ 1

2
|Λj+ 1

2
|
(

1− k

h
|Λj+ 1

2
|
)

Φj+ 1
2
αj+ 1

2

−Rj− 1
2
|Λj− 1

2
|
(

1− k

h
|Λj− 1

2
|
)

Φj− 1
2
αj− 1

2

)
(5.7)

where Φj+ 1
2

and its constituent parts are as they were in the deterministic case (Equa-

tion 4.47, Equation 4.48, and Equation 4.50).

The right hand side of the z equation is advanced per Section 3.2.3, again using the

standard forward time central space scheme for diffusion and backward Euler for relaxation.

The latter part of a timestep is then given by

ρn+1
j = ρ∗j (5.8a)

zn+1
j = z∗j −

kz∗j
τ z + k

+ κ
k

h2

(
z∗j−1 − 2z∗j + z∗j+1

)
+

√
k

h
η ξnj (5.8b)

where ξnj are i.i.d. standard normal variables.

5.1.2 Ringroad

Throughout the present work an effort is made to use a consistent set of parameters,

thus arguing that the results demonstrate the range of differences between models rather

than the effects of different parameters. Accordingly, Figure 5.1 and Figure 5.2 show sample

realizations of Equation 5.1 with constant values of κ and η with the same fundamental dia-

gram (Equation 1.21) and parameters (Table 3.1, Table 4.1, and Table 1.2) used in previous

chapters. Figures 5.1 and 5.2 have mean densities ρ0 = 50.0 and ρ0 = 60.0 respectively. In

both of these cases the linear stability analysis predicts instability (see Figure 4.1). The qual-

itative behavior shown in Figure 5.1 and Figure 5.2 is nearly identical to the deterministic
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Figure 5.1: Example realizations of the ringroad experiment using Equation 5.1 with constant
coefficients η and κ with an initial uniform density of 50.0.
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Figure 5.2: Example realizations of the ringroad experiment using Equation 5.1 with constant
coefficients η and κ with an initial uniform density of 60.0.
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Figure 5.3: Example realizations of the ringroad experiment using Equation 5.1 with variable
coefficients (Equation 3.25) with an initial uniform density of 40.0.
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Figure 5.4: Example realizations of the ringroad experiment using Equation 5.1 with variable
coefficients (Equation 3.25) with an initial uniform density of 50.0.
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Figure 5.5: Example realizations of the ringroad experiment using Equation 5.1 with variable
coefficients (Equation 3.25a) with an initial uniform density of 60.0.
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Figure 5.6: Example realizations of the ringroad experiment using Equation 5.1 with variable
coefficients (Equation 3.25a) with an initial uniform density of 70.0.
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case with an initial perturbation (Figure 4.4). As was the case in previous chapters, multiple

realizations in each case have been shown to give some demonstration of how self consis-

tent (or inconsistent) the results obtained are. Like the models considered in Chapter III,

realizations are surprisingly consistent.

As was the case throughout Chapter III, the introduction of density dependent viscos-

ity coefficients results in qualitatively similar results that are slightly more pronounced;

example realizations at each of the densities shown in Figures 4.1 and 4.4 are shown in Fig-

ures 5.3 through 5.6. Outside of the unstable region (Figure 5.3 and Figure 5.6) behavior

largely mirrors what was seen in Chapter III for densities that did not yield instability; the

overall velocity decreases due to the limiting effects of the slowest driver and small variations

in density occur. A surprising result at a high density (outside the range in which instability

is expected) can be found in Figure 5.6; here an unstable stop and go pattern evolves in one

case but not others. It was observed in Chapter III that the introduction of noisy source

terms may lead to persistent phenomena not present otherwise, and it is observed here, if

rarely.

One means of measuring the frequency of this type of phenomena is through a Monte-

Carlo method (again following Chapter III). In Figure 5.7 the range of velocities across the

domain after some evolution from an unperturbed initial condition is presented. In addition,

the velocity range computed from the deterministic case with a perturbed initial condition

(Figure 4.4) is represented (vertical red lines). Though the transition between stability and

instability roughly matches what is predicted by the linearized analysis, it is of note that

the distribution of solutions in the noisy case is not, in general, centered around the nominal

(noise free) case. Here we demonstrate that the range of velocities present is less sensitive

to density than the deterministic equation.
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Figure 5.7: Distribution of velocity range at t = 0.12 for the ringroad experiment under
Equation 5.1 with variable coefficients. Red vertical lines represent the velocity at this time
under the deterministic equations with an initial density perturbation per Figure 4.4.
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Figure 5.8: For example realizations of the ‘speed drop’ experiment under Equation 5.1 and
ω = 1.0.
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Figure 5.9: Speed drop experiment under Equation 5.1 and ω = 1.2.
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Figure 5.10: Travel times in the speed drop experiment as a function of start time for selected
values of ω, averaged over several realizations.

5.1.3 Speed drop

In the interest of space we will discuss the speed drop experiment only in the case of

variable coefficients (i.e. Equation 5.1 with Equations 3.25a, 3.25b, and 3.25c). We present

example realizations (Figure 5.8) with parameters used previously (Tables 3.1, 1.2, and 4.2)

and examples with the effect of the noise on the fundamental diagram amplified by 20%

(Figure 5.9). Note Figures 5.8 and 5.9 show variation in space at the same scale as other

figures throughout this thesis; the length scale of the speed drop case is far longer than that

of the cases with periodic boundary conditions. As was the case in Chapter III, little can

be qualitatively concluded from individual realizations in this case. However, as shown in

Figure 5.10, the time taken to traverse the domain increases dramatically as ω is increased.

5.2 Stochastic Second-Order Models with Direct Noise

We have introduced noise to both equilibrium and non-equilibrium models through an

auxiliary advection diffusion equation with forcing. This auxiliary equation was used because

doing so allowed for coefficients in the z equation to be controlled (before coupling to velocity)

106



through known relations and because doing so provided a model that largely inherited the

desirable properties for traffic models from existing deterministic equations. In this section

we explore an alternative approach in which source terms are introduced directly to the

velocity equation. Throughout we will utilize insights gathered from the auxiliary equation

approach. For one, we have argued a viscous term is necessary. We further argued that to

vary on the length scale equal to driver spacing the viscous term should behave like ρ−2.

Finally, by neglecting the coupling to velocity we have obtained proposed formulae for the

coefficients in the auxiliary noise equation. All of these observations would be far less clear

without the auxiliary equation approach and are used in this section.

First, let us begin with the model proposed by Song and Karni [59] (Equation 4.37) with

a viscous term and white noise added to the velocity equation:

ρt + (ρv)x = 0

vt + (v − g(ρ))vx =
V (ρ)− v

τ v
+ κ(ρ) vxx + η(ρ)ξ

(5.9)

where g(ρ) is given by Equation 4.39. The components of the stochastic heat equation (Equa-

tion 2.4) that we based the preceding work on has three terms: a relaxation to equilibrium,

a viscous regularization, and a white noise. Equation 4.37 was introduced by Song [59] with

a viscous term (though it was ultimately discarded) and that term grew like ρ−2 for large

densities. The viscosity present here does not serve the purpose the original viscosity served

however, and we will choose a new viscous coefficient. Further, the coefficients κ and η will

need to not only depend on ρ to reflect the proper length scales but also need to be chosen

in a manner such that negative velocities are avoided.

Regardless of the choices made to specify coefficients in Equation 5.9, direct introduction

of noise is expected to produce density and velocity fields somewhat less smooth than the

model with an auxiliary equation (Equation 5.1) as density and velocity are computed from

one fewer integrals of white noise. Further, this approach requires the inclusion of viscosity

in the velocity equation, whereas it is typically desired for PDE traffic models to be hyper-
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bolic (e.g. [2, 18]). On the other hand, this formulation does not require a parameterized

family of fundamental diagrams V (ρ, z). Regardless of any other parameter related concerns,

trading a function V : R2 → R in which the second input dimension is impossible to measure

directly for a function V : R→ R that is relatively straightforward to measure is an immense

simplification.

For the results shown in this section we have chosen to use a viscosity coefficient of the

form

κ(ρ) =
κ0

ρ2
(5.10)

This form allows the viscosity coefficient as well as additional spatial statistics to be con-

trolled, and provides the same density scaling argued for previously (Equation 3.25). We

will, however, keep the same τ v as the unperturbed case, simplifying the parameters in this

case substantially. Because τ v is obtained from another source, we only impose a pointwise

scale and a length scale, and Equation 3.7 becomes

σ2 =
(η′)2

4

√
τ v

κ′
(5.11a)

σ2
x =

(η′)2

4

√
τ v

κ′
exp

(
−
(
τ vκ′ρ2

ref

)− 1
2

)
(5.11b)

where the η and κ are related to η′ and κ′ by

η = η′
√
ρref

ρ
, (5.12a)

κ = κ′
(
ρref

ρ

)2

. (5.12b)

(These are identical to Equations 3.26 and 3.27.) A physical length scale can then be
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Table 5.1: Parameters used for demonstrations of Equation 5.9.

σ 2.0

σx 0.02

ρref 105.6

ρfloor 2.0

introduced resulting in coefficients

κ′ =
1

τ v

(
2ρref log

(σx
σ

))−2

(5.13a)

η′ = 2σ

(
κ′

τ v

)− 1
4

. (5.13b)

These values of κ and η produce the desired length scale of variation at (any) constant

density, but behavior with coupling to a system of equations is uncertain. It is, however,

assumed the coefficients arising from these relations result in the correct order of magnitude.

As a final note, we have suggested that decreasing the coefficients from which σ2 and σ2
x

are computed when velocity is small to avoid negative velocities may be necessary. For

the results that follow this was not done and does not appear to be required even for high

densities.

5.2.1 Numerical Approach

Computations in this section follow a scheme almost identical to that of Section 5.1.1.

The hyperbolic part is advanced by Equation 5.7 where Rj+ 1
2
, Λj+ 1

2
, αj+ 1

2
, βj+ 1

2
, and Φj+ 1

2

are as they were in Section 4.4. The latter half step is computed by Equation 5.8, but the

source and viscosity terms are applied to velocity rather than the auxiliary z variable. κj

and ηj are of course computed from Equations 3.26, 3.27, 5.13a, and 5.13b.
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Figure 5.11: Example realizations of the ringroad experiment under Equation 5.9 with pa-
rameters in Table 4.2 and Table 5.1 and initial uniform density of ρ0 = 40.0.
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Figure 5.12: Example realizations of the ringroad experiment under Equation 5.9 with pa-
rameters in Table 4.2 and Table 5.1 and initial uniform density of ρ0 = 50.0.
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Figure 5.13: Example realizations of the ringroad experiment under Equation 5.9 with pa-
rameters in Table 4.2 and Table 5.1 and initial uniform density of ρ0 = 60.0.
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Figure 5.14: Example realizations of the ringroad experiment under Equation 5.9 with pa-
rameters in Table 4.2 and Table 5.1 and initial uniform density of ρ0 = 70.0.
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5.2.2 Ringroad

Direct addition of noise into the velocity equation, in the context of the ringroad ex-

periment, resembles the addition of noise through an auxiliary equation (Section 5.1.2).

Figures 5.11 through 5.14 show example realizations of the ringroad experiment at the four

densities shown in Figure 4.1. Linearized analysis of the unperturbed equation predicts the

four densities will result in stable, unstable, unstable, and stable behavior respectively. This

prediction does hold true for the system with direct noise.

The same comparison of the deterministic case (Equation 4.37) to the case with noise

at varied densities that was made previously (Figure 5.7) may be made here as well, and is

shown in Figure 5.15. While every attempt has been made to utilize equivalent parameters

throughout, there is not a clear method by which parameter sets may be made truly equiv-

alent across the models in question. For example, comparing the width of the distributions

in Figures 5.7 and 5.15 is not a meaningful exercise. None of the differences between the

two formulations in this chapter effect the predicted stability range. It is interesting that

the transition between stable and unstable patterns is different between the two models. It

is not clear whether the transition between stability and instability both at the lower and

higher end of the unstable interval is fundamentally different (see ρ0 = 45.0 in Figure 5.7 and

ρ0 = 65.0 in Figure 5.15) between the two cases or if the density values at which data was

gathered represent different parts of the transition region. In either case, at the transition

region between the two densities at the higher end of the interval enables a wide range of

possible amplitudes. While the evidence gathered here is not sufficient to assert the transi-

tion at the two ends of the unstable interval demonstrate different behavior, the nature of the

fundamental diagram in question (Figure 4.1) certainly poses that question. In either case

the distribution of the range of velocities in the unstable region is very similar throughout

the middle of the unstable region, and in neither case do the centers of those distributions

match the unperturbed case.
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Figure 5.15: Distribution of velocity range at t = 0.16 for the ringroad experiment under
Equation 5.9 with variable coefficients. Red vertical lines represent the velocity at this time
under the deterministic equations with an initial density perturbation per Figure 4.4.
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5.3 Conclusion

In this chapter two approaches were taken toward extending non-equilibrium models to

include random driver inhomogeneities. First, an auxiliary equation for a behavior variable

z was introduced in Section 5.1, directly mirroring Chapter III. In this case the velocity field

is smoother as it depends on white noise through two integrals instead of one. Section 3.4

discusses the similarities the additional z equation coupled to LWR has with non-equilibrium

models. In the non-equilibrium context these effects are modeled explicitly. In Chapter III

the fundamental diagram most accurately represents deviations of the velocity from equilib-

rium, whereas in the non-equilibrium case the fundamental diagram describes driver behav-

ior in the absence of non-equilibrium effects. In the latter half of this chapter (Section 5.2),

terms similar to those appearing on the right hand side of Equation 2.16 are placed in the

acceleration equation directly. In this formulation the types of deviations that may exist

in acceleration are determined by the choice of process, allowing less flexibility than the

case in which acceleration depends on an additional variable through a chosen function. It

also avoids the need for and extended fundamental diagram depending on some parameter

z and the difficulty of separating intention (as expressed by a tertiary equation) from action

(i.e. acceleration)—the the largest problems with the auxiliary equation.
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CHAPTER VI

Conclusion

The addition of stochastic variation to macroscopic traffic modeling with PDE is a difficult

task for a variety of reasons, progress toward some of which have been resolved in this thesis.

The precise nature of the process underlying variation between drivers is unknown, so the

criterion for choosing a stochastic model becomes consistency with what is known about

traffic flow and convenience. In particular, though we do not expect a behavior parameter

to necessarily be correlated between drivers, because drivers occupy space on the roadway,

the process we choose must however be correlated in space such that the statistics over

the part of road dominated by one driver are consistent in distribution from one driver

to the next. In Chapter II a stochastic heat equation (with linear forcing) was proposed

as the underlying stochastic process. This has the advantage of being a process that is

relatively well understood in isolation and is posed in the language of PDE. In particular,

beginning with a well-defined process ensures that, at a minimum, the stochastic modification

and the system to be modified make sense in isolation; the mathematical and modeling

uncertainty only lies in the coupling of them. Though the coupled system is mathematically

complex, numerical simulation to first order through Monte Carlo methods is relatively

straightforward. Numerical simulation allows us to examine individual cases as well as

aggregates of certain statistics and evaluate whether this may be an appropriate model for

driver inhomogeneity and driver variability over time.
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The primary disadvantages of using a stochastic heat equation as an underlying pro-

cess are a lack of hyperbolicity and an inability to strictly enforce uncorrelated behavior

between drivers. We argue the loss of hyperbolicity is not detrimental its intended purpose

in traffic modeling, and that it is required for a well-defined process in a continuous space

dimension. The inability to strictly enforce uncorrelated behavior between drivers is not

a problem inherent in this approach, but a problem inherent in macroscopic modeling in

general. Because mean quantities (e.g. traffic density rather than vehicle position) are con-

sidered, there is no discrete difference between drivers to begin with. Macroscopic models

provide mean quantities over the correct length scales, and this remains the case under the

proposed modifications.

6.1 Equilibrium Models

Chapter III focuses on the coupling of LWR to an equation describing a driver dependent

property. The resulting system does not explicitly model for acceleration and deceleration.

We refer to these models as ‘equilibrium’ models, as the velocity is always in equilibrium with

some function of density and the additional parameter z. It is not appropriate to call these

‘first order’ models, as there is a second equation, and, in the unforced case, a connection

between these models and ‘second order’ models may be drawn (Section 3.4). The coupling

between the two does require a fundamental diagram that depends on both density and the

driver dependent parameter (V (ρ, z) rather than V (ρ)), and the difficulty inherent in finding

such a fundamental diagram is a key limitation to this approach.

These models demonstrate a variety of behavior not seen in equilibrium models. In par-

ticular, spontaneous formations of moving jams are formed, and once formed persist for

significant periods of time. In addition, nontrivial distributions of certain aggregate parame-

ters were obtained. Of particular note is that the distributions of many aggregate parameters

do not remain centered around the nominal value, suggesting that the introduction of driver

variation fundamentally changes (rather than symmetrically perturbs) the underlying LWR
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model. This suggests the modifications made here do indeed model additional phenomena

that may be present in traffic flow as opposed to quantifying uncertainty in a nominal pre-

diction. Though decreased throughput due to inhomogeneity is intuitive in the context of

traffic flow, it is unexpected in the context of perturbed PDE models, especially those based

on models that cannot demonstrate this phenomenon alone.

6.2 Non-Equilibrium Models

Chapter V has two parts: one in which the ‘auxiliary equation’ approach used for equi-

librium models in Chapter III is applied to a non-equilibrium model (Section 5.1) and a

fundamentally different approach in which the type of perturbation present in the auxil-

iary equation is applied directly to the dynamics of acceleration (Section 5.2). The former

presents phenomena that are in many ways similar to the equilibrium case. The density and

velocity profiles obtained are far smoother; they represent one more integral of white noise

than the equilibrium case. Further, it is worth noting non-equilibrium models can evolve

large stop-and-go phenomena from small perturbations to initial conditions, making the pres-

ence of these structures less surprising. The interesting difference between the nominal and

stochastically extended case lies in the size of evolved disturbance as a function of density;

these do not directly mirror the unperturbed model (see Figure 5.7). Like the equilibrium

case, these models require an extended fundamental diagram, something extremely difficult

to obtain in practice.

The introduction of a stochastic perturbation directly into acceleration dynamics is a

more invasive modification with less smooth solutions. At this cost a two parameter ‘ex-

tended’ fundamental diagram is no longer needed. The numerical results show the same

well-defined structures as in the case of the auxiliary equation, though superficially not as

smooth. Distributions of aggregate properties do not mirror the dynamics of the unper-

turbed models, as was the case for the other modified models. These models with ‘direct

noise’ are likely the most promising path forward, as the the number of parameters that
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must be chosen is far smaller, but solutions continue to demonstrate novel behavior.

6.3 Future Directions

This thesis proposes novel models for incorporating driver variation into macroscopic

traffic models and demonstrates that they offer behavior not present in other modeling

approaches. However, additional work is required for practical use of these models.

For models with an auxiliary z equation, (i.e. Equations 3.10 and 5.1), the most pressing

concern is the requirement of accurate fundamental diagrams depending on this additional

property. It is possible that the appropriate extended fundamental diagram may be different

in the case of the equilibrium and non-equilibrium models; the differences in quantitative

behavior between the two under the same fundamental diagram suggests as much.

Regardless of whether an auxiliary z equation is utilized, most practical traffic systems

consist of road networks; the introduction of junctions/intersections into these models is

required to model these systems. Though guidance may be taken from existing literature,

compatibility conditions on z are, at this point, unclear. In addition, the methods used to

approximate the distributions of the desired quantities in these models are unsophisticated

and inefficient. For any type of real-time prediction faster approximation methods would

be required. However, the present models with the present numerical approach may, should

they prove to be accurate given the appropriate parameters, still serve a design purpose, be

used as a noisy model in the development of control systems, or be used as training data for

building machine-learning predictions.
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APPENDIX A

Car-Following Models

Car following models prescribe dynamics for discrete vehicle positions xn(t). In the

present work we will adopt the convention that vehicles move strictly in the positive direction

and are numbered such that xn(t) < xn+1(t). In [28] Jiang proposed a model combining

proportional control models [6] of the form

ẍn =
ẋn+1 − ẋn

T
(A.1)

and optimal velocity models

ẍn =
V ((xn+1 − xn)−1)− ẋn

τ
(A.2)

to obtain so-called ‘full velocity difference’ models

ẍn =
V ((xn+1 − xn)−1)− ẋn

τ
+
ẋn+1 − ẋn

T
(A.3)

where τ and T are (positive) constants. Equation A.1 is a simplification of those in [6]; it is

however the starting point used by Jiang [28]. It is common in the context of car following

models to write the fundamental diagram as a function of spacing sn = xn+1−xn. To remain
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consistent with the fundamental diagrams discussed in Section 1.2, we will write

V
(
s−1
n

)
= W (sn). (A.4)

Jiang simultaneously published a continuum model based on Equation A.3; this was later

expanded upon by [59, 58] to obtain the model we will focus on in Section 4.4.

Because we will be perturbing continuum models based upon this equation, stability

of this model is of particular interest, especially as it relates to stability results for the

related continuum model discussed in Section 4.1.2. Wang [66] derived a gain function

for Equation A.3 in the special case in which the fundamental diagram is linear in vehicle

spacing. The approach taken here allows for a general form of the fundamental diagram.

For simplicity, assume a periodic domain and define W (s) = V (s−1) where s is vehicle

spacing (recall this includes the length of the car). Let xN+1(t) = x1(t) + L to obtain

periodicity and let dn(t) = xn+1(t) − xn(t). What follows is nearly identical when done

in terms of vehicle position xn(t), but writing it in terms of vehicle distances makes the

conclusions more straightforward. If this analysis is carried out in terms of position, we are

required to assume unperturbed forward motion can be identified with the zero eigenvalue,

but the author is not able to prove this is the case. Writing the system in terms of vehicle

spacing still precludes us from asserting stability through our linearized analysis as there are

zero eigenvalues present. We have

d̈n = fn(dn, dn+1, ḋn, ḋn+1) =
W (dn+1)−W (dn)− ḋn

τ
+
ḋn+1 − ḋn

T
. (A.5)
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Figure A.1: Example non-dimensional eigenvalues of the Jacobian (Equation A.9) evaluated
at the steady state of equidistant vehicles.
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Using

∂fn
∂dn

= −W
′(dn)

τ
∂fn
∂dn+1

=
W ′(dn+1)

τ

∂fn

∂ḋn
= −

(
1

τ
+

1

T

)

∂fn

∂ḋn+1

=
1

T

Let gn = W ′(dn)
τ

and α = 1
τ

+ 1
T

. Note that gn ≥ 0. Then, choosing a point (d0, ḋ0), we have

f = f(d, ḋ)︸ ︷︷ ︸
f0

+

[
∂f

∂d

∂f

∂ḋ

]


d− d0

ḋ− ḋ0


+O

(∥∥x− x0
∥∥2

+
∥∥ẋ− ẋ0

∥∥2
)

(A.6)

where

∂f

∂d
=




−g1 g2

−g2
. . .

. . . gN

g1 −gN




and
∂f

∂ḋ
=




−α T−1

−α . . .

. . . T−1

T−1 −α




(A.7)

In light of this, the ODE

d

dt



d

ḋ


 =



ḋ

f


 (A.8)
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has the Jacobian 


0 I

∂f
∂d

∂f

∂ḋ


 . (A.9)

Using the decomposition typically found in the context of the Schur complement



−λI I

∂f
∂d

∂f

∂ḋ
− λI


 =




I 0

− 1
λ
∂f
∂d

I






−λI 0

0 −λI + ∂f

∂ḋ
− 1

λ
∂f
∂d






I − 1

λ

0 I


 (A.10)

the characteristic polynomial is

p(λ) = (−λ)N det

(
−λI +

∂f

∂ḋ
− 1

λ

∂f

∂d

)
. (A.11)

At this point we evaluate at the steady state


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ḋ0
2

...

ḋ0
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=
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

L
N

L
N

...

L
N
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and observe that

− λI +
∂f

∂ḋ

∣∣∣∣
(d0,ḋ0)

− 1

λ

∂f

∂d

∣∣∣∣
(d0,ḋ0)

(A.12)

is circulant, i.e. it is of the form




a1 aN · · · a2

a2 a1 · · · a3

...
...

. . .
...

aN aN−1 · · · a1




.

It is well known circulant matrices are diagonalizable by the Discrete Fourier Transform

(DFT). We then have

p(λ) =
N−1∏

j=0

(
λ2 +

(
α− ωj

T

)
λ− g · (1− ωj)

)
(A.13)

where ωj = exp
(

2πij
N

)
, with roots

λj,k =
1

2

(
−α +

ωj
T
− (−1)k

√(
α− ωj

T

)2

− 4g · (1− ωj)
)
. (A.14)

Given explicit formulas for eigenvalues (Equation A.14), it is possible to identify regions in

which instability is expected (Figure A.1). This informs our selection of parameters if we

wish to show stop and go phenomena in car-following models. Determining whether car-

following stability can also inform behavior of the continuum models directly derived from

those car-following models (e.g. Section 4.4) remains an open question.

Both Wang [66] and Laval [36] introduce stochastic perturbations to car-following mod-

els, including the optimal velocity model. Wang [66] proposed a variety of stochastic mod-

ifications to car-following models. In contrast to the model that will be discussed here
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Figure A.2: An example realization of the car-following model Equation A.19. The left shows
vehicle trajectories exhibiting development of stop and go waves whereas the right shows the
corresponding behavioral ‘zn’ variables.
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Figure A.3: An example realization of the car-following model Equation A.20. The left
shows vehicle trajectories exhibiting development of stop and go patterns whereas the right
shows the corresponding velocities (vn).
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(Equation A.16), all of the stochastic modifications proposed by Wang et al were direct

perturbations of kinematic quantities rather than auxiliary ‘behavior’ equations. Laval [36]

used the optimal velocity model

dxn = ẋn dt

dẋn =

(
V ((xn+1 − xn)−1)− ẋn

τ

)
dt+ η dWn

(A.15)

to obtain traffic waves that resemble the congestion waves seen in traffic data. We will

discuss this approach applied to a modified ‘full velocity difference model’ (Equation 4.36)

as an analog to stochastic continuum models discussed in Section 5.2.

In Chapter III we added an additional equation for a behavior variable z. In Section 3.3

we chose coefficients in the spirit of having z vary on the scale of an individual vehicle.

Here we can choose processes that are truly independent for each vehicle by introducing N

independent Ornstein-Uhlbeck processes zn(t), one for each vehicle; this is very similar to

the approach used for pedestrian traffic models in [62]:

dxn = ẋn dt

dẋn =

(
V (((xn+1 − xn)ρjam)−1, zn)− ẋn

τ
+
ẋn+1 − ẋn

T

)
dt

dzn = − z

τ z
dt+ η dWn

(A.16)

where Wn are independent and identically distributed (i.i.d.) Weiner processes. In this case,

the independent stochastic processes are entirely unaffected by the vehicles around them,

and therefore the velocities prescribed by the fundamental diagram are not tempered to the

same extent by nearby vehicles. In this formulation faster vehicles and slower vehicles will

readily collide for a wide variety of parameters. In addition, this formulation allows for

negative velocities to be attained. For example, in a moment in which ẋn = 0 and ẋn+1 ≈ 0
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we can easily have zn such that

V (((xn+1 − xn)ρjam)−1, zn)

τ
≤ ẋn+1

T
. (A.17)

One strategy for addressing this problem is to utilize a different value of T for either sign of

ẋn+1− ẋn and/or a different value of τ for either sign of V ((xn+1−xn)−1)− ẋn. A discussion

of this can be found in [28]. A version of this idea,

dxn = ẋn dt

dẋn = max

(
V (((xn+1 − xn)ρjam)−1, zn)− ẋn

τ
, 0

)
dt+ min

(
ẋn+1 − ẋn

T
, 0

)
dt

dzn = − z

τ z
dt+ η dWn

(A.18)

was considered and yielded similar results. A simpler but less elegant solution that guarantees

no negative velocities is to simply ignore negative velocities:

dxn = max (ẋn, 0) dt

dẋn =

(
V (((xn+1 − xn)ρjam)−1, zn)− ẋn

τ
+
ẋn+1 − ẋn

T

)
dt

dzn = − z

τ z
dt+ η dWn.

(A.19)

When implemented with periodic boundary conditions and in the correct regime, clear stop

and go patterns develop (Figure A.2). These models are in many ways analogs to what is

presented in Chapter V.

An alternative is to introduce noise directly to the velocities:

dxn = max (ẋn, 0) dt

dẋn =

(
V (((xn+1 − xn)ρjam)−1)− ẋn

τ
+
ẋn+1 − ẋn

T

)
+ η dWn.

(A.20)

This approach is simpler on its face but contains parameters that are much more difficult
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to interpret and determine appropriate values for. This is largely a consequence of the

stochastic process no longer being independent of the traffic dynamics—the relaxation terms

depend on the current state of traffic. This approach results in very similar stop-and-go

patterns (Figure A.3).
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