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ABSTRACT

A Note on Dynamic Processes

by

Andrew McMillan

Co-Chair: Dr. Shaowei Ke

Co-Chair: Dr. Silas Alben

This dissertation is written in two parts. In the first part, we overview and extend

a novel, robust and computationally efficient method come to be known as an aux-

iliary function method for long-time averages - which is capable of computing sharp

upper or lower bounds on time averaged quantities in underlying dynamical variables

via convex optimization and semidefinite programming techniques. We then turn to

studying the validity of asymptotic methods for computing long-time statistics in non-

linear or nonautonomous dynamical systems. Asymptotic methods, such as Fourier

expansions, the Galerkin method, and harmonic balance methods, are ubiquitous in

the literature when studying dynamical systems, but as these methods produce only

approximate solutions, it is natural to ask how well these approximate solutions agree

with a system’s true solutions. We show for the Duffing equation and the nonlinear,

damped driven pendulum that the mean squared amplitude as produced by the har-

monic balance method agrees quite well with the system’s true solution. However,

asymptotic methods fail to accurately predict the regions of stability for a paramet-

rically driven, coupled oscillator system. We show that the regions of stability are

particularly sensitive to the coupling effects across a broad range of modulation fre-

quencies, and hence show the auxiliary function method as a more robust means of

determining stability regions.

In the second part of this work, we first overview dynamic choice in the presence

of uncertainty while discussing the classical paradigms of Von Neumann-Morgenstern

expected utility [3] and discounted expected utility. We then discuss the ethical

theory of utilitarianism from the perspective of Jeremy Bentham [4] and discuss its
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connections to decision theory - in particular, social choice theory. We briefly overview

the social choice literature by reviewing the seminal work of Kenneth Arrow [5] and

John Harsanyi [6] and subsequent results. Then we present a novel extension of

Harsanyi’s theorem to an infinite time horizon, multi-generation setting. Under some

additional assumptions, a Pareto condition is equivalent to utilitarian aggregation and

the utilitarian weights are unique. We analyze the properties of utilitarian weights,

such as the limiting behavior of utilitarian weights for distant future generations,

and the comparative statics of utilitarian weights as the social discount factor or the

social risk attitude changes. Among other findings, we show that a higher social

discount rate is associated with a more unequal assignment of utilitarian weights

across generations.

viii



CHAPTER I

Key Quantities in Dynamical Processes

1.1 Introduction

In this chapter, we motivate the study of dynamically varying environments from

both an applied and theoretical mathematics perspective as well as an economics

perspective. In particular, we present two generic problems from the mathematics

and economics literature and discuss their challenges and potential directions for

research.

In the mathematics literature, the study of dynamical systems governed by or-

dinary differential equations (ODEs) is ubiquitous for their wide range of modeling

capabilities [7, 8, 9] as well as their rich mathematical structure [10, 11]. From a mod-

eling perspective, dynamical systems are employed in modeling fluid flow through var-

ious geometries, the firing and synchronization of neurons, the interaction of species

via predator-prey dynamics, etc.[12]; the applications are far too extensive to enu-

merate. From a theoretical perspective, the analysis of dynamical systems can be

prohibitively difficult due to the presence of nonlinear or non-autonomous terms.

Therefore, modern research concerns itself with developing new methods for studying

the essential characteristics of the underlying dynamics. In particular, time averages

of functions of dynamical variables are often of greater interest than knowing the

value of the function across a collection of times. Consequently, robust and efficient,

computational methods are in need of development to compute these time averaged

quantities.

In the economics literature, the study of dynamic decision makers is ubiquitous

for its applications to decision theoretic machine learning, dynamic portfolio opti-

mization or the trading of financial instruments, the admittance or recurrence of

psychological behavior, etc. [13, 14, 15]. Modern research focuses on character-

izing the choices of a dynamic decision maker in various environments from two
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perspectives—normative versus descriptive analysis. In normative analysis, decision

theorists concern themselves with the outcomes of decisions or determining optimal

decisions given constraints and assumptions. In descriptive analysis, decision theo-

rists attempt to understand how a decision maker came to make the chosen decision.

Modern decision theoretic research is frequently concerned with the axiomatic frame-

work for which a decision maker’s preferences can be represented with an analytically

tractable function. In particular, functional representations in dynamic, social choice

are of interest, and therefore, a rigorous mathematical framework is needed to analyze

choice in this setting.

In both the mathematical and economic literature, the study of these dynamical

processes can frequently be reduced or turns out to be equivalent to studying and

characterizing crucial, key quantities. These key quantities are discussed further in

§1.2 and §1.3.

1.2 Key quantities in dynamical systems

The solutions to dynamical systems are often complicated, analytically intractable,

or chaotic. Therefore, modern research often focuses on statistics, e.g., long-time

averages of key quantities. Time averages are generally sensitive to initial conditions,

so it is natural to seek the largest or smallest averages across all trajectories and their

respective initial conditions, as well as the extremal trajectories that realize them.

Hence, the optimization problem to solve becomes

max
x0∈B

Φ(x0)

s.t. ẋ = f(x)

Φ(x0) := lim sup
T→+∞

1

T

T∫
0

Φ(x(t))dt,

(1.1)

where x0 = x(0), B is a suitably chosen set such that extrema exist, Φ(·) : Rn → R,
and f : Rn → Rn is a continuously differentiable vector field, and we define ẋ := d

dt
x.

In view of (1.1), a natural question is: how does one recover these extremal

averages? The naive, brute-force approach is to construct a large number of candidate

trajectories. However, this foregoes the potential existence of pathological trajectories

due to un-realized initial conditions in the large set of candidate trajectories. This

also has the drawback of being quite computationally expensive and operationally

limited to trajectories that are suitably stable. A second, more tractable and widely
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implemented approach is to make limiting assumptions about the system’s solutions

via perturbative asymptotic methods [16, 17]. However, this approach may fail to

characterize the true behavior of solutions, especially across all initial conditions,

and asymptotic analysis may dangerously fail to predict important characteristics of

a system, such as regions of stability and instability [18]. An alternative approach

that is broadly applicable – and often more tractable – is to construct sharp a priori

bounds on long-time averages via convex optimization.

A modern approach, which has come to be known as the auxiliary function method

for long-time averages, permits the computation of sharp bounds of long-time aver-

ages in autonomous dynamical systems whose terms are polynomial in the underlying

dynamical variables. However, there are two key concerns. The first is that for var-

ious applications a dynamical system may include nonautonmous or nonpolynomial

terms [19], and therefore, a robust framework to handle these situations is needed.

Secondly, given the ability to compute sharp bounds of long-time averages, it is not

clear how these results may differ from those established via the standard approach

of perturbative asymptotic analysis. In this dissertation, we focus on dynamical sys-

tems that model oscillators or coupled oscillator systems whose parameters govern

real world phenomena, and hence, the essential characteristics of the underlying sys-

tem also depend on these parameters. Moreover, as unstable dynamics can be both

costly and dangerous for either experimental or real world implementation [20, 21],

we are concerned with the predictions of stability via perturbative asymptotic meth-

ods and juxtapose them with the predictions of the auxiliary function method for

long-time averages. We concern ourselves with asking when do these two methods

agree and if there are dynamic regimes for which agreement should be expected. We

also investigate when each method has differing predictions and the consequences of

using one method over the other.

1.3 Key quantities in dynamic decision processes

The study of dynamic decision processes analyzes the temporally interdependent

decisions that occur due to external, environmental changes or due to the previous

actions of the decision maker [22]. In practice, an experimentalist or analyst only

observes the decision maker’s choices, and hence, a rigorous mathematical framework

is needed to analyze choice and their resulting consequences or implications.

For the purposes of terminology, we fix some set X, and we refer to the elements

of X as prospects—prospects are the choice objects for our decision maker, and we
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refer to the set X as the choice domain. Hence, it is natural to model the decision

maker’s choices or preference as a binary relation ⪰ over the set X, where ⪰ is a

subset of X × X. This relation induces an ordering on X, which for two elements

x, y ∈ X, the statement x ⪰ y is read as “x is preferred to y”. This relation will

be hereafter referred to as a primitive, and it is the key quantity to study. However,

from a mathematical point of view, a primitive is quite abstract, and hence, it may

be difficult to analyze and study its essential characteristics. Therefore, modern

research is concerned with what properties of a primitive allow it to be completely

characterized by an analytically tractable function. The problem to solve becomes:

Find U(·)

s.t. U(x) ≥ U(y) ⇐⇒ x ⪰ y ∀x, y ∈ X

⪰∈ M,

(1.2)

where U(·) : X → R is frequently called a utility function, ⪰ is the primitive, andM is

a non-empty collection of binary relations over X that obey pre-specified properties.

For example, if X is a topological space, then a pre-specified property could be

imposing continuity on the elements of M. Note that in contrast to (1.2), one could

also begin with the desired function U(·) and ask which set M would allow a binary

relation ⪰ to be represented by the function U(·). Once the analyst has recovered

the function U(·), the study of the decision maker and their preferences becomes

equivalent to studying the properties of U(·).
In this dissertation, we consider a dynamic decision maker representing a gov-

erning body or social planner within the framework of social choice theory—in par-

ticular, utilitarianism. This social planner must make a collection of decisions, and

we concern ourselves with how this social planner makes choices in the presence of

a population consisting of decision makers that express their own choices and values

under the premise that the governing body altruistically cares about the members of

the population.

The seminal work of Harsanyi [6] placed axiomatic utilitarianism on a firm math-

ematical footing providing conditions for which a social planner has a utilitarian

representation. That is, Harsanyi was able to establish necessary and sufficient con-

ditions for which a social planner’s utility function takes on the form of a weighted

summation of individual utility functions. However, Harsanyi’s result is limited to

dynamic choice with a finite time horizon. We extend Harsanyi’s result to a natural,

infinite time horizon setting, and with the extension in hand, we study the asymptotic
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properties of the summation’s weights and the interdependent relationship between

weights across time.

1.4 Outline of the dissertation

The focus of this dissertation is two fold. In Chapters II and III, we focus on

key, long-time statistics in dynamical systems. Chapter II outlines a recently devel-

oped technique—the auxiliary function method for long-time averages, which allows

one to obtain bounds on time-averaged quantities in dynamical variables. We first

review the theoretical formalism of this method, and we then discuss how, in light

of this auxiliary function method, obtaining bounds on time-averaged quantities can

be viewed as a semi-definite programming problem, whose solution can be obtained

via sum of squares programming. In Chapter III, we begin by providing a novel ex-

tension of the technique outlined in Chapter II to obtain bounds on time-averaged

quantities for dynamical systems with non-autonomous or trigonometric dependence

in the dynamical variables. We then study the validity of asymptotic expansions as

solution approximations in three, classical dynamical systems. We show that asymp-

totic methods can perform quite well in recovering long-time statistics, and we also

show that asymptotic methods can be dangerously unconservative with respect to a

system’s stability.

In Chapters IV and V, we focus on dynamic decision processes. In Chapter IV,

we first outline the mathematical formalism and historical development of axiomatic

decision theory with a discussion on descriptive decision theory, the classical Von–

Neumann Morgenstern Theorem, and intertemporal choice in the presence of future

uncertainty. We then give a brief description of the ethical theory utilitarianism from

the perspective of Bentham, and we subsequently discuss the connections between

Bentham’s theory and decision theory—in particular, social choice theory. We discuss

the seminal work of Kenneth Arrow and outline the relevant subsequent literature.

We then overview the mathematical formalism of utilitarianism due to Harsanyi, and

we also overview extensions of Harsanyi’s work. In Chapter V, we provide a novel

extension of Harsanyi’s work to an infinite time horizon, multi-generation setting, and

we give two proofs for our main theorem of varying abstraction. We conclude Chap-

ter V by studying the asymptotic and intergenerational properties of the obtained

extension.

Chapter 6 concludes with a synopsis and a discussion for potential future work.
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CHAPTER II

Auxiliary Functions and Sum of Squares

2.1 Introduction

In this chapter, we first overview the theoretical formalism of the auxiliary func-

tion method for long-time averages, which allows one to determine upper or lower

bounds on time averaged quantities for ordinary differential equations, and moreover,

these bounds are global in the sense that they hold across all initial conditions for a

specified domain. This method involves the choice of an auxiliary function for which

optimal bounds are achieved. The use of auxiliary functions to prove bounds on

long-time averages is similar in spirit to the use of Lyapunov functions to determine

global stability of trajectories in ODEs. In a similar fashion to Lyapunov functions,

auxiliary functions need only be defined over the dynamical variables, but they do not

require actual knowledge of trajectories. We also discuss the historical development

of researching time averaged quantities in the ergodic optimization literature. This

is followed by a short, demonstrative example to provide intuition for the aforemen-

tioned ideas.

Next, we overview the polynomial optimization literature concerned with opti-

mization problems that are subject to nonnegativity constraints. We discuss the nat-

ural strengthening of these constraints from nonnegativity to being a sum of squares

and the resultant computational implications. We discuss several key theorems that

provide intuition and enlighten why this strengthening is natural.

Finally, we discuss the connections of polynomial optimization with that of semidef-

inite programming. In particular, we see that sum of squares optimization problems

can be convex optimization problems realized in a semidefinite program for which

efficient numerical algorithms are available to solve problems of this type. We also

discuss the connections between these computational approaches and the auxiliary

function method for long-time averages.
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2.2 Extremal time averages for autonomous dynamical sys-

tems

In order to introduce the auxiliary function method for long-time averages, we

focus on determining upper bounds for time averages of functions of the dynamical

variable for autonomous ODEs; lower bounds can be determined in a completely

analagous fashion. Consider x(t) ∈ Rd satisfying

ẋ = f(x) (2.1)

for continuously differentiable vector fields f : Rd → Rd. When there is no confusion,

we denote the vector components of x(t) and f(x) as xi(t) and fi(x), respectively.

Given a quantity of interest Φ(x), define its long-time average along the trajectory

x(t) with x(0) = x0 by

Φ(x0) := lim sup
T→∞

1

T

T∫
0

Φ(x(t))dt. (2.2)

The choice of Φ(x) is subject to the particular application in mind. For example,

Φ(x) could be the power in a dynamical system modeling a circuit, the amplitude in

a dynamical system modeling wave propagation, etc..

Let B ⊂ Rd be compact in the usual topology on Rd and an invariant region

of the phase space with respect to the dynamical system in (2.1) in the sense that

trajectories that begin in B, remain in B for all time. In a dissipative system, B

could be an absorbing compact set, or in a conservative system, B could be defined

by constraints on dynamical invariants.

We are interested in the maximal long-time average among all trajectories (even-

tually) remaining in B, i.e.,

Φ
∗
= max

x0∈B
Φ(x0). (2.3)

The fundamental questions are: what is the value of Φ
∗
and what trajectories attain

it?

Upper bounds on averages can be deduced using the fact that time derivatives

of bounded functions average to zero. This elementary observation follows from the

fact that for every V(x) ∈ C1(B)—the set of continuously differentiable functions on

7



B—we have

0 = lim sup
T→+∞

V(x(T ))− V(x(0))

T

= lim sup
T→+∞

1

T

T∫
0

d

dt
V (x(t))dt

=
d

dt
V(x(t)) = f(x(t)) · ∇V(x(t)).

(2.4)

We hereafter refer to any such V(x) ∈ C1(B) as an “auxiliary” function. Note that

(2.4) holds for any auxiliary function, so there is an infinite family of functions with

the same time average as Φ(x). In particular,

Φ(x0) = [Φ + f · ∇V](x0) (2.5)

for all V ∈ C1(B). For any auxiliary function, one obtains an upper-bound on Φ
∗
by

bounding the right hand-side point-wise on B and subsequently maximizing the left

hand side over initial data x0

Φ
∗ ≤ max

x∈B
[Φ(x) + f(x) · ∇V(x)]. (2.6)

The bound on Φ
∗
in (2.6) is useful because it does not require knowledge of trajec-

tories. Moreover, since the bound in (2.6) holds for all trajectories and any auxiliary

function, the best such a priori upper bound on Φ
∗
is then

Φ
∗ ≤ inf

V∈C1(B)
max
x∈B

[Φ(x) + f(x) · ∇V(x)]. (2.7)

The minimization over the right hand side of (2.7) is a convex optimization in the

auxiliary function V. Indeed, define the functional F : C1(B) → R as

F(V) = max
x∈B

[Φ(x) + f(x) · ∇V(x))], (2.8)

and insert a convex combination of auxiliary functions V1, V2 and apply the triangle
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inequality to deduce

F(λV1 + (1− λ)V2) = max
x∈B

[Φ(x) + f(x) · ∇(λV1(x) + (1− λ)V2(x))]

= max
x∈B

[λ{Φ(x) + f(x) · ∇V1(x)}+ (1− λ)){Φ(x) + f(x) · ∇V2(x)}]

≤ λmax
x∈B

[Φ(x) + f(x) · ∇V1(x)] + (1− λ)max
x∈B

[Φ(x) + f(x) · ∇V2(x)]

= λF(V1) + (1− λ)F(V2).

The remarkable fact is that the inequality in (2.7) is actually an equality, which

is surmised in the following theorem due to [23].

Theorem II.1. (Tobasco, Goluskin, and Doering; 2018, [23]) Suppose x ∈ Rd sat-

isfies (2.1) and B is a compact, invariant subset of Rd. Then the following equality

holds:

Φ
∗
= inf

V∈C1(B)
max
x∈B

[Φ(x) + f(x) · ∇V(x)]. (2.9)

The proof of Theorem II.1 is established via a sequence of equalities that follows a

minmax template from convex analysis. If ϕt(x) denotes the flow map for (2.1) and

P(B) denotes the space of all Borel probability measures over the set B, a measure

µ ∈ P(B) is said to be ϕt-invariant if µ(ϕ−1
t (A)) = µ(A) for all Borel sets A and

for all t. An invariant measure is said to be ergodic if it assigns measure 0 or 1 to

all ϕt-invariant Borel sets. In other words, for an ergodic measure, there are no ϕt-

invariant Borel sets up to measure zero—intuitively, this is a type of mixing condition.

A classical result is that the set of invariant probability measures on B is nonempty,

convex, and weak-* compact, and its extreme points are ergodic [24].

The key observations for the proof are (i) that time averages can be realized as

phase space averages against invariant measures, (ii) maximizing over invariant proba-

bility measures can be realized as a Lagrange multiplier problem where
∫
f ·∇V dµ = 0

for all V ∈ C1(B) ensures µ is invariant, (iii) swapping the order of supremum and

infimum can be performed due to standard abstract min-max theorems, and (iv) the

supµ∈Pr(B)

∫
(Φ+f ·∇V)dµ is realized by a delta-mass located where Φ(x)+f(x)·∇V(x)

assumes its maximum.

Thus arbitrarily sharp bounds on the maximal or minimal long-time average are

available via convex optimization over auxiliary functions; optimal or sequences of

near-optimal auxiliary functions produce optimal or sequences of increasingly near-

optimal bounds.
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Moreover, if V ∈ C1(B) is an optimal auxiliary function, then it’s straightforward

to see that the corresponding optimal trajectory or trajectories reside in the subset of

B where the continuous function Φ(x) + f(x) · ∇V(x) = Φ
∗
. In a similar fashion, if V

is just near-optimal, then corresponding near-optimal trajectories spend a significant

fraction of time in high altitude level sets of Φ(x) + f(x) · ∇V(x). Either way the

auxiliary function approach can be used to localize extremal trajectories in the phase

space.

On the surface, the minimization over auxiliary functions in (2.7) seems compu-

tationally intractable, as the optimization must be performed over an infinite dimen-

sional function space—C1. For ease of notation, we define the function S(x) as

S(x) := U − Φ(x)−∇V(x) · f(x), (2.10)

so that an upper bound on Φ is implied by the nonnegativity of S, and (2.3) can be

reduced to
min

V∈C1(B)
U

s.t. S(x) ≥ 0∀x ∈ B,
(2.11)

as a pointwise constraint for all x ∈ B is sufficient to obtain a global average con-

straint.

As stated, the problem reduces to determining the non-negativity of a given multi-

variate function. Unfortunately determining the non-negativity of multivariate func-

tions is computationally indiscernible, but we will formulate the problem as a semidef-

inite program and perform suitable and a natural strengthening to make the problem

computationally accessible in §2.4 and §2.5.
Meanwhile it is important to recognize that interest in extremal time averages

is not new. In the abstract dynamical systems community, it goes under the name

“ergodic optimization” [25, 26]. The ergodic optimization literature originated in the

1990s, with a large volume of the early work studying the dependence of a maximizing

measure on the underlying flow map and a given function of the dynamical variables;

these problems were born of earlier work on problems related to physics - in partic-

ular, problems concerning Lagrangian dynamics and the limiting zero temperature

formalism of thermodynamics [27]. The literature would subsequently explode, and in

part, it was motivated by conjectures that many quantities of interest in applications

for chaotic dynamical systems are optimized, in a time averaged sense, on relatively

simple unstable periodic orbits [28]. Those conjectures, in turn, underly “control of

chaos” notions [29] that emerged earlier.
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Rather than developing theoretical or quantitative computational tools to evalu-

ate extremal time averages, however, the ergodic optimization field focused on more

conceptual questions resulting in theorems such as that every ergodic measure is

the unique maximizing measure for some continuous function. In our setting, this

is precisely the statement that for every initial condition x0 ∈ B, Φ(x0) = Φ
∗
for

some continuous function Φ. The ergodic optimization community recognized the

variational structure reflected in (2.9) and given complete knowledge of the flow map,

proposed a strategy to produce a sequence of increasingly near-optimal auxiliary func-

tions [30]. We next provide a simple example to give intuition for the aforementioned

ideas.

2.3 Example: sequences of near-optimal auxiliary functions

Consider the following one dimensional polynomial dynamical system and accom-

panying quantity of interest:

ẋ = x− x3 = f(x)

Φ(x) = x2
(2.12)

The system in (2.12) possesses three classes of solutions corresponding to three

classes of initial data:

x(t) → −1 for −∞ < x0 < 0,

x(t) → 0 for x0 = 0, and (2.13)

x(t) → +1 for 0 > x0 >∞.

Therefore Φ(0) = 0 and Φ(x0) = 1 for all x0 ̸= 0 so that Φ
∗
= 1. However, these

observations are independent of any of the auxiliary function method formalism, so

how might one discern this within the auxiliary function formulation?

In this example, it is easy to construct an optimal polynomial auxiliary function—

V(x) = 1
2
x2. To see this, we note that

Φ(x) + f(x)V′(x) = x2 + (x− x3)x

= 2x2 − x4

= 1− (x+ 1)2(x− 1)2.

(2.14)

That is, for this optimal auxiliary function Φ(x) + f(x)V′(x) = Φ
∗ − S(x), where

S(x) = (x+ 1)2(x− 1)2 is a sum of polynomials where each term is squared.

11



Moreover, for this particular Φ(x) and optimal auxiliary function V(x), the quan-

tity Φ(x) + f(x)V′(x) achieves its pointwise maximum Φ
∗
only when x = ±1. The

points x = ±1 are therefore both optimal initial conditions, but it is also worth noting

that any initial condition such that x0 ̸= 0 is optimal. Also, optimal trajectories such

that every neighborhood thereof hosts every optimal trajectory 100% of the time over

the infinite time interval of averaging.

Given our quantitative analytical knowledge of the flow map for this simple exam-

ple, however, by relaxing the polynomial restriction we can also conceive a sequence of

near-optimal auxiliary functions Vϵ ∈ C1(R) so that that limϵ→0{Φ(x)+f(x)V′
ϵ(x)} =

Φ
∗
for every x ̸= 0. Indeed, for every ϵ > 0 define

Vϵ(x) =
1

2
ln (x2 + ϵ) (2.15)

so that

Φ(x) + f(x)V′
ϵ(x) = x2 +

(x− x3)x

x2 + ϵ

=
(1 + ϵ)x2

x2 + ϵ
. (2.16)

It is evident that Vϵ is an increasingly near-optimal sequence of auxiliary functions in

the sense that

inf
ϵ>0

sup
x
{Φ(x) + f(x)V′

ϵ(x)} = Φ
∗
. (2.17)

Furthermore, lim
ϵ→0

{Φ(x) + f(x)V′
ϵ(x)} = Φ

∗
for every x ̸= 0 despite the limit of the

sequence Vϵ is not C
1, but evenmore is true about this sequence of auxiliary functions.

For every x ∈ R, we have

lim
ϵ→0

{Φ(x) + f(x)V′
ϵ(x)} = Φ(x). (2.18)

That is, Φ(x)+f(x)V′
ϵ(x) is a sequence of functions such that its limit at each point in

the phase space yields the infinite time average of Φ(·) along the trajectories passing

through that point.

While this impressive feature of the sequence Vϵ(x) is apparent in this simple

example, such sequences of increasingly near-optimal auxiliary functions Vϵ(x) also

exist more generally for well behaved dx
dt

= f(x) defined by sufficiently smooth vector

fields f. If we could deduce these sequences, then we could bypass the dynamics

altogether to estimate and evaluate long time averages Φ(x) along all trajectories.

But, alas, as of now construction of such sequences requires explicit knowledge of
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the flow map—complete access to all information about all trajectories [30, 26]—so

this approach is essentially tautological in an operational sense. At the present time,

we are limited to the variational methods described in §2.2 to effectively compute

sequences of increasingly optimal auxiliary functions.

2.4 Polynomial dynamical systems and sum of squares pro-

grams

The convex optimization problem in (2.11) is over the infinite dimensional vector

space C1 and is therefore intractable in general. However, for various applications,

many differential equations are purely polynomial in their arguments. That is, one is

frequently interested in ẋ = f(x) with fi(x) polynomial in its argument. If f(x) is a

polynomial vector field, then (2.11) can be made tractable by also restricting the class

of auxiliary functions. If V(x) is restricted to being a polynomial of degree no larger

than d, the resulting optimization problem is now performed over Pn,d—the finite

dimensional vector space of d-degree polynomials in n variables, and the constraint in

(2.11) simplifies to determining whether a multi-variate polynomial is non-negative.

Unfortunately, determining the non-negativity of a multivariate polynomial is gen-

erally NP hard, however, except for an extremely limited set of examples such as

uni-variate or quadratic polynomials [31]. However a natural strengthening, which

has become standard in the polynomial optimization literature [32], is to insist that

S is a sum of squares (SOS) polynomial.

Definition II.2. A polynomial p(x) ∈ Pn,d is a SOS polynomial if there is a finite

collection of polynomials pi(x) ∈ Pn,d such that p(x) =
∑N

i=1 [pi(x)]
2.

Let P+
n,d be the positive cone of the space Pn,d and Σn,d be the subset of P+

n,d with

SOS representations; it’s obvious that d must be even for either set to be nonempty.

Restricting one’s attention to optimization problems with SOS constraints is useful

because deciding whether a polynomial is in Σn,d can be deduce in polynomial time

in both n and d [33, 34]. Efficient algorithms have been developed for this purpose

[35] based on the theoretical work of Shor [36].

Therefore, if S is assumed to be a SOS polynomial, a tractable optimization prob-

lem is of the form:
minV ∈Pn,d

U

s.t S ∈ Σn,d.
(2.19)

However as written, (2.19) is a global SOS condition insofar as it insists upon a SOS
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representation for all x ∈ Rn, but in practice, one is frequently satisfied with the local

positivity of a polynomial, and this was the original formulation of the problem in

(2.11).

Due to the robustness of characterizing regions in phase space with polynomials,

we can naturally restrict our attention to locality constraints defined in terms of only

polynomials.

Definition II.3. A set K is called semi-algebraic if K is defined by finitely many

polynomial equalities or inequalities. A semi-algebraic set K ⊂ Rn is generally of the

form

K := {x ∈ Rn | gi(x) ≤ 0 , hj(x) = 0 for i = 1, . . . ,m and j = 1, . . . , k}, (2.20)

where gi(x), hj(x) ∈ Pn,d for each i ∈ {1, . . . ,m} and j ∈ {1, . . . , k}.

The introduction of semi-algebraic sets is useful because they can be characterized

via inner products with other polynomials [37]. Put plainly, one way of viewing the

localized constraint of being within K is to say that for all x ∈ K

k∑
j=1

hj(x)rj(x) = 0 , ∀rj(x) ∈ Pn,d and

m∑
i=1

gi(x)si(x) ≤ 0 , ∀si(x) ∈ P+
n,d.

(2.21)

Therefore if one wants to determine the positivity of a polynomial p(x) ∈ Pn,d on a

semi-algebraic set K, the problem can be realized by writing

Find r1, .., rk and s1, .., sm

s.t. p(x) +
k∑

i=1

hi(x)ri(x) +
m∑
j=1

gj(x)sj(x) ≥ 0

s1, .., sm ∈ Σn,d,

(2.22)

where we’ve replaced the constraints that si(x) ∈ P+
n,d with the stronger constraint

of having a SOS representation. Augmenting the problem with SOS constrained

polynomials on the set K is frequently called the S-procedure, where the “S” comes

from the SOS constraints on the si polynomials [37].

In returning to (2.11), we see that the nonnegativity of S can be replaced with

the SOS condition and the insistence of local positivity can be replaced with the
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S-procedure, so that (2.11) can be relaxed to

min U

s.t. S +
k∑

i=1

hi(x)ri(x) +
m∑
j=1

gj(x)sj(x) ∈ Σn,d and

s1(x), . . . , sn(x) ∈ Σn,d̃,

(2.23)

where d and d̃ are determined by the degree of the auxiliary function V and the degree

of the polynomials defining the semi-algebraic set K.

A few key remarks are required here. The polynomials fi(x) are exogenously

given as part of the dynamical system in question but there are choices to be made

for polynomials Φ(x) and V(x). Φ(x) is chosen according to the particular application

in mind. However, from a computational perspective, it turns out that the resulting

U can generically be quite sensitive to the choice of V(x). In particular the degree of

V(x) is pertinent, and the reason is two fold. Firstly, if the degree of V(x) is too small

then the SOS constraint may fail to be feasible even within a reasonable tolerance for

numerical error. Secondly, the resulting U may fail to be a sharp upper bound for Φ.

The restriction that V(x) is polynomial is completely absent in (2.11), and moreover,

the set P+
n,d is strictly larger than Σn,d except when the the polynomials in question

are univariate, quadratic, or bivariate and quartic [38], but in general being SOS is

not equivalent to non-negativity.

Therefore, it may seem unreasonable to expect sharp bounds can be achieved by

restricting to a subset of the space of polynomials. However, there are two wonderful

results by [39] and [40].

Theorem II.4. (Lassere; 2007, [39]) Let p ∈ P+
n,d with some global minimum p∗.

Then for every ϵ > 0 there exists a N(p, ϵ) such that

pϵ := p+ ϵ

N(p,ϵ)∑
k=0

n∑
j=1

x2j

k!
∈ Σn,d (2.24)

Hence, limϵ→0 ||p− pϵ||ℓ1 = 0.

Theorem II.4 states that SOS polynomials are dense in the set of non-negative,

real polynomials of arbitrary degree and of arbitrary dimension in the ℓ1 norm of the

polynomial’s coefficients. Additionally, we also have the following result:

Theorem II.5. (Lakshmi, Fantuzzi, Fernandez-Caballero, Hwang, and Chernyshenko;

2020, [40]) Suppose K is a compact, semi-algebraic set defined in terms of {gi}mi=1.
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Let s = maxi deg(gi), r = deg(U − Φ − f · ∇V) and Γd denote the set of polynomials

that are a weighted sum of the gi’s, where the weights are SOS polynomials of degree

no more than r − s. If there exists L such that L− ||x||2 ∈ Γd for some d, then

Φ
∗
= lim

d→∞
inf
U∈R

V∈Pn,d

{U |U− Φ− f · ∇V ∈ Γd}.

Therefore, by taking the polynomial degree of our auxiliary function to infinity

and provided that the S-procedure is enforcing non-negativity only on a compact

set, we are guaranteed to achieve the desired sharp bounds from the previously dis-

cussed theoretical formalism. In theory, we have lost nothing in restricting V to being

polynomial.

In practice, one incrementally increases the allowed degree of V and the bounds

are declared sharp if increasing the degree only yields small (near numerical precision)

improvements in the bounds U. Often sharp bounds may be achieved for auxiliary

functions of relatively small degree—say, around degree 8 or 10—that are compu-

tationally accessible on a standard laptop for systems with relatively low degrees of

freedom.

There is quite a rich history in determining whether a polynomial, or more gener-

ally a rational function, can be written as a SOS or a sum of rational functions with

square numerators and denominators dating back to Hilbert’s 17th problem; see [41]

for a historical review.

For computational applications, SOS-constrained optimization problems of the

form (2.23) are frequently reformulated as a semidefinite program (SDP), which is a

type of conic optimization problem. The key to this reformulation is the following

theorem:

Theorem II.6. Given a multi-variate polynomial p(x) in n variables and of degree

2d, p(x) is representable as a sum of squares if and only if there exists a positive

semi-definite and symmetric matrix Q such that

p(x) = z(x)TQz(x),

where z(x) = [1, x1, x2, .., xn, x1x2, .., x
d
n].

Therefore, determining whether an even degree, non-negative polynomial is a SOS

is equivalent to finding a positive semi-definite and symmetric matrix, Q, such that

p(x) = z(x)TQz(x) ≥ 0, (2.25)
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where z(x) is a vector of suitably chosen polynomial basis functions. However, we

remark that this representation is not unique as it depends on one’s choice of basis.

We compute an example for demonstration purposes: suppose we wish to represent

f(x, y) = 2x4 + 5y4 + x2y2, a SOS polynomial, in the form of (2.25). Write

f(x, y) = 2x4 + 5y4 + x2y2 = [x2 y2 xy]T

q11 q12 q13

q12 q22 q23

q13 q23 q33

 [x2 y2 xy]

= q11x
4 + q22y

4 + (q33 + 2q12)x
2y2 + 2q13x

3y + 2q23xy
3.

(2.26)

Equating coefficients we find

q11 = 2 , q22 = 5, q33 + 2q12 = 1, q23 = 0 , q13 = 0 (2.27)

so that the matrix is positive semi-definite for −
√
10 ≤ q12 ≤ 1

2
with q33 = 1− 2q12.

Theorem II.6 allows one to reduce the task of determining whether a polynomial

is SOS to a convex optimization problem subject to a matrix constraint for which

there are efficient algorithms as already discussed.

2.5 Convex optimization via semidefinite programming

As discussed previously, computing upper and lower bounds on the quantity of in-

terest, Φ, can be simplified to a convex optimization problem over a finite dimensional

vector space of polynomials in a SDP under a natural strengthening. In general, a

SDP takes C,Ai ∈ Rn×n and b ∈ Rm for i ∈ {1, 2, ..,m} as inputs with the goal of

determining

min⟨C,Q⟩

s.t. ⟨Ai, Q⟩ = bi

Q ⪰ 0,

(2.28)

where for two matrices B,D ∈ Rn×n, ⟨B,D⟩ =
∑

i,j Bi,jDi,j and Q ⪰ 0 means Q is

positive semi-definite.

The problem in (2.28) has a dual problem of the form

max
y∈Rn

bTy

s.t.
m∑
i=1

yiAi ⪰ C
(2.29)
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Both (2.28) and (2.29) have regions of feasibility that are given by the set of all

decision variables satisfying the constraints. In practice, the regions of feasibility

are frequently nonempty and thus the SDP has the strong duality property—(2.28)—

and (2.29) have the same optimal solution [34]. There are a number of primal-

dual algorithms taking advantage of this property by solving both primal and dual

problems simultaneously. Convergence to the optimal solution can be obtained by

solving the problem iteratively, and the algorithm terminates when the “duality gap”

between the two solutions falls within some pre-defined numerical tolerance. Sum-of-

squares optimization problems can be expressed in the form (2.28) with the MATLAB

package YALMIP [42]. See [43] for a review of SDPs and their applications.
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CHAPTER III

Extremal Averages in Non-autonomous Dynamical

Systems

3.1 Introduction

In this chapter, we study extensions of the auxiliary function method for long-time

averages and its utility for studying the validity of asymptotic methods.

We first study non-autonomous and non-polynomial dynamical systems with trigono-

metric dependence and show how they can be reformulated as equivalent autonomous

and polynomial dynamical systems. These systems are subject to algebraic con-

straints on the transformed dynamical variables, but we explain how these algebraic

constraints can be efficiently, computationally realized in the SDPs previously expli-

cated in §2.5.
We then turn to three classic dynamical systems—the Duffing equation, the

damped, driven pendulum, and a system of two coupled, parametric oscillators—and

show how the extended auxiliary function method for long-time averages can shed

light on the study of long-term statistics. In particular, we concern ourselves with the

following question: For a dynamical system subject to varying system parameters,

how valid are the predictions of finitely truncated, asymptotic expansions for regions

of stability and long time amplitudes? This question is natural and of relevance across

many applied sciences as the reliance on invalid approximation methods may have

costly and dangerous consequences for experimental or real-world implementation.

We remark that the auxiliary function method for long-time averages has already

appeared in the literature. In particular, the method has proven to be useful in

bounding heat transport for truncated models of Rayleigh-Bérnard convection [44],

bounding the mean squared amplitude over the Van der Pol limit cycle and bound-

ing stationary ensembles in stochastic dynamical systems [45], and finding unstable
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periodic orbits for the purposes of dynamic control [46]. We also note for the inter-

ested reader that there are extensions of this auxiliary function method to partial

differential equations applications; see the work of [47, 48, 49] for explication. All

of the aforementioned literature is part of an expanding community concerned with

computational, polynomial optimization [50, 51, 52, 53]. However, to the author’s

knowledge, this work is the first time the auxiliary function method for long-time av-

erages has been employed in studying nonlinear, driven oscillators, coupled, paramet-

ric oscillators, and used to investigate the legitimacy of asymptotic stability analysis;

this is our primary, novel contribution.

3.2 Extensions to non-autonomous & non-polynomial dynam-

ics

The theoretical formalism and computational implementation via SOS program-

ming described in §2.2 depend very much on, respectively, the autonomous nature of

the dynamics and the polynomial nature of the equations of motion.

However, models in many applications involve non-autonomous, i.e., “driven” sys-

tems, and non-polynomial vector fields. Therefore, it is useful to consider how broader

classes of ODEs might be recast as autonomous polynomial systems. Periodically

forced dynamics of the form

ẋ = f(x, cos(ωt), sin(ωt)) (3.1)

with x = (x1, x2, ...., xd) are particularly interesting and ubiquitous. The traditional

way of making such systems autonomous is to introduce a new coordinate xd+1 =

t and extend the system dimension from d to d + 1. However, this method has

the drawback of introducing an unbounded dependent variable while retaining non-

polynomial dependence on it.

For our purposes, these problems can be circumvented by introducing two new

dynamical variables satisfying the polynomial sub-system

ẋd+1 = −ωxd+2

ẋd+2 = ωxd+1

Subject to: x2d+1 + x2d+2 = 1.

(3.2)

One should note that equations of the form in (3.2) are frequently referred to as

differential-algebraic systems—that is, a differential equation subject to an algebraic
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constraint. In order to write (3.2) as a standard dynamical system, the form seen in

(2.1), one needs to omit the origin as a potential solution either via assumption, the

S-procedure or other techniques.

This approach can also be used to formulate equivalent autonomous polynomial

dynamics for both quasiperiodic and substantially more complex 2π
ω
-periodic time de-

pendences in the vector field. Employing a new pair of dynamical variables like those

in (3.2) for each independent frequency allows for quasiperiodic time dependence, at

least for quasiperiodicity involving only a finite number of independent frequencies.

Other 2π
ω
-periodic time functions can be expressed as finite linear combinations of

cos(nωt) and sin(nωt), each of which in turn is a finite polynomial combination of

cos(ωt) and sin(ωt). The overall order of the dynamical system necessarily increases

but autonomous polynomial dynamics are still sufficient to capture the systems’ dy-

namics.

A broad class of autonomous vector fields with trigonometric variable dependence

can be handled similarly [54]. Consider, for example, vector fields f(x) where the

components f1, . . . , fd depend polynomially on xj for j ̸= i and on xi via cosxi or

sinxi but not on xi itself, i.e.,

fj = fj(x1, . . . , xi−1, cosxi, sinxi, xi+1, . . . , xd) for each j = 1, . . . , d. (3.3)

For ease of notation, let us denote the “angular” variable xi(t) = θ(t) and the

corresponding component of the vector field

fi = Ω(x1, . . . , . . . , xi−1, cos θ, sin θ, xi−1, . . . , xd). (3.4)

Then augment the system with two new variables evolving according to

ẋd+1 = −Ωxd+2

ẋd+2 = Ωxd+1

Subject to: x2d+1 + x2d+1 = 1.

(3.5)

Just as in (3.2), the differential-algebraic system (3.5) may be written as a standard

dynamic system with various techniques omitting the origin or via assumption. The

claim now is that solutions of the original d-dimensional system

ẋk = fk(x1, . . . , xi−1, cosxi, sinxi, xi+1, . . . , xd) for k = 1, . . . , d (3.6)
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are in 1-to-1 correspondence with solutions of the (d+1)-dimensional system consist-

ing of (3.5) and the remaining d− 1 differential equations

ẋj = fj(x1, . . . , xi−1, xd+1, xd+2, xi+1, . . . , xd)

for j = 1, . . . , i− 1, i+ 1, . . . , d.
(3.7)

In the following subsections, we illustrate these approaches and their robustness

by studying the periodically forced Duffing equation, the damped, driven pendu-

lum, and a system of coupled, parametric oscillators. We concern ourselves with the

performance of asymptotic methods and their consequences for predicting dynamic

stability.

3.3 The periodically driven Duffing equation

The periodically driven Duffing system is the non-autonomous second order, non-

linear ODE

ẍ+ δẋ+ αx+ βx3 = F cos(ωt), (3.8)

where δ is the damping term, α is the linear stiffness term, β is the strength of the

nonlinear restoring force, F is the driving force’s amplitude, and ω is the driving

force’s frequency.

The Duffing equation has received widespread attention in the engineering and

applied physics literature for its various engineering applications as well as attention

from the mathematical literature as a prototypical nonlinear model to investigate for

the development of further analytic and theoretical methods [55].

The equation describes the motion of a damped harmonic oscillator with a more

complicated potential than in comparison to the simple harmonic oscillator, and in

particular, the Duffing equation has been used to model the harmonically excited pen-

dulum, nonlinear isolators used to isolate vibrating sources from their surroundings,

and large deflections of beams with nonlinear stiffness [55]. It is a simple paradigmatic

model that without the sinusoidal forcing is asymptotically stable at zero—which can

be shown in an elementary way by considering the Lyapunov functional:

V (x) =
1

2
ẋ2 +

1

2
αx2 +

1

4
βx4, (3.9)

However, by including the sinusoidal forcing, the Duffing equation exhibits dy-

namical hysteresis for variations in the frequency as well as chaotic behavior for a
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collection of chosen parameters [56, 57, 58, 59]. As the Duffing equation is highly

non-linear with a cubic term, various solution approximation methods have appeared

in the literature, such as the harmonic balance method, the Galerkin method, the

Lindstedt–Poincare method, and homotopy methods [55]. As the sinusoidal forcing

encourages periodicity or quasi-periodicity of solutions, the true solution should ad-

mit a Fourier expansion. From this observation, one can use the harmonic balance

method, which produces 2π
ω
-periodic approximate solutions via the ansatz

x(t) = A cos(ωt) +B sin(ωt), (3.10)

as the true solution’s frequency should intuitively match that of the driving frequency.

Upon plugging the (3.10) ansatz into (3.8) and projecting onto cos(ωt) and sin(ωt),

the harmonic balance method yields an implicit prediction for the frequency response

curve in the form [(
ω2 − α− 3

4
βR2

)2
+ (δω)2

]
R2 − F 2 = 0, (3.11)

where R =
√
A2 +B2. For fixed parameters α, β, F , and δ, one can solve for the

roots of (3.11) to deduce the oscillation amplitude R; the computations for Figure

(3.1) were performed using MATLAB’s fimplicit function.

When α > 0 and β > 0 or β < 0 we say that the nonlinearly perturbed oscillator

has been “stiffened” or “softened” and the frequency response curve tilts to the right

or to the left, respectively; see Figure (3.1). In Figure (3.1), one can see the hysteresis

phenomena. That is, if one traverses the curve from left to right, the branch of

solutions that one comes across is different then traversing from right to left.

A natural question is to ask how well the harmonic balance method approximates

true solutions of (3.8). In particular, we can compare its predictions with indepen-

dent approaches to recover the frequency response curves like those in Figure (3.1).

In the following, we employ the auxiliary function method for bounding long-time av-

erages implemented in a SOS program and juxtapose the predictions of this auxiliary

function method with the predictions of the harmonic balance method.

The Duffing equation (3.8) is not of the form (2.1), so we proceed by augmenting

it with two additional variables to make the system autonomous. It is then realized
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Figure 3.1: Harmonic balance approximate mean amplitude R =
√
A2 +B2 vs. driv-

ing frequency ω with δ = .1, α = 1, F = 1, and β = .04, .06, .09.

as the 4-dimensional first order system with one algebraic constraint

ẋ = y

ẏ = z2 − δy − αx− βx3

ż1 = ωz2

ż2 = −ωz1
Subject to: z21 + z22 = F 2,

(3.12)

where the amplitudes of z1 and z2 will be enforced by the S-procedure so that z1 =

F sin(ωt + ϕ) and z2 = F cos(ωt + ϕ) with phase ϕ determined by initial conditions

but which is irrelevant for long-time averages.

When the function to be maximized is

Φ(x, y, z1, z2) = x2, (3.13)

the relevant SOS program is

minU

s.t. U− x2 − f(x, y, z1, z2) · ∇V+ . . .

· · ·+ S(x, y, z1, z2)(F
2 − z1

2 − z2
2) ∈ Σ4,d

S(x, y, z1, z2) ∈ Σ4,d̃,

(3.14)
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where d and d̃ are hyper-parameters determined by the degree of the auxiliary function

as well as the S-procedure polynomial S.

We now systematically increase the polynomial degrees of both V and S until

sharp bounds are achieved; lower bounds on x2 can be computed by negating Φ,

performing the SOS program, and taking the absolute value of the resulting U.
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Figure 3.2: (McMillan and Doering; 2021, [1]) Harmonic balance approximate mean

amplitude,
√

2x2, and upper and lower bounds on the solutions’ mean
amplitude vs. driving frequency ω with δ = .1, α = 1, β = .04, and F = 1
for a degree 10 polynomial auxiliary function.

The harmonic balance approximation of the mean amplitude agrees remarkably

well with the upper and lower bounds on the true solution’s mean amplitude; see

Figure (3.2).

The differences between the upper and lower bounds plotted in Figure (3.3) suggest

that they agree (to computational precision) for points on the frequency response

curve that are single valued when the degree of the auxiliary function is sufficiently

high. Not unexpectedly, there is an order 1 difference between the bounds when

the curve is multi-valued. We conclude that for this sort of small amplitude forcing

and weak nonlinearity, the harmonic balance approximation does exceptionally well

quantitatively approximating the true solution’s mean amplitude—even though the

forcing and nonlinearity are strong enough to induce multi-stability and hysteresis.

It is worthwhile remarking that if we consider the degree of the auxiliary functions

as a parameter then there seem to be ω-dependent thresholds in the parameter space

for which the degree 6 bounds become sharp. In this example a transition occurs at
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Figure 3.3: (McMillan and Doering; 2021, [1]) Difference between the upper and lower
bounds on the solution’s mean amplitude vs. driving frequency for degree
4, 6, 8 and 10 polynomial auxiliary functions.

ω ≈ .7 which, to our knowledge, is no particularly special frequency value. Under

what conditions we might expect such transitions to occur, especially with a smoothly

varying parameter such as ω, is an question for research in its own right.

The asymptotic accuracy of the harmonic balance approximation is remarkable

but perhaps a bit unsurprising due to the system being asymptotically stable at zero

without the sinusoidal forcing term. We next study the full pendulum system in a

similar fashion.

3.4 The damped, periodically driven pendulum

Consider the damped and periodically driven pendulum dynamics defined by the

non-polynomial and non-autonomous 2nd order ODE

θ̈ + γθ̇ + sin(θ) = F cos(ωt), (3.15)

where γ is the damping strength, F is the driving amplitude, and ω is the driving

frequency. The equation in (3.15) models the swing of an object at a fixed pivot,

where θ represents the angle of the object with respect to that pivot. The equation

is made non-dimensional by choosing appropriate length and time scales such that θ

is a function of dimensionless time.

For weak forcing, the sinusoidal non-linearity may be modeled by expanding the
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sin(θ) term in a Taylor series, and we employ a procedure similar to that of the

Duffing example here to test the validity of the harmonic balance approximation.

We expect the two term expansion of the sin(θ) term, that results in a Duffing

equation, to perform poorly, however, for moderately large forcing amplitude. Hence,

we expand the sin(θ) term in a Taylor Series to 7th order and insert the (3.10) ansatz

to obtain an approximate frequency response curve. The result is

R2(R6 + 1152R2 − 48R4 − 9216)2

84934656
+R2ω4

+
R2(R6 + 4608(γ2 − 2) + 1152R2 − 48R4)ω2

4608
− F 2 = 0,

(3.16)

where R =
√
A2 +B2.

The calculation is tedious and purely algebraic, but plots of R vs. ω for several

forcing amplitudes are shown in Figure (3.4).
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Figure 3.4: Plot of the harmonic balance approximate mean amplitude vs. ω with
γ = .1 and F = 0.10, 0.15 and 0.20.

In this example, we seek to compare the mean mechanical energy E = 1
2
(θ̇)2 −

cos(θ) from the harmonic balance approximation with auxiliary function bounds on

solutions to (3.15). But as written, (3.15) is neither polynomial nor autonomous

which prevents immediate implementation of the polynomial optimization via a SOS

program.

Augmenting the system with four additional variables, however, we may re-write

(3.15) as the 5-dimensional first order polynomial system with two algebraic con-
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straints

ϕ̇ = z1 − γϕ− ψ1

ψ̇1 = ϕψ2

ψ̇2 = −ϕψ1

ż1 = ωz2

ż2 = −ωz1
Subject to: ψ2

1 + ψ2
2 = 1

z21 + z22 = F 2.

(3.17)

The quantity of interest to extremize is the total energy plus z21 given by

E + z21 =
1

2
(θ̇)2 − cos(θ) + z21 =

1

2
(ϕ)2 − ψ2 + (z1)

2 = Φ. (3.18)

The z21 improves the computational conditioning of the SOS program. Admittedly,

the authors do not know why this should be true. However, as z21 = 1
2
, we can

interpret the upper and lower bounds on the mean energy as a 1
2
shift down and up,

respectively.

Letting x = [ϕ, ψ1, ψ2, z1, z2], the SOS program for upper bounds becomes

minU

s.t. U− Φ(x)− f(x) · ∇V(x) + C1(x) + C2(x) ∈ Σ5,d

S1, S2 ∈ Σ5,d̃,

(3.19)

where C1(x) = S1(x)(F
2 − z1

2 − z2
2) and C2(x) = S2(x)(1

2 − ψ1
2 − ψ2

2), and both d

and d̃ are determined by the degree of the S-procedure polynomials S1(x) and S2(x)

as well as the auxiliary function V(x). Lower bounds on Φ are computed just as in

the Duffing setting.

Performing the SOS program in (3.19), we find that this auxiliary function method’s

lower bound on the mean energy and the harmonic balance approximation to the

mean energy can agree quite nicely—for sufficiently weak forcing; see Figure 3.5. As

the forcing amplitude increases, however, the harmonic balance approximation in-

creasingly fails. On the other hand the upper bound in Figure 3.5 clearly does not

correspond to the harmonic balance approximations we found. Indeed, the upper

bound with Φ
∗ ≈ 1.5 in Figure 3.5 suggests that there is a solution that spends most

of the time oscillating weakly around θ = π as illustrated in Figure 3.6. Due to
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Figure 3.5: (McMillan and Doering; 2021, [1]) Plot of the bounds and harmonic bal-
ance approximate total mean energy vs. driving frequency, ω, with γ = .1,
F = 0.10 and degree 6 polynomial auxiliary functions.

its dynamical instability, however, one would never expect to discover it via direct

numerical simulation.

 

 

!=
# 

Figure 3.6: A potentially unstable solution oscillating about a neighborhood of θ = π.

With this interpretation in mind, we can make the linear change of variables such

that θ′ = π − θ. Then when θ has low potential energy θ′ has high potential energy

and vice versa. Figure 3.7 is the harmonic balance approximation with the Taylor

expansion performed about θ = π—the analog of Figure 3.4.

Meanwhile Figure 3.8 shows that the harmonic balance approximation of the high
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Figure 3.7: (McMillan and Doering; 2021, [1]) Harmonic balance approximate mean
amplitude about θ = π vs. driving frequency ω with γ = .1 and F = 0.10,
0.15 and 0.20.

potential solution’s total mean energy agrees quite well with the auxiliary function

upper bound on the true solution’s total mean energy.

Figure 3.8: (McMillan and Doering; 2021, [1]) Plot of the bounds and harmonic bal-
ance approximation (about θ = π) of Φ vs. driving frequency ω with
γ = .1, F = 0.20 and degree 6 polynomial auxiliary functions.

This example illustrates one of the operational “quirks” of this auxiliary func-

tion method: it produces upper bounds or lower bounds on the chosen Φ across all
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potential initial conditions including those that breed not readily observed unstable

solutions.

Of course the knowledge of the existence of such unstable solutions is frequently

a concern—it is certainly the central concern for control-of-chaos applications—but

if one is interested in estimates of long-time averages of Φ on particular solutions

(or branches of solutions) there is currently no supplementary procedure that one

can employ to ensure that the bounds computed correspond with specific trajectories

unless one is only interested in a particular, compact region of phase space, for which

the S-procedure is readily available.

3.5 A coupled, parametric oscillator system

The next general model of interest is a parametrically driven, coupled oscillator

system of the form

ẍ1 + ω0
2[1 + h sin(γt+

ϕ

2
)]x1 + ω0gẋ1 − ω0rẋ2 = 0

ẍ2 + ω0
2[1 + h sin(γt− ϕ

2
)]x2 + ω0gẋ2 + ω0rẋ1 = 0.

(3.20)

In (3.20), ω0 denotes the proper frequency of the oscillators and g is the intrinsic

loss term, which is taken to be equal for both oscillators for the sake of simplicity.

The h and γ terms are the intensity and frequency of the parametric stiffness terms,

respectively. We focus on h ∈ [0, 1] and γ ∈ [−3, 3], as this is the regime which

encapsulates most physically relevant phenomena. The coupling strength r describes

an energy preserving coupling between the oscillators, which corresponds to rotations

in the (x1, x2) plane and preserves the system’s total energy. We note that in the limit

as r → 0 that the system in (3.20) becomes equivalent to two, decoupled parametric

oscillators described by two, damped Mathieu equations. Finally, ϕ denotes the

phase difference between the oscillators. Just as in [18], we focus on the cases ϕ =

0, π
2
, andπ, and we remark that the system in (3.20) for the aforementioned ϕ values

exhibits three potential resonance frequencies at γ = 2Ωr and γ = 2Ωr ± ω0r, where

Ωr = ω0

√
1 + (r2 − g2)/4. Throughout the remainder of this section, frequencies

such as γ are given in units of ω0.

Frequently, a primary interest is in studying the effects of the oscillators coupling

strength, the type of coupling, the phase differences between the oscillators, and the

magnitude, frequency and phase of the driving force on the long term statistics of the

system’s solutions [60, 61, 62]. Although most real world applications involve oscilla-
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tors with differing phases or differing frequencies, most of the analysis that appears

in the literature has ignored both of these essential features while also ignoring the

effects of coupling strength, especially at frequencies away from parametric resonance

[18].

Ignoring frequencies away from parametric resonance frequencies is natural if one

is interested in studying phase-locking or if one has energy harvesting applications in

mind [63, 64, 65, 66]. However, real-world systems typically operate over a broad range

of parametric, modulation frequencies, and many engineering and biological applica-

tions including coupled oscillator systems are designed to operate away from paramet-

ric resonance to avoid excessive vibration, noise, and accelerate fatigue [67, 68, 69].

The reason these essential features have primarily been ignored is almost exclusively

due to the problem’s difficulty and the limitations of perturbative asymptotic methods

[70].

From a computational perspective, direct numerical simulation (DNS) is incredibly

expensive. Moreover, one is limited to the study of trajectories that are numerically

stable, which crucially depends on one’s choice of initial conditions for parametric

oscillators. Frequently, one is interested in unstable solutions in particular for the

“control of chaos” [29]. These concerns naturally pose the problems of which initial

conditions to choose and a robust method to determine whether one’s findings are

generically sensitive to initial data.

From a theoretical perspective, past and on-going research often investigates sta-

bility regions within the parameter phase space [61, 60] 1, and without the knowledge

of exact solutions, approximate solutions are frequently derived via perturbative,

asymptotic methods in the form of finitely truncated, solution expansions, such as

Fourier or eigenfunction expansions [71, 72, 73, 74, 75]. The principal idea behind

these truncated expansions is that a sufficiently small number of terms in the full

expansion should serve as a viable solution approximation, and hence, all other terms

may be disregarded; from hereafter, we refer to these disregarded terms as higher order

terms. Deciding which terms to consider or disregard is often nontrivial, especially in

coupled systems, and even given a fixed choice, the truncated solution approximation

may still fail to be a viable approximation [76]. Moreover, these asymptotic methods

fail to capture the full range of the parameters in question by restricting attention to

regions of phase space for which the modulation frequency is the same or an integer

multiple of the resonance frequencies [76, 18].

1Throughout the remainder of this dissertation, we write stability region(s) to mean the linear
stability of the underlying model within the parameter state space.
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In addition, as we demonstrate and explain throughout this section, the problems

concerning the validity of asymptotic, approximate solutions can be exacerbated for

coupled, oscillator systems. In particular, the effects of the oscillator’s coupling term

can make the higher order terms non-negligible. As higher order terms are frequently

neglected, asymptotic methods often forego when or how these higher order terms

become relevant [77].

We demonstrate that the auxiliary function method for long-time averages, is in-

credibly robust in addressing the difficulties previously explicated. On computational

grounds, this method is computationally efficient and foregoes the need to manually

check or randomly select various initial conditions, such as in [78], since this auxiliary

function method determines extremal time averages across all initial conditions. On

theoretical grounds, our method is robust even in the face of highly parametric, cou-

pled dynamics and does not require approximate expansions or restrictions to only

small parameter values. Therefore, we can recover regions of stability and long term

statistics without needing to decide on an asymptotic, approximate solution method,

decide which higher order terms can be neglected, or attempt to determine if the

higher order terms become non-negligible due to coupling effects.

We make use of the auxiliary function method for long-time averages in order to

investigate the effects of higher order terms that are ignored in perturbative asymp-

totic methods. We also compare this auxiliary function method’s results against the

results predicted by perturbative asymptotic analysis. In particular, we investigate

the effects of coupling terms on the system’s region of stability and the legitimacy of

asymptotic methods in the presence of these coupling effects across a broad range of

physically relevant modulation frequencies at and away from parametric resonance.

Indeed to make the system in (3.20) accessible via this auxiliary function method,

(3.20) can be written as a first order, coupled system with exclusively polynomial

terms:

ẋ1 = y1

ẋ2 = y2

ẏ1 = −ω2
0[1 + hx3]x1 − ω0gy1 + ω0ry2

ẏ2 = −ω2
0[1 + hx3]x2 − ω0gy2 − ω0ry1

ẋ3 = γx4

ẋ4 = −γx3
Subject to: x23 + x24 = 1,

(3.21)
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where x3 = sin(γt), x4 = cos(γt), and ϕ = 0. The system in (3.21) can be written

similarly for additional values of ϕ via elementary trigonometric identities.

The constraint x23+x
2
4 = 1 is enforced via the S-procedure and forces the variables

x3 and x4 to be uniquely determined. However, we remark that the S-procedure is

not enforced when γ = ϕ = 0, as (3.21) becomes independent of trigonometric terms.

We employ the auxiliary function method for long-time averages on the quantity of

interest

Φ = x21 + x22. (3.22)

Hence, computing Φ
∗
gives the maximal long-time average of the summed, mean

squared amplitudes, which allows us to distinguish between small and large amplitude,

parameter dependent solutions. The intuition being that small or large amplitude

solutions should generically correlate with asymptotically stable or unstable solutions,

respectively. Since the maximal long-time averages will be either zero or infinite in

the regions of stability and instability, respectively, the auxiliary function method will

allow us to trace out the threshold between stability and instability. The fineness of

the threshold, moreover, only depends on one’s mesh size for the system parameters;

the mesh size is 80× 80 for every figure in this section.

With Φ as defined in (3.22), the sum of squares program to solve becomes:

min U

s.t. U− Φ− f(x1, x2, y1, y2, x3, x4) · ∇V+ S(x1, x2, y1, y2, x3, x4)(1− x23 − x24) ∈ Σ6,d

S(x1, x2, y1, y2, x3, x4) ∈ Σ6,d̃

(3.23)

where f(x1, x2, y1, y2, x3, x4) is the polynomial vector field as defined in (3.21), both

d and d̃ are determined by the degree of the S-procedure polynomials as well as the

auxiliary function V(x), and we have enforced the S-procedure at all γ values other

than zero. The convex optimization problems in this paper were solved using Mosek

[79] paired with Yalmip [80].

We remark that similar computations using the auxiliary function method have

already appeared in [1] and were previously discussed in §3.3, where the model of

interest was the Duffing oscillator. In particular, it was shown that the auxiliary

function method accurately reproduces the Duffing equation’s frequency response

curve and parameter dependent hysteresis phenomena as derived by harmonic balance

down to numerical precision. This further validates the auxiliary function method as

a tool to study oscillator dynamics.

To the author’s knowledge, this is the first time that the auxiliary function method
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has been applied to studying parametric, coupled oscillators or has been used to ex-

plicitly study dynamical stability, especially in the context of linear stability analysis.

Moreover, as we suspect and as we show, the dynamics of (3.20) are substantially

more complicated than that which can be described by asymptotic methods. The

reason is that in contrast to the Duffing equation, our model has two coupled, para-

metric oscillators and the non-autonomous forcing appears parametrically instead of

externally. Hence, the synchronization of the two oscillators plays a crucial role in

their stability and that synchronization pivotally depends on one’s choice of system

parameters.

In a similar fashion to [1], the parameter dependent computations of Φ
∗
will be

used to recover stability region boundaries and the validity of these results will be

corroborated via asymptotic analysis. We corroborate the findings of the auxiliary

function method for long-time averages via comparison with the approximate solu-

tions established by Floquet theory. This is a standard method which is discussed by

many sources on asymptotic analysis; the specific reference used here is [81].

Consider x(t) ∈ R satisfying

ẍ(t) + F (t)x(t) = 0, (3.24)

where F (t) is a periodic function with period T . Equation (3.24) is a second order

differential equation and thus has two linearly independent solutions x1(t) and x2(t).

Since x1(t) and x2(t) are linearly independent, they span the solution space of

(3.24). In particular, there must exist M ∈ R2×2 such that[
x1(t+ T )

x2(t+ T )

]
= M

[
x1(t)

x2(t)

]
, (3.25)

where M is called the monodromy matrix of x1(t) and x2(t). A monodromy matrix

can be constructed for any pair of linearly independent solutions of (3.24). One can

show that the determinant of the monodromy matrix is 1 and eigenvalues of the

monodromy matrix are independent of the pair of solutions that one chooses to start

with.

Suppose λ1, λ2 are eigenvalues of a monodromy matrix M corresponding to solu-

tions x1(t), x2(t). For each λj there exists a linear combination xλj
(t) of x1(t) and

x2(t) such that

xλj
(t+ T ) = λjxλj

(t). (3.26)
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Floquet’s theorem states that we may write

xλj
= e−iµjtuλj

(t), (3.27)

where uλj
(t) is periodic with period T and µj ∈ C is such that λj = e−iµjT . Since

uλj
(t) is periodic, one may expand uλj

(t) as a Fourier series and recover the analytic

solution xλj
(t+T ) to within arbitrary accuracy by recursively solving for the Fourier

amplitudes.

For (3.20) with ϕ = 0, we generally follow the method outlined in [18], where

the study focused on frequencies at or near parametric resonance due to an interest

in phase-locking, but our novel contribution is that we do not limit our attention to

resonant frequencies.

The equations in (3.20) can be decoupled by performing a change of basis and

defining

x±(t) = x1 ± ix2, (3.28)

Adding the first line of (3.20) to ±i times the second line yields

ẍ± + ω2
0[1 + h sin(γt)]x± + ω0 (g ± ir) ẋ± = 0, (3.29)

where the solutions in the new basis x±(t) exhibit real and imaginary loss terms. We

then let

x±(t) = e−
(g±ir)ω0t

2 y±(t) (3.30)

for y±(t) to be determined. Upon substituting (3.30) into the decoupled system of

(3.29), we arrive at:

ÿ± + ω2
0

[
1− (g ± ir)2

4
+ h sin(γt)

]
y±(t) = 0. (3.31)

Since the coefficient of y± in (3.31) is periodic with period T = 2π
γ
, then according to

Floquet Theory, we may write

y±(t) = e−iµtf±(t), (3.32)

where f±(t) are some periodic functions with period T = 2π
γ
. Wherever Im(µ) > 0,

y±(t) will be unstable as t → ∞. Since f±(t) are periodic, we may express them as
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Fourier series

f±(t) =
∑
n∈N

A±
n e

inγt, (3.33)

where A±
n denotes the amplitude of the nth Fourier coefficient for f±(t), respectively.

If we substitute the expression in (3.33) into (3.31) and collect the coefficients of einγt,

we get the recursion relation for the Fourier coefficients A±
n as derived by [18]:

D±,n(µ)A
±
n + i

ω2
0h

2
(A±

n+1 − A±
n−1) = 0, (3.34)

where Dn(µ) = ω2
0−(nγ−µ2)+ iω0(g+ ir)(nγ−µ). For a visual, we can conveniently

write (3.34) as the infinite dimensional matrix:

. . .
... . .

.

−iω
2
0h

2
D−1(µ) i

ω2
0h

2
0 0

. . . 0 −iω
2
0h

2
D0(µ) i

ω2
0h

2
0 . . .

0 0 −iω
2
0h

2
D1(µ) −iω

2
0h

2

. .
. ...

. . .


(3.35)

We note that if the driving intensity h is less than one, A±
n is coupled most strongly

to A±
n±1, with coupling proportional to h. Without loss of generality, we consider

n = 0. Therefore, one recovers a matrix equation of the form:

Det

D−1(µ) M(h) 0

M∗(h) D0(µ) M(h)

0 −M∗(h) D+1(µ)

 = 0, (3.36)

where one defines

Dn(µ) =

(
D+,n(µ) 0

0 D−,n(µ)

)

M(h) =

(
ihω2

0

2
0

0
ihω2

0

2

)
.

(3.37)

Note in (3.36) that enforcing the determinant to vanish ensures that there are non-

trivial solutions to (3.31). In contrast, it was also shown in [18] that the simplifying

assumptions of r = g = 0 and ignoring the coupling effects of D+1 yield the matrix
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equation:

Det

(
ω2
0 − (γ − µ)2

ihω2
0

2

− ihω2
0

2
ω2
0 − µ2

)
= 0, (3.38)

The matrix equation in (3.38) is a consequence of assuming the coupling effects as

well as the higher order effects are negligible in the asymptotic analysis. Hence, we

hereafter refer to the solutions of (3.38), which is the same as presented in [18], as

the simplified, uncoupled solution.

Similar to [18], we focus on the solutions of Equation (3.36) that display parametric

resonance at γ = 2Ωr, 2Ωr ± ω0r and the solutions of Equation (3.38) that display

parametric resonance at γ = 2Ωr; we present the solutions below. In particular,

we show that the simplifying assumptions have highly non-trivial and significant

effects on the system’s regions of stability at and away from parametric resonance

frequencies. We first compare the stability boundary of the results established via

(3.36) with the stability boundary of the simplified, uncoupled solution of (3.38).

We then compare the stability boundaries as predicted by asymptotic analysis with

the stability boundary as predicted by the auxiliary function method for long time

averages.

Indeed, we employ MATLAB’s solve function to find the roots in µ of (3.36),

whose solutions are sufficiently complicated and long to not be included in the text,

and this yields six solutions. In Figure 3.9, we plot the contours of the imaginary

part of one of the combined boundaries of the six solutions of our more generalized

result in comparison to the simplified, uncoupled solution to (3.38) for a wide range

of parameter values: We remark that implicitly solving for the roots of µ is compu-

tationally sensitive to very small numerical error. Hence, the stability boundary seen

in Figure 3.9 had miniscule variations depending on the software used. However, the

general shape of the stability boundary is consistent across software.

In Figure 3.9, we see that the more general, higher order asymptotic analysis solu-

tion is a dramatic and surprising improvement on the simplified, uncoupled solution,

as the region of instability for the simplified, uncoupled asymptotic result is a subset

of the region of instability for the more general asymptotic result. While there is

good agreement between the two solutions for |γ| > 1, there is a large region within

the parameter space, |γ| ≤ 1, for which the simplified, uncoupled asymptotic anal-

ysis solution predicts stability, while the more general, higher order solution reveals

instability.

The fact that the simplified, uncoupled asymptotic expansion stability solution

fails so drastically for |γ| ≤ 1 is quite a surprising finding. This means the simplified
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Figure 3.9: (McMillan and Young; 2022, [2]) The simplified, uncoupled asymptotic
solution to Equation (3.38) (shown with colored, solid contour lines) and
the more general asymptotic solution to Equation (3.36) (shown with
dashed, gray contour lines). The markers IS, IU, IIS, and IIU denote the
stable (S) or unstable (U) regions of the simplified (I) and general (II)
solutions, respectively. The parameter values are r = .2, g = .01, and
ϕ = 0.

solutions are dangerously un-conservative in predicting regions of stability. However,

it then becomes natural to ask if the more general, higher order solution also fails to

fully describe the stability boundary of the solutions to (3.20). That is, we may ask

if including successively higher order terms in the asymptotic expansion would lead

to such drastic changes in the stability boundary as seen between the two solutions

in Figure 3.9. In order to address this question, we compare the stability regions as

predicted by the general asymptotic analysis with the stability regions predicted by

the auxiliary function method for long time averages.

Upon computing the stability boundary with the auxiliary function method for

long time averages via the SDP in (3.23), we arrive at the solid black line seen Figure

3.10:

In Figure 3.10 2, we see that the more general asymptotic analysis result agrees

quite well with the results of the auxiliary function method. In particular and most

noticeably, both methods capture a pair of narrow, protruding tongues that occur

at γ ∈ {−1, 1}. However, there is still a quite large range of γ values for which the

auxiliary function method predicts potential instability, but the asymptotic analysis

2In Figure (3.10), the solution is independent of h and there is not a singularity at γ = 0; the
appearance is simply a consequence of line thickness.
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Figure 3.10: (McMillan and Young; 2022, [2]) There is strong agreement between our
auxiliary function method (shown with a thick, solid black line) with the
theoretical predictions of the simplified, uncoupled asymptotic analysis
(shown with colored, solid contour lines) and the more general, higher
order asymptotic analysis (shown with dashed, gray contour lines) for
r = .2, g = .01, and ϕ = 0. The open blue circles and red crosses
indicate where direct numerical simulation results are shown in Figure
3.11 for stable and unstable points, respectively.

solution to Equation (3.36) predicts stability.

In order to validate the extended region of instability as predicted by the auxiliary

function method for long time averages results, we choose four points within the

parameter space to perform direct numerical simulation using ode45 in MATLAB. The

results show that the auxiliary function method for long time averages is corroborated

via direct numerical simulation.

That is, for points marked by red crosses inside the region of instability, there

is a blow up of the solutions, with the time histories shown on the right hand side

of Figure 3.11. However, for points marked by open, blue circles—just outside the

instability region—solutions experience decay and hence are stable; the corresponding

time histories are shown on the left hand side of Figure 3.11.

Additionally, Figure 3.11 displays three trajectories for three randomly chosen

initial conditions for each of the four chosen points in parameter space. We also note

that the above figure only plots the trajectory of x1(t) for our model, but when we

plotted the trajectories for x2(t), a similar pattern of blow-up or stability still held.

This is perhaps a case study example of how the auxiliary function method can

lend itself to finding regions of instability where perturbative methods fail. Strik-
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Figure 3.11: The time histories predicted by DNS for the four points marked in Figure
3.10. The left two plots correspond to the two blue, open circles just
outside the region of instability for Figure 3.10, and the two right plots
correspond to the two red crosses just inside the region of instability for
Figure 3.10. In the above plot, an initial condition vector IC: [a,b,c,d]
corresponds to x1(0) = a, x2(0) = b, y1(0) = c, and y2(0) = d for
Equation (17) with r = 0.2, g = 0.01, and ϕ = 0.

ingly, the perturbative method for this system seems to fail quite drastically with a

large portion of the stability diagram not being captured by the perturbative method

but instead by the auxiliary function method. Therefore, the auxiliary function

method has the advantage of being able to recover the true stability boundary both

at and away from parametric resonance, while doing so in a computationally efficient

way. We remark that the auxiliary function method is quite computationally effi-

cient despite the polynomial representation, seen in (3.21) , containing five degrees

of freedom. In particular, the CPU times corresponding to the computation of Φ∗

at the points (γ, h) = (−1.13, .650), (−1.00, .650), (−.660, .390), and (−.660, .490) are
3.4844, 2.6744, 2.8574, and 2.5737 seconds for a degree 8 auxiliary function and a

degree 6 S-procedure enforcement on nothing more than a standard laptop using a
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single core, 2.2 GHZ processor.

In view of the above results, it then becomes natural to analyze how varying the

system parameters changes the above regions of stability. That is, we study the effects

of varying the coupling strength in the next section.

In order to study the affects of varying the coupling strength, we consider (3.20) for

r = .4 and compare the stability boundary with the prior results of the both auxiliary

function method as well as the asymptotic analysis for r = .2 and g = .01. We do not

consider negative values for r because the coupling term appears negatively in the first

equation and positively in the second equation of (3.20); hence, a sign change of r just

swaps the role of x1(t) and x2(t), respectively. Also, we focus on γ ∈ [−1.5, 1.5], as

this is where the discrepancies between the auxiliary function method and asymptotic

analysis were previously established.

Performing the same procedure with the auxiliary function method as in the pre-

vious section as well as incorporating the predictions of the asymptotic analysis, we

find in Figure 3.12 that the region of stability for the equations with r = .2 is a subset

for the region of the stability for the equations with r = .4. Intuitively, one would

expect this to be true because as the r-value increases, the rate of energy transfer

from one oscillator to another increases and hence initial transients are far less likely

to become unstable. Figure 3.12 shows that the discrepancies between the auxiliary

function method and the asymptotic analysis solution for r = .4 persist. Moreover,

the discrepancies seem to grow as the value of r is increased. Therefore, as the cou-

pling strength between the oscillators increases, the asymptotic analysis solution to

(3.36) increasingly fails to capture the true stability boundary of the system, because

the coupling terms amplify the relative importance of the higher order terms, partic-

ularly away from parametric resonance. We also note that Figure 3.12 is for g = .01,

but if one is interested in the affects of g, we can similarly compute regions of stability

for fixed r and different g values. The expected result would simply be a shift up of

the region of stability appearing in Figure 3.9. The reason is that g appears on the

damping term and hence increasing the damping coefficient should increase the size

of the region of stability.

Finally, we study the effects of varying the phase value ϕ. In a fashion similar

to [18], we focus on ϕ = 0, π
2
, π. However, it is important to remark that [18] was

unable to determine a closed form, asymptotic solution for varying ϕ. We also could

not find a closed form solution to the analog of (3.36) with ϕ ̸= 0. The ability to find

the stability boundary for general system parameters proves to be another benefit

of the auxiliary function method. Indeed, performing the analogous computations
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Figure 3.12: (McMillan and Young; 2022, [2]) The stability boundary as predicted
by the auxiliary function method is shown with a thick, solid black line
and a thick, solid blue line for r = .2 and r = .4, respectively, while the
asymptotic analysis boundary is shown with a thin, red dashed line and
a thin, gray dotted line for r = .2 and r = .4, respectively, with g = .01
and ϕ = 0.

via the auxiliary function method and choosing the same Φ as before, we arrive at

Figure 3.13. Figure 3.13 shows that the auxiliary function method reproduces the
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Figure 3.13: (McMillan and Young; 2022, [2]) The stability boundary as predicted by
the auxiliary function method for ϕ = 0 (shown with a thick, solid black
line), ϕ = π

2
(shown with a thin, dashed blue line), and ϕ = π (shown

with a thin, dashed red line).

43



protruding tongues around γ = ±2Ωr and γ = ±2Ωr ± ω0r with ϕ = 0, ϕ = π, and

ϕ = π
2
corresponding to one, two, and three tongues respectively. Moreover, note that

varying ϕ has non-trivial effects throughout the entirety of parameter space, and not

only about γ = ±2Ωr,±2Ωr ± ω0r, as varying the phase of the parametric oscillator

term can lead to more localized tongue formation.

Since the phase of a parametric oscillator can often be random, it is important to

identify the instability boundary when varying phases are taken into consideration,

especially when there is non-trivial disagreement between the true stability boundary

and the boundary as predicted by asymptotic analysis.
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CHAPTER IV

Dynamic Choice and Utilitarianism

4.1 Introduction

In this chapter, we first overview some classic results in decision theory. In partic-

ular, we discuss the seminal Von Neumann–Morgenstern theorem [3], concerning the

axiomatization of a preference relation satisfying Von Neumann–Morgenstern ratio-

nality, as a special case of dynamic choice occurring in only one time period—static

choice. We then move on to discuss the Von Neumann–Morgenstern theorem’s con-

nections with choice occurring in finitely or infinitely many periods. In particular, we

overview the exponentially discounted, expected utility framework initially proposed

by Samuelson [82]. In both frameworks, we present and discuss the relevant axioms

and their intuition as well as the underlying preference relation’s functional represen-

tation; we also provide a brief discussion of the subsequent literature relating to the

descriptive limitations of the underlying models.

Second, we provide a brief overview of the ethical theory of utilitarianism from the

perspective of Jeremy Bentham [4]. We overview the major tenants of utilitarianism,

which are the maximization of pleasure and the minimization of pain, as well as dis-

cuss Bentham’s framework for achieving these extrema. We then overview alternative

utilitarian frameworks and explicate the connections between utilitarianism and deci-

sion theory—in particular, utilitarianism’s connections with social choice theory. We

discuss the historical development of what is to be considered the “ultimate good”

of utilitarianism from an economics perspective, which ultimately falls on the crite-

ria established by John Harsanyi [83]—the satisfaction of preferences within the Von

Neumann–Morgenstern expected utility paradigm.

Finally, we overview the developments of social choice theory by beginning with

the seminal work of Kenneth Arrow and discussing the subsequent reaction within

the economics literature. We conclude the chapter by discussing the work of John
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Harsanyi on decision theoretic utilitarianism and the extensions of Harsanyi’s work

that appear in the literature. In addition, we discuss the results of Zhou [84] that will

be used in the new results of Chapter V and explain the limitations of Zhou’s result

as well as motivate the need for this work.

4.2 Dynamic choice under uncertainty

It is natural to analyze decisions that are made dynamically while also in the

presence of an uncertain future. The study of dynamic choice is thus concerned

with choices such that different actions lead to different outcomes that are realized

at various stages over time. Moreover, as the future is uncertain, we think of these

future outcomes as also being uncertain.

In order to fix ideas, we begin with the static case, which can be thought of as

choice occurring in only one period. For any topological space X, we define ∆(X) to

be the set of all Borel probability measures over X. Let ⪰ be a binary relation over

∆(X), where ⪰ is the preference relation of some specified individual and we refer to

elements of ∆(X) as prospects. We sometimes refer to ⪰ as a weak preference, and

it induces two other binary relations on ∆(X). For any two prospects p,q ∈ ∆(X),

we define ≻, the strict preference, as p ≻ q ⇐⇒ p ⪰ q and q ⪰̸ p1, and we define

∼, indifference, as p ≻ q ⇐⇒ p ⪰ q and q ⪰ p.

With the preference relations in hand, we concern ourselves with characterizing

the decision maker’s preferences under the assumption that they behave subject to

consistent rules or axioms. There are of course various axioms that one could invoke

on the preference relations to describe different behavioral aspects, but a very sim-

ple criteria is that of rationality. We assume that our decision maker behaves with

Von Neumann–Morgenstern rationality [3], which is surmised with the following four

axioms:

Axiom 1. (Completeness) For any p, q ∈ ∆(X), one of the following hold: p ≻ q,

q ≻ p, or q ∼ p.

Axiom 2. (Transitivity) For any p, q, r ∈ ∆(X), if p ≻ q and q ≻ r, then p ≻ r;

similarly for ∼.

Axiom 3. (Continuity) For any p, q, r ∈ ∆(X), if p ⪰ q ⪰ r, then there exists

λ ∈ [0, 1] such that λp+ (1− λ)r ∼ q.

1The notation p ⪰̸ q means the logical negation of the relation statement.
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Axiom 4. (Independence) For any p, q, r ∈ ∆(X) and λ ∈ (0, 1], p ⪰ r ⇐⇒
λp+ (1− λ)q ⪰ λr+ (1− λ)q.

The completeness axiom says that for any two prospects the decision maker is

decisive and can say which prospect they prefer over the other or if they are indifferent

between the two. The transitivity axiom says that the decision maker respects their

own orderings; there are not prospects for which order reversals are possible. The

continuity axiom says that there is a threshold for which weakly better and weakly

worse prospects become equally preferred to something in between; there are no

prospects that are infinitely preferred over others. The independence axiom says that

if one prospect is preferred over another then adding extraneous prospects to both in

an identical fashion should not alter the preference.

All four axioms are intuitively appealing while also decently seem to capture a

notion of rationality. Moreover, the above four axioms on the primitive ⪰ lead to the

following theorem:

Theorem IV.1. (Von Neumann–Morgenstern; 1947, [3]) Suppose ⪰ over ∆(X) sat-

isfies axioms 1-4. Then there exists a function u : X → R such that

p ⪰ q ⇐⇒ Ep[u] ≥ Eq[u], (4.1)

where Ep[u] :=
∫
X
u(x)dp. Moreover, the function u(·) is unique up to a positive

linear transformation.

The interpretation of Theorem IV.1 is that under axioms 1–4 a decision maker’s

preferences are essentially represented by an expected value operator, where this

expectation is taken over an endogenously revealed utility function u(·). Therefore,

a decision maker behaves in such a way as to maximize their expected utility despite

the decision maker potentially not knowing their own utility function u(·). Theorem
IV.1 has been met with criticism in the literature. In particular, it has been shown

that decision makers frequently violate the theorem’s criteria which have been studied

under the Allais paradox [85] and the framing effect [86].

However, Theorem IV.1 is concerned with static choice, and we would like to

introduce a framework for which consumption occurs in more than one period. For

the dynamic setting, we again take as primitive a binary relation ⪰, but the choice

domain is now P := ∆
(∏

t∈T Xt

)
2, where T may be a finite or countably infinite index

set. In this framework, the index set T represents time, and we think of an element

2In §5.2, we choose
∏

t∈T ∆(X)t ⊂ P as the choice domain.
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p ∈ P as an uncertain, sequence of future consumption. For the sake of simplicity in

this section, we take Xt = X for all t—that is, the same set of consumption goods is

available to the decision maker in each period.

Analogously to the static case, preferences are defined over a space of probability

distributions in order to capture uncertainty about future consumption. However, in

the dynamic setting, there are further behavioral aspects that should be captured.

In particular, ideas such as being consistent over time or displaying impatience are

commonplace, and they should be considered within any axiomatic framework of

dynamic choice.

A common dynamic choice framework is the exponentially discounted, expected

utility framework [87]. The central assumption to the exponential, discounted ex-

pected utility framework is that all of the diverse motives and behavioral character-

izations can be captured with a single parameter—the discount rate. Intuitively, a

decision maker’s discount rate is meant to capture the relative weighting of present

versus future consumption. For example, a highly impatient individual should have a

relatively high discount rate, and the converse should be true for a patient individual.

In [88], Koopman was the first to axiomatize an expected discount utility maximizer

for the infinite time horizon setting. However, Koopman’s original work was noted to

have fundamental flaws regarding rigor, so instead, we make use of the work appear-

ing in [87], and for simplicity, we assume that |T | < ∞—that is, there are a finite

number of time periods.

In order to state the axioms, we introduce the following definitions:

Definition IV.2. For any p ∈ P, pi is the marginal measure of p on the i-th compo-

nent of X |T |. That is, pi(B) = p(X i−1 ×B ×X |T |−i) for any Borel set B.

Definition IV.3. For any p ∈ P, pc
i is the marginal measure of p on all but the i-th

component of X |T |. That is, pc
i(x1, . . . , xi−1, xi+1, . . . , xn) =

∑
x∈X p(x1, . . . , xi−1, x, . . . , xn).

Note that if X is infinite, then the summation is replaced with integration.

Definition IV.4. For the preference ⪰ on P, we define the marginal preference ⪰M

on ∆(X) by p∗ ⪰M q∗ ⇐⇒ p ⪰ q for all p,q ∈ P such that pi = p∗ and qi = q∗

for all i ∈ {1, . . . , |T |}.

With the above definitions, we are now ready to state the axioms:

Axiom 5. (Persistence) ∀p, q ∈ P and ∀p∗, q∗ ∈ ∆(X) if there exists i ∈ {1, . . . , |T |}
such that pi = p∗, qi = q∗, pc

i = qci , then p ≻ q ⇐⇒ p∗ ≻ q∗.

Axiom 6. (Consistency) ∀p, q ∈ P if pi = qi for all i ∈ {1, . . . , |T |}, then p ∼ q.
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Axiom 7. (Stationarity) There exists some x ∈ ∆(X) such that if p, q, p̃, q̃ ∈ P with

pn = qn = p̃1 = q̃1 = x, pc
n = qcn, and p̃c

1 = q̃c1, then p ≻ q ⇐⇒ p̃ ≻ q̃.

The persistence axiom says that the marginal preference ⪰M is a “faithful” weak

order; it preserves preferences. The consistency axiom says that the behavior of

the marginal preference remains unchanged across all |T | factors; it does not matter

which factor we consider at which time. The stationarity axiom says that swapping

the first and final marginal measure does not change preferences.

Under the aforementioned axioms, the natural analog of Theorem IV.1 in the

dynamic setting is thus the following:

Theorem IV.5. Let ⪰ be a binary relation over P. Suppose ⪰ satisfies the Von

Neumann–Morgenstern axioms in addition to axioms 5–7. Then there exists a func-

tion v : X → R and a unique number δ > 0 such that

p ⪰ q ⇐⇒
|T |∑
i=1

δi−1Epi [v] ≥
|T |∑
i=1

δi−1Eqi [v]

In Theorem IV.5, the parameter δ is called the discount factor, which precisely

measures the decision maker’s relative weighting of present versus future consump-

tion, and the function v(·) is a Von Neumann–Morgenstern expected utility function.

Hence, the decision maker determines the overall utility of a consumption element

by taking into consideration the expected utility of the consumption good in each

period determined by the marginal distribution, discounting that expected utility

in proportion to which period the consumption occurs, and then simply summing

those discounted values. In the literature, the parameter δ is frequently taken to be

less than one, which can be axiomatized via some axiom that is meant to represent

impatience [87].

However, we remark that the exponential, expected discounted utility framework

has been shown to have descriptive limitations such as the common difference effect

for which individuals behave inconsistently over time [89], and this lead to numer-

ous generalizations such as quasihyperbolic discounting [90], generalized hyperbolic

discounting [91], liminal discounting [92], and rank-dependent discounted utility [93].

With the formalism of both a static and dynamic decision maker in hand, we

now turn to utilitarianism and discuss its connections to decision theoretic analysis

in both static and dynamic choice settings.
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4.3 Utilitarianism

Utilitarianism from the perspective of Bentham is a normative, ethical theory con-

cerning the maximization of happiness and well-being for a collection of individuals.

Indeed, in the seminal work, “An Introduction to the Principles of Morals and Legis-

lation” [4], Bentham proposed a hedonistic moral philosophy according to which an

action is right if it tends to promote pleasure or happiness, and an action is wrong

if it tends to promote unhappiness or pain. Bentham’s theory has been coined util-

itarianism and is considered a type of consequentialism, where the consequences of

happiness or pain determine the moral rightness or wrongness of an action [4].

Of course levels of pain and happiness associated with a specified action are subjec-

tive to an individual, so from the onset, it was not clear how an individual could prop-

erly make choices in this hedonistic framework. To overcome this moral ambiguity,

Bentham suggested individuals perform a hedonic calculus, which is an algorithmic

calculation to determine whether an action is right or wrong based on seven crite-

ria: intensity—the strength of the pleasure, duration—the longevity of the pleasure,

certainty or uncertainty—the likelihood or unlikelihood of the pleasure occurring,

propinquity—the temporal resolution of the pleasure, fecundity—the likelihood that

the pleasure will be followed by other similar pleasures, and extent—the number of

people impacted.

Furthermore, in order to connect his ethical theory to political philosophy, Ben-

tham attempted to establish rules for a legislator or governing body on when to invoke

a particular piece of legislation and to establish criteria for when and how this gov-

erning body should act. We hereafter refer to any legislator or governing body as a

social planner. In the words of Bentham,

“Pleasures then, and the avoidance of pains, are the ends that the legisla-

tor has in view . . . The business of government is to promote the happiness

of the society, by punishing and rewarding . . . In proportion as an act tends

to disturb that happiness, in proportion as the tendency of it is pernicious,

will be the demand it creates for punishment. [4]”

Therefore, in Bentham’s framework, a social planner’s moral imperative is to pro-

mote pleasure and demote pain for the constituents of the underlying social planner.

Bentham’s theory very quickly received widespread attention in both philosophi-

cal as well as economic studies. In the economic setting, many researchers set out to

determine, concretely, the ultimate good of utilitarianism and a proper framework for

social utility. The hedonistic framework that Bentham proposed would quickly fall
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out of favor as it could not account for people being motivated by, for example, social

status, knowledge, success, altruism, etc [83]. In [94], Moore would go on to propose

an ideal utilitarianism, which measured social utility by the total amount of “mental

states of intrinsic worth”. However, Moore’s theory also had serious descriptive diffi-

culties, as it appealed to what he called “nonnatural qualities”, which would prove to

be an unsatisfactory metaphysical theory. Ultimately, Harsanyi’s theory of preference

utilitarianism would survive [83]. Harsanyi argued that the difficulties of the afore-

mentioned theories could be escaped by following common economic practice—that

is, defining social utility in terms of preferences. This practice can be justified by

both the biblical and Kantian principle of “treat others in the way that we want to be

treated”, and this justification allows for a simple, essentially tautological solution in

deciding how people would like to be treated—namely, to be treated in accordance

with our own preferences. This framework provided the flexibility of allowing indi-

viduals to choose for themselves what actions or outcomes have intrinsic value and

then insisting that a social planner respect their choices [5].

This economic criteria of preference satisfaction was eventually linked to the

Von Neumann–Morgenstern paradigm of expected utility. In particular, if operat-

ing within a social utility framework for which the social planner should altruistically

care about individuals and take into account the preferences of individuals, past and

current research has been concerned with determining which criteria a social plan-

ner’s preferences should satisfy as well as the functional representation of this social

preference. Bentham suggested that a social planner’s ultimate good should be a

weighted summation of individual’s pleasures minus their pain [4]; in this way, a gov-

erning body would then non-trivially take into account the preferences and valuations

of each individual—an idealization of democracy. Therefore, in the Von Neumann–

Morgenstern paradigm, it then became natural to ask what axioms on the social

planner’s preference will make the social preference equivalent to a social utilitarian

representation—a weighted summation of individual expected utilities.

4.4 Harsanyi’s theorem and extensions

As Bentham suggested that a utilitarian decision maker’s utility should consist of

a weighted summation of individual utilitys, it became natural to seek under what

conditions the decision maker’s primitive would yield such a weighted summation

representation. However by 1950, Kenneth Arrow had published his seminal work “A

Difficulty in the Concept of Social Welfare” [95]. In [95], Arrow concerned himself
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with combining the preferences of individuals into an aggregate social preference and

the intuitively appealing conditions that such an aggregation should satisfy. The

problem, in the words of Arrow, is the following:

“Certain properties which every reasonable social choice function should

posses are set forth. The possibility of fulfilling these conditions is then

examined. If we are lucky, there will be exactly one social choice function

that will satisfy them. If we are less fortunate, there can be several choice

functions satisfying the conditions or axioms. Finally, it will be the height

of bad luck if there exists no function fulfilling the desired conditions.”

Arrow’s Impossibility Theorem would prove to be the “ height of bad luck ”. In-

deed, the theorem states that a planner’s aggregating function could not satisfy the

four intuitively appealing criterion of unrestricted domain, non-dictatorship, Pareto

efficiency, and independence of irrelevant alternatives [95]—let alone a social aggre-

gation representation that was additively separable such as a utilitarian weighted

summation.

Arrow’s work would subsequently send wide-ranging, ripples throughout the social

choice community and literature. Perhaps the only matter equally as wide-ranging as

the volume was the form of the responses. Various responses ranged from attempted

refutations, alternate solutions, relaxations or compromises, pessimistic resignations,

or denials concerning the applicability of Arrow’s analysis to various problems [96].

On the side of pessimism, many economists believed Arrow’s result suggested a co-

herent or satisfactory conception of social welfare was unattainable. A wide array of

more optimistic economists would go on to seek natural relaxations of Arrow’s hy-

potheses in order to reconcile a suitable notion of welfare. By 1955, Harsanyi would

adopt the Pareto efficiency hypothesis and address the problem of social welfare from

a utilitarian point of view [6].

To fix terminology, let ⪰i with i ∈ I for some set I and ⪰ be a collection of binary

relations over ∆(X). For each i ∈ I, ⪰i will be called an individual preference and ⪰
will be called the social planner’s preference. We think of the planner as altruistically

caring about the preferences of individuals in a democratic sense. In order to make

this precise, we have the following definitions:

Definition IV.6. Suppose ⪰i for i ∈ I and ⪰ are binary relations over some set Y .

The relation ⪰ is said to satisfy Pareto indifference, weak Pareto, and strong Pareto

if the following, respective conditions are met:

• Pareto indifference: p ∼i q ⇒ p ∼ q ∀p,q ∈ Y
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• Weak Pareto: p ⪰i q ⇒ p ⪰ q ∀p,q ∈ Y

• Strong Pareto: p ≻i q ⇒ p ≻ q ∀p,q ∈ Y

The interpretation of the Pareto conditions is clear. They state that upon a

unanimous preference between two prospects that the social planner must also respect

those preferences. By utilizing the Pareto conditions and placing preferences within

the expected utility framework of Von Neumann–Morgenstern, Harsanyi’s 1955 work

was the first to place utilitarian aggregation on a firm mathematical foundation.

Indeed, he proved the following result:

Theorem IV.7. (Harsanyi; 1955, [6]) Suppose ⪰i with i ∈ I with |I| < ∞ and ⪰
satisfy the Von Neumann–Morgenstern axioms and suppose that Pareto Indifference is

satisfied. Let Ui be an expectational representation of ⪰i, and let U be an expectational

representation of ⪰. Then there exist numbers wi and b such that for all p ∈ ∆(X):

U(p) =
n∑

i=1

wiUi(p) + b

(a) Suppose weak Pareto is satisfied. Then the wi are non-negative.

(b) Suppose Strong Pareto is satisfied. Then the wi are positive.

(c) The wi are unique if and only if Independent Prospects is satisfied.

It is quite beautiful that the intuitively appealing and simply stated Pareto ax-

ioms give the weighted summation that Bentham had described so many years earlier.

Harsanyi’s result would subsequently ignite a wide ranging academic discussion. Sev-

eral authors went on to debate the ethical relevance and consequences of his results as

they pertain to utilitarianism [97, 98], while others have attempted to make Harsanyi’s

original analysis more rigorous, provide alternative proofs, or extend the generality

of the results [99, 100, 101, 102, 103].

However, all of the aforementioned analyses were limited to a crucial assumption

of Harsanyi—the number of individuals appearing in the aggregation is finite. In

particular and in the context of dynamic choice, one is frequently working with an

infinite time horizon, and hence, the number of individuals in the utilitarian aggre-

gation is also infinite. In view of this, the work by [84] was the first to attempt a

rigorous formulation of Harsanyi’s original result with infinitely many individuals.

Theorem IV.8. (Zhou; 1997, [84]) Suppose individual preferences ⪰i with i ∈ I

and the social planner’s preference ⪰ satisfy the Von Neumann–Morgenstern axioms
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with expectational representations Ui and U , respectively. The social planner and

individual preferences satisfy weak Pareto if and only if there exists a nonnegative,

linear functional β on span{Ui} such that

U(p) = β(U(p; ·)) ∀p ∈ ∆(X). (4.2)

We note that the set I in Theorem IV.8 is completely general, and the proof of

Theorem IV.8 is purely constructive. That is, one can construct a positive linear

functional on the vector space spanned by individual utility functions and show that

the planner’s utility function is equal to this functional using standard mixture space

arguments. However, the linear functional β can not be extended to a positive linear

functional on the space of all continuous functions over I, and hence, it fails to

be easily characterized. However, if one additionally assumes that the individual

and social planner’s utility representations separate points and that I is a compact

metric space, then Theorem IV.8 holds with the added structure that β can now be

represented as integration against a countably additive measure; this is Theorem 2’

in [84].

Unfortunately, Zhou’s result has a critical pitfall. The pitfall is that Zhou’s result

does not yield utilitarianism—that is, a weighted summation of individual utility, so

the extension is not complete. In the subsequent chapter, we provide an intuitive,

dynamic setting for which Harsanyi’s result holds with countably infinitely many

individuals.
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CHAPTER V

Utilitarianism in the Infinite Time Horizon Setting

5.1 Introduction

In this chapter, we study utilitarian aggregation in the infinite time horizon set-

ting. We consider a natural, dynamic setting for which time is discrete and infinite.

Therefore, any Pareto condition involves countably infinitely many individuals, as

there are infinitely many future generations of individuals.

In order to keep our setting as general as possible, the population and the set

of consumption goods may differ across generations in order to capture the special

cases of time dependent resources and technology. We show that under some addi-

tional, mild assumptions, Harsanyi’s utilitarianism theorem [6] can be extended to

our setting.

In [6], Harsanyi requires that individual preferences and the social preference

have expected utility representations. In our setting, a natural analogue will be that

individual preferences and the social planner’s preference can be represented by dis-

counted, expected utility functions. However, to again preserve the generality of our

results, we do not require that the discounted utility functions have exponential dis-

count functions, and we do not require that future-generation individuals’ discounted

utility functions be related to past generations’.

We first show that Harsanyi’s [6] utilitarianism theorem can be extended to our

setting. In particular, we provide two proofs of our main theorem regarding the

extension of Harsanyi’s result. In the first proof, we make use of Theorem IV.8 and

measure theoretic results concerning the additivity of measures. Put concretely, when

there are countably infinitely many individuals, the Pareto condition still implies that

the planner’s utility function is a linear functional of individuals’ utility functions.
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This linear functional is represented by the integration of individuals’ utility with

respect to a finitely additive measure. To have utilitarian aggregation, the measure

must be countably additive. In the second proof, we make use of the function analytic

result of the generalized Farka’s lemma and the theory concerning positive operators

on ordered, Banach vector spaces. The generalized Farka’s lemma allows us to treat

the determination of utilitarian weights as a linear program, and the Pareto condition

will imply that this linear program as a solution.

Both proofs rely on mainly two assumptions. First, the social planner and in-

dividuals have discounted utility functions, which is a quite general assumption for

which most utility functions in dynamic, economic models would satisfy. Second, for

each consumption sequence, individuals’ discounted utility functions are uniformly

bounded. This is almost a necessary condition, because if there exists some consump-

tion sequence that leads to infinite utility for infinitely distant future generations, the

utilitarian aggregation may not be well defined. Additionally, we also provide a new

condition that allows the utilitarian weights to be uniquely determined. This is done

by taking a classic affine independence assumption from static settings—that ensures

that the utilitarian weights are uniquely determined in those settings—and extending

it to our setting.

After extending the result of Harsanyi [6] using the normatively appealing Pareto

condition and establishing that the utilitarian weights are uniquely determined, we

then naturally analyze the intergenerational and asymptotic properties of the util-

itarian weights. These analyses might be particularly useful in understanding, for

example, inequality or fairness based on the utilitarian weights implied by a social

discounted utility function. We show that asymptotically, future-generation individ-

uals’ utilitarian weights diminish exponentially at a rate equal to the social discount

rate. Therefore, roughly speaking, a higher social discount rate is associated with a

more unequal assignment of utilitarian weights across generations.

In addition, we illustrate some counter-intuitive properties of the utilitarian weights

in a simple setting. We show that when the social discount factor converges to the

discount factor of one family of individuals (who share the same discount function

and same instantaneous utility function), but the social risk attitude converges to the

risk attitude of a different family of individuals, only the utilitarian weights of the

former family converge to zero, regardless of the relative speed of convergence.

We remark that several papers have extended [6] to a setting with infinitely many

individuals, and this work will largely build on the aggregation results of [84]. In [84],

Zhou allows for an arbitrary number of individuals and shows that the Pareto condi-
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tion holds if and only if the planner’s expected utility function is a linear functional

of individuals’ expected utility functions. The linear functional, however, does not

always take the form of utilitarian aggregation, in which case we may not be able to

analyze the properties of utilitarian weights. Similar types of results are established

by [104], although they further allow individuals’ and the planner’s preferences to

violate completeness and continuity. We will explain below how our approach avoids

this issue. In [105], the set of individuals is a probability space with the number

of individuals being countably infinite but the measure being nonatomic and finitely

additive—defined on the power set of the set of individuals. Therefore, this is also

different from the utilitarian aggregation in our case.

The static version of our assumption that ensures the uniqueness of utilitarian

weights would assume that individuals’ expected utility functions are affinely inde-

pendent. This affine independence assumption is used in [106] and shown in [107] to

be equivalent to the independent prospects condition introduced by [108] and later

used by [109] and [110].

The work discussed in this chapter was done in collaboration with Shaowei Ke and

Tangren Feng and subsequently published in the Journal of Mathematical Economics

[111].

5.2 Preferences

In view of utilitarianism, it is natural to postulate a social planning, decision

maker who must make dynamic decisions, and at each time step, they consider the

individuals in their society at both current and future times or generations.

In order to fix mathematical ideas, let T := {1, . . . , T} denote the set of genera-

tions/periods, in which 1 ≤ T ≤ +∞. In each generation t ∈ T, 1 ≤ Nt < +∞ indi-

viduals live for one period and consume a public consumption good; we remark that in

similar dynamic settings, economists typically assume that each Nt is either finite or

compact. We assume thatNt is finite so that our results can be directly compared with

[6]. Let Nt := {1, . . . , Nt}. The set of period-t public consumption goods is ∆(Xt),

in which ∆(Xt) is the set of Borel probability measures on a compact metric space

Xt. This assumption covers the case in which each individual has his own consump-

tion. We only need to view each period-t public consumption good as an Nt-tuple of

individual consumption, and let each individual care only about his own component.

A typical consumption sequence is denoted by p = (p1, . . . , pT ) ∈ P :=
∏

t∈T ∆(Xt).
1

1See [112] for a discussion of an alternative recursive choice domain.
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Each ∆(Xt) is endowed with the topology of weak convergence, and P is endowed

with the product topology. We identify a degenerate probability measure in ∆(Xt)

that assigns probability 1 to xt ∈ Xt with xt. We use x = (x1, . . . , xT ) to denote a

consumption sequence that only consists of such degenerate probability measures.

An individual lives for only one period, but he altruistically cares about future

generations’ consumption. Each generation-t individual i, t ∈ T and i ∈ Nt, has a

preference ≿i,t over consumption sequences. Let T0 := {0, . . . , T − 1}. We assume

that each ≿i,t is represented by some continuous discounted utility function:

Ui,t(p) =
T∑

τ=t

δi,t(τ − t)ui,t(pτ , τ), (5.1)

in which δi,t : T0 → R+ with δi,t(0) = 1 is his discount function, and the continuous

expected utility function ui,t(·, τ) : ∆(Xτ ) → R is his instantaneous utility function

for period-τ consumption.2 When T = +∞, we require {δi,t(τ)}∞τ=0 ∈ ℓ1 and for any

p ∈ P, {ui,t(pτ , τ)}∞τ=t ∈ ℓ∞; that is, the former is an absolutely summable sequence

and the latter is a bounded sequence.

In each period t ∈ T, there is a social planner who has a preference ≿t over

consumption sequences. We assume that her preference ≿t is also represented by

some continuous discounted utility function:

Ut(p) =
T∑

τ=t

δt(τ − t)ut(pτ , τ), (5.2)

in which δt : T0 → R+ with δt(0) = 1 is her discount function, and the continuous

expected utility function ut(·, τ) : ∆(Xτ ) → R is her instantaneous utility function

for period-τ consumption.

Similarly, when T = +∞, we require that {δt(τ)}∞τ=0 ∈ ℓ1 and for any p ∈ P,

{ut(pτ , τ)}∞τ=t ∈ ℓ∞. We assume that for any τ ∈ T, there exists some xhτ , x
l
τ ∈ Xτ

such that

ui,t(x
l
τ , τ) = ut(x

l
τ , τ) = 0 = 1− ui,t(x

h
τ , τ) = 1− ut(x

h
τ , τ) (5.3)

and ui,t(·, τ), ut(·, τ) ≥ 0 for any t ∈ T and i ∈ Nt.

Assumption (5.3) helps us rule out uninteresting cases (e.g., see the discussion

2We assume that Ui,t(p) does not depend on past consumption. We cannot observe an individual
choosing between consumption streams with different past consumption; that is, there is no revealed-
preference foundation for utility over past consumption.
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after Definition V.1) and simplify proofs. It says that there exist some public goods

in each period whose utility would be 0 and 1 for all individuals and the planner,

respectively. A similar but weaker assumption is used in [84].

Then, we further assume that xlτ is unanimously the worst period-τ public good,

such as the extinction of the τth generation. However, we do not assume that xhτ is

unanimously the best public good in each period. This allows for the possibility that,

for example, current-generation individuals believe that the best public goods for

future generations are strictly better than theirs due to technological advancements.

In [112], the authors introduce a Pareto condition to the setting with multiple

generations: intergenerational Pareto. It is shown that intergenerational Pareto is

not only useful in avoiding the impossibility results in [113] and [114], but also in

understanding which social discount rates are reasonable. The idea of intergener-

ational Pareto is simple: Because the planner’s decision affects both current- and

future-generation individuals—and how the current generation thinks about the fu-

ture may well differ from how future generations will think—the planner should take

the current generation as well as the future generations into account when aggregating

individual preferences. Intergenerational Pareto is defined as follows:

Definition V.1. The planner’s preference {≿t}t∈T is intergenerationally Pareto if

fixing any p,q ∈ P and t ∈ T, p ≿i,s q for every s ∈ {t, . . . , T} and i ∈ Ns implies

p ≿t q.

Intergenerational Pareto says that in any period t, if all current- and future-

generation individuals prefer a consumption sequence p to another sequence q, the

planner should agree. Note that if the planner is always indifferent, intergenerational

Pareto holds trivially, but due to (5.3), this uninteresting case is ruled out.

5.3 Unique utilitarianism with T < +∞

In [6], Harsanyi points out that if individuals’ and the planner’s preferences have

expected utility representations, the Pareto condition is equivalent to utilitarianism.

This equivalence is established under the assumption that the number of individuals

is finite. Since (5.1) and (5.2) are expected utility functions defined on P, if T is

finite, Harsanyi’s finding applies to our setting 3.

3The mixture operation defined onP is as follows: For any p,q ∈ P and λ ∈ [0, 1], λp+(1−λ)q :=
(λp1 + (1 − λ)q1, . . . , λpT + (1 − λ)qT ). Each λpt + (1 − λ)qt is a standard mixture of probability
measures in expected utility theory.
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Theorem V.2. (Harsanyi; 1955, [6]) Suppose T < +∞. The planner’s preference

{≿t}t∈T is intergenerationally Pareto if and only if for any t ∈ T, there exists a finite

sequence of nonnegative numbers {ωt(i, s)}s∈{t,...,T},i∈Ns such that

Ut =
T∑
s=t

Ns∑
i=1

ωt(i, s)Ui,s. (5.4)

Throughout the remainder of this work, if (5.4) holds, whether T is finite or not,

we call the nonnegative numbers {ωt(i, s)}s∈{t,...,T},i∈Ns utilitarian weights.

Due to (5.3), (5.4) implies that the current period utilitarian weights satisfy re-

cursive conditions between future period utilitarian weights and the discount function

δt(·). For example, if we consider the consumption sequence (xl1 . . . , x
l
t−1, x

h
t , x

l
t+1,

xlt+2, . . . , x
l
T ) for (5.4), we immediately have

∑Nt

i=1 ωt(i, t) = 1. Moreover, if we con-

sider the consumption sequence (xl1, . . . , x
l
t, x

h
t+1, x

l
t+2, x

l
t+3, . . . , x

l
T ) for (5.4), we

have
∑Nt

i=1 ωt(i, t)δt,i(1) +
∑Nt+1

i=1 ωt(i, t + 1) = δt(1); and so on. The same holds for

our main theorem—Theorem V.5—as the argument is identical.

Due to the level of generality for our setting, Theorem V.2 covers many useful

special cases, such as the case in which individual and social discount functions are

exponential, the case in which future generations inherit the current generation’s

preferences, the case in which the population may grow or shrink, the case in which

technology (the set of consumption goods) may change, etc.

However, Theorem V.2 is silent about the uniqueness of the utilitarian weights.

If they are not unique, it may be difficult to analyze the asymptotic and intergen-

erational properties of the utilitarian aggregation. Although some assumptions have

been introduced in the literature to allow the utilitarian weights to be determined

uniquely, we introduce a new assumption below that is easy to understand and use

in our dynamic setting.

Definition V.3. We say that an n-tuple of real-valued functions defined on the same

domain, (f1, . . . , fn), is linearly independent if for any λ1, . . . , λn ∈ R,
∑n

j=1 λjfj = 0

implies λj = 0, j = 1, . . . , n.

The following result shows that when some of individuals’ instantaneous utility

functions are linearly independent, utilitarian weights can be uniquely determined.

Proposition V.4 (Feng, Ke, and McMillan; 2022, [111]). Suppose T < +∞ and for

any t ∈ T, there exists a finite sequence of nonnegative numbers {ωt(i, s)}s∈{t,...,T},i∈Ns
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such that

Ut =
T∑
s=t

Ns∑
i=1

ωt(i, s)Ui,s.

Fixing any t ∈ T, if {ui,s(·, s)}i∈Ns is linearly independent for every s ∈ {t, . . . , T},
{ωt(i, s)}s∈{t,...,T},i∈Ns is unique.

Proof. Fix an arbitrary t ∈ T. Since Ut =
∑T

s=t

∑Ns

i=1 ωt(i, s)Ui,s, for any p ∈ P,

T∑
τ=t

δt(τ − t)ut(pτ , τ) =
T∑
s=t

Ns∑
i=1

ωt(i, s)

(
T∑

τ=s

δi,s(τ − s)ui,s(pτ , τ)

)
(5.5)

=
T∑

τ=t

(
τ∑

s=t

Ns∑
i=1

ωt(i, s)δi,s(τ − s)ui,s(pτ , τ)

)
.

We prove the uniqueness of {ωt(i, s)}s∈{t,...,T},i∈Ns by induction. First, consider any

p ∈ P such that pτ = xlτ whenever τ ̸= t. Then, (5.5) becomes

ut(pt, t) =
Nt∑
i=1

ωt(i, t)ui,t(pt, t)

for any pt ∈ ∆(Xt). Since {ui,t(·, t)}i∈Nt is linearly independent, {ωt(i, t)}i∈Nt is

unique.

Next, suppose for some fixed s ≥ t + 1, {ωt(i, ŝ)}ŝ∈{t,...,s−1},i∈Nŝ
is uniquely de-

termined. Consider another p ∈ P such that pτ = xlτ whenever τ ̸= s. Then, (5.5)

implies

δt(s− t)ut(ps, s) =
s∑

ŝ=t

Nŝ∑
i=1

ωt(i, ŝ)δi,ŝ(s− ŝ)ui,ŝ(ps, s)

Ns∑
i=1

ωt(i, s)ui,s(ps, s) = δt(s− t)ut(ps, s)−
s−1∑
ŝ=t

Nŝ∑
i=1

ωt(i, ŝ)δi,ŝ(s− ŝ)ui,ŝ(ps, s).

Since {ωt(i, ŝ)}ŝ∈{t,...,s−1},i∈Nŝ
is uniquely determined, the right-hand side of the equa-

tion above is uniquely determined. Hence, {ωt(i, s)}i∈Ns is uniquely determined be-

cause (ui,s(·, s))i∈Ns is linearly independent. Therefore, we know that {ωt(i, s)}s∈{t,...,T},i∈Ns

is unique.

To have unique utilitarian weights in every period, Proposition V.4 only requires

that {ui,t(·, t)}i∈Nt be linearly independent for every t ∈ T; that is, for each generation

of individuals, their instantaneous utility functions for their own consumption are
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linearly independent. It does not require that, for example, {ui,t(·, τ)}i∈Nt be linearly

independent when τ ̸= t.

Static versions of the linear independence assumption in Proposition V.4 have

already appeared in the literature; see [108], [107], [106], [109], and [110]). In [106],

Mongin assumes affine independence rather than linear independence, but due to

(5.3), affine independence reduces to linear independence in our setting.

There are two ways to understand the linear independence assumption. First,

similar to the intuition in [108] and [106], {ui,t(·, t)}i∈Nt is linearly independent if and

only if these functions can be separated from each other by some period-t consump-

tion.4 Second, if we think of {ui,t(·, t)}i∈Nt as being drawn randomly from the space

of continuous expected utility functions defined on ∆(Xt) such that the size of Xt is

larger than Nt, generically {ui,t(·, t)}i∈Nt should be linearly independent.

5.4 Unique utilitarianism with T = ∞

In many economic models, the time horizon is infinite. When T = +∞, inter-

generational Pareto requires that the planner aggregate countably infinitely many

individuals’ preferences, in which case Harsanyi’s (1955) utilitarianism theorem no

longer applies. The difficulty of generalizing Harsanyi’s utilitarianism theorem to the

case with countably infinitely many individuals (without assuming a nonatomic mea-

sure) can be seen from Zhou’s Theorems 1 and 2 [84]. The Pareto condition along

with a mild boundedness assumption only implies that the planner’s expected util-

ity function is a linear functional of individuals’ expected utility functions, which is

represented by an integration of individuals’ utility with respect to a finitely additive

measure. For the linear functional to take the form of utilitarian aggregation, which

necessitates a countably additive measure, additional assumptions are needed.

Intuitively, one possibility to rule out linear functionals that cannot be written

as utilitarian aggregations is to impose further restrictions on individuals’ and the

planner’s utility functions. Our assumptions about their utility functions, which are

discounted utility functions, already provide more structure than [84]. The result be-

low shows that those assumptions are almost sufficient. Together with a boundedness

assumption, they ensure that the measure is countably additive and hence Harsanyi’s

[6] utilitarianism theorem continues to hold in our setting.

4The independent prospects condition used in some of these papers is equivalent to assuming
linear independence (see the proof in [108]), which states that for each i ∈ Nt, we can find some

pit, q
i
t ∈ ∆(Xt) such that ui,t(p

i
t, t) ̸= ui,t(q

i
t, t) and ui,t

(
pjt , t

)
= ui,t

(
qjt , t

)
for any j ̸= i.
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Theorem V.5 (Feng, Ke, and McMillan; 2022, [111]). Suppose T = +∞ and for each

p ∈ P, supi,s Ui,s(p) < +∞. The planner’s preference {≿t}t∈T is intergenerationally

Pareto if and only if for any t ∈ T, there exists a sequence of nonnegative numbers

{ωt(i, s)}s≥t,i∈Ns ∈ ℓ1 such that

Ut =
∞∑
s=t

Ns∑
i=1

ωt(i, s)Ui,s. (5.6)

Fixing any t ∈ T, if in addition, {ui,s(·, s)}i∈Ns is linearly independent for every

s ≥ t, {ωt(i, s)}s≥t,i∈Ns is unique.

A new assumption introduced in Theorem V.5 requires that for each p ∈ P,

supi,s Ui,s(p) < +∞. This upper bound assumption is uniform across generations

and individuals, but not across consumption sequences. It is a sufficient condition for

(5.6) to be well defined, and it is almost necessary—if this assumption does not hold,

the right-hand side of (5.6) may diverge. In fact, we have the following result that

shows the pointwise bound assumption is tight in our setting.

Proposition V.6 (Feng, Ke, and McMillan; 2022, [111]). Suppose the following

assumptions hold: Xt = X = [0, 2], Nt = N = {1, 2}, δt(τ − t) = δτ−t, δi,t(τ − t) =

δτ−t
i , ui,s(pτ , t) =

∫
[0,2]

xi+sdpτ (x), and ut(pτ , τ) = α1u1,t(pτ , τ) + α2u2,t(pτ , τ) with

α1 + α2 = 1. Then, Theorem V.5 fails.

Proof. It is clear that the above ui,s(·, τ) functions are continuous expected utility

functions on ∆(X), which are linearly independent in each period. Moreover, there

also exist xlτ and x
h
τ such that ui,s(x

l
τ , τ) = ut(x

l
τ , τ) = 0 = 1−ui,s(xhτ , τ) = 1−ut(xhτ , τ)

by taking xlτ and xhτ to be Dirac masses centered at zero and one, respectively.

Clearly, the pointwise bound assumption is violated under the assumptions, but

all other hypotheses of Theorem V.5 are satisfied. By way of contradiction, suppose

that Theorem 1’s conclusion holds. Then there exists a unique, nonnegative sequence

{ωt(i, s)}s≥t,i∈N ∈ ℓ1 such that

Ut(p) =
∞∑
s=t

2∑
i=1

wt(i, s)Ui,s(p).
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A lower bound on Ut(p) can be established as follows:

Ut(p) =
∞∑
s=t

2∑
i=1

wt(i, s)Ui,s(p)

=
∞∑
s=t

2∑
i=1

wt(i, s)
∞∑
τ=s

δτ−s
i ui,s(pτ , τ)

=
∞∑
s=t

2∑
i=1

wt(i, s)δ
s−s
i ui,s(ps, s) +

∞∑
s=t

2∑
i=1

wt(i, s)
∞∑

τ=s+1

δτ−s
i ui,s(pτ , τ)

≥
∞∑
s=t

2∑
i=1

wt(i, s)ui,s(ps, s).

Choosing p ∈ P such that ps is the Dirac mass centered at 2 for s ≥ t yields

Ut(p) ≥
∞∑
s=t

2∑
i=1

wt(i, s)2
i+s

≥
∞∑
s=t

2∑
i=1

wt(i, s)2
s.

Similar to Theorem V.15, we have that wt(i, s) = αi if s = t, and we can establish a

summed recursive relationship for the wt(i, s) weights of the following form:

2∑
i=1

wt(i, s) =
2∑

i=1

s−1∑
τ=t

[δδi,τ (s− 1− τ)− δi,τ (s− τ)]wt(i, τ) for s > t.

Finally, we show that the above series diverges via the ratio test and hence Ut(p)

also diverges, which breeds a contradiction.

lim inf
s→∞

2s+1
∑2

i=1wt(i, s+ 1)

2s
∑2

i=1wt(i, s)
= lim inf

s→∞

2
∑2

i=1

∑s
τ=t[δδ

s−τ
i − δs+1−τ

i ]wt(i, τ)∑2
i=1

∑s−1
τ=t[δδ

s−1−τ
i − δs−τ

i ]wt(i, τ)

≥ lim inf
s→∞

2
∑2

i=1

∑s−1
τ=t[δδ

s−τ
i − δs+1−τ

i ]wt(i, τ)∑2
i=1

∑s−1
τ=t[δδ

s−1−τ
i − δs−τ

i ]wt(i, τ)

= lim inf
s→∞

2
∑2

i=1

∑s−1
τ=t[δ − δi]δ

s−τ
i wt(i, τ)∑2

i=1

∑s−1
τ=t[δδ

−1
i − 1]δs−τ

i wt(i, τ)
,

in which the limit is strictly greater than 1 provided that δ − δi >
1
2
( δ
δi
− 1); this

holds, for example, if δ = .9 and δi ∈ (.5, .9). Hence, we have a contradiction.

We provide two proofs of Theorem V.5 of varying abstraction in §5.4.1 and §5.4.2
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in order to uncover the underlying machinery.

5.4.1 Proof 1 of Theorem V.5

We first introduce some terminology and facts that will be useful in the proof.

Let (X,Σ) be a 2-tuple consisting of a set X and an algebra Σ over X.

Definition V.7. A nonnegative, finitely additive measure µ on Σ is called purely

finitely additive if for every countably additive measure ν on Σ that 0 ≤ ν ≤ µ

implies ν = 0.

Pure finite additivity is therefore the anti-thesis of countable additivity. More-

over, as the {0, 1}-valued, finitely additive measures over Σ are in one-to-one corre-

spondence with the set of ultrafilters over Σ, it follows that purely finitely additive

measures are convex combinations of finitely additive measures with ultrafilter rep-

resentations. An elementary, yet useful fact is that a purely finitely additive measure

over 2N identically vanishes on the finite subsets of N—the set of natural numbers

[115].

Fix an arbitrary t ∈ T. Let J := {j = (i, s) : i ∈ Ns, s ≥ t}. Note that

the individuals’ discounted utility functions, U(j;p) := Ui,s(p), are continuous and

bounded functions over J for every fixed p ∈ P, since J is discrete and there is a

pointwise bound across the Ui,s(p) functions. Due to Theorem IV.8, there exists a

nonnegative linear functional β on V := span({Ui,s}) such that

Ut = β(Ui,s)

Under the assumptions of (5.3), the linear functional β can be extended to Cb(J) by

the Krein–Rutman theorem [84], which is a more refined version of the Hahn–Banach

theorem. By the Riesz representation theorem, this functional can be represented as a

nonnegative, finite, finitely additive measure, µ, on J, so that the planner’s preference

takes on the form

Ut(p) =

∫
J

U(j,p)dµ(j).

Therefore, since µ is discretely supported, it suffices to show that µ is countably addi-

tive for the planner to have a countably infinite discounted utilitarian representation.

By [116], µ uniquely decomposes into a countably additive and purely finitely

additive part, denoted by µc and µpf , respectively, both of which are nonnegative.
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By the countable additivity and discrete support of µc, we obtain:

Ut(p) =

∫
J

U(j,p)dµ(j)

=

∫
J

U(j,p)dµc(j) +

∫
J

U(j,p)dµpf (j)

=
∞∑
s=t

Ns∑
i=1

µc(i, s)
∞∑
τ=s

δi,s(τ − s)ui,s(pτ , τ) +

∫
J

U(j,p)dµpf (j).

To see that the right-hand most integral vanishes, let p = (p1, p2, . . . ) ∈ P and

for any t̃ ∈ T, let pt̃ =
(
p1, p2, . . . , pt̃−1, pt̃, x

l
t+1, x

l
t+2, . . .

)
. Note that for any finite t̃,

the right-hand most integral vanishes in the expression for Ut(pt̃) since only finitely

many individuals’ utility is positive and µpf is purely finitely additive.

Let ϵ > 0. Since U(j,p)s are nonnegative for all j ∈ J and p ∈ P, (δt(τ))
∞
τ=0 ∈ ℓ1,

and for any p ∈ P, (ut(pτ , τ))
∞
τ=t ∈ ℓ∞, we can find t∗ such that

ϵ >
∣∣Ut(p)− Ut(pt∗)

∣∣
≥

∞∑
s=t

Ns∑
i=1

µc(i, s)
∞∑

τ=t∗+1

δi,s(τ − s)ui,s(pτ , τ) +

∫
J

U(j,p)dµpf (j)

≥
∫
J

U(j,p)dµpf (j)

≥ 0.

Since ϵ was arbitrary, the result follows.

There are a couple of remarks in order in view of the first proof for Theorem V.5.

The proof has the advantage of being concise and each step is mathematically simple.

The key ideas are simply that the intergenerational Pareto condition allow the social

planner’s utility function to be represented as a linear functional on the individual

utility functions due to [84], and since both the social planner’s and individual’s util-

ity functions separate points, the underlying linear functional is actually integration

against a measure. Moreover, due to the individual utility functions being additively

separable, this measure must be countably additive, which is intuitive enough because

otherwise the utility functions would be primarily supported on a finite number of

temporal coordinates.

However, the proof is unfortunately somewhat opaque from an economics per-

66



spective. The reason is that our proof crucially depends on the characterization that

finitely additive measures have a unique decomposition into a countably additive and

purely finitely additive part due to [116], and purely finitely additive measures are

rather pathological objects. That is, they are convex combinations of finitely additive

measures with ultrafilter representations, which are highly non-constructive mathe-

matical objects. From a mathematical perspective, if one is willing to swallow the

axiom of choice, there is little to be criticized here. However, from an economics per-

spective, this non-constructive property is of limited practical interest. In particular,

one is unable to write down an example and see why the purely finitely additive part

should vanish for a utilitarian aggregator.

5.4.2 Proof 2 of Theorem V.5

Our second proof of Theorem V.5 has the advantage of being transparent, but

it is unfortunately significantly more difficult and relies on deeper function analytic

machinery. We make use of the generalization of Farka’s lemma for dual pairs due to

[117], and to state the lemma, we first introduce some definitions.

Definition V.8. A dual pair is a 3-tuple (A,A′, ϕ) consisting of two vector spaces A

and A′ and a function ϕ : A × A′ → R such that (i) ϕ is bilinear, (ii) if ϕ(a, a′) = 0

for every a ∈ A, then a′ = 0, and (iii) if ϕ(a, a′) = 0 for every a′ ∈ A′, then a = 0.

Properties (ii) and (iii) are called the separation properties; see [117] and [115].

Definition V.9. A nonempty subset S ⊂ A is a convex cone if αa+ βb ∈ S for any

α, β ≥ 0 and a, b ∈ S.

Definition V.10. The anticone S ′ of a convex cone S is defined by S ′ := {a′ ∈
A′ |ϕ(a, a′) ≥ 0 ∀a ∈ S}.

Definition V.11. Suppose (A,A′, ϕ) and (B,B′, φ) are dual pairs. If both A and

B are equipped with a norm, a map ψ : A → B is strongly continuous if it is a

continuous map between the topologies generated by the norms on A and B. A map

ψ : A → B is weakly continuous if it is continuous map between the weak topologies

on A and B.

Definition V.12. The adjoint of a weakly continuous linear map ψ : A → B is

defined as the map ψ′ : B′ → A′ that satisfies

ϕ(a, ψ′(b′)) = φ(ψ(a), b′)
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for any a ∈ A and b′ ∈ B′.

We state Craven and Koliha’s generalized Farkas’ lemma below.

Theorem V.13. (Craven and Koliha; 1977, [117]) Let (A,A′, ϕ) and (B,B′, φ) be

dual pairs, let S be a convex cone in A, and let ψ : A → B be a weakly continuous

linear map. If ψ(S) is closed in the weak topology and b ∈ B, the following statements

are equivalent:

1. The equation ψ(a) = b has a solution a ∈ S.

2. ψ′(b′) ∈ S ′ ⇒ φ(b, b′) ≥ 0.

We now turn to the second proof of Theorem V.5. Indeed, the “if” part is obvious,

and we only prove the “only-if” part.

Recall that the generation-t individual i’s utility function is Ui,t(p) =
∑∞

τ=t δi,t(τ−
t)ui,t(pτ , τ) and the social planner’s utility function in period t is Ut(p) =

∑∞
τ=t δt(τ−

t)ut(pτ , τ).

Since Xt is compact and metrizable for each t ∈ T, X :=
∏∞

t=1Xt is also compact

and metrizable in the product topology. Let A = ℓ1, A′ = ℓ∞, B = Cb(X), and B′ =

ca(X), in which ℓ∞ is the set of bounded sequences, Cb(X) is the set of continuous

and bounded functions on X, and ca(X) is the set of countably additive finite signed

measures on X. The norm of A′ and B is the sup norm, denoted by || · ||ℓ∞ and

|| · ||Cb(X), respectively. The norm of B′ is the total-variation norm, and for any

{an}∞n=1 ∈ A, its norm is equal to
∑∞

n=1 |an| and denoted by || · ||ℓ1 .
It is not hard to show that by defining

ϕ(a, a′) =
∞∑
n=1

ana
′
n

and

φ(b, b′) =

∫
X

bdb′

for any a ∈ A, a′ ∈ A′, b ∈ B, and b′ ∈ B′ that (A,A′, ϕ) and (B,B′, φ) are dual pairs.

Fix an arbitrary t ∈ T . For any sequence in ℓ1 denoted by ω⃗t = (ωt(1, t), . . . , ωt(Nt, t), ωt(1, t+

1), . . . , ωt(Nt+1, t+ 1), . . . ), define an operator ψ : A→ B such that for each x ∈ X,

ψ(ω⃗t)(x) =
∞∑
s=t

Ns∑
i=1

ωt(i, s)Ui,s(x)
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For this operator to be well defined, we need to verify two things. First, since for each

fixed x ∈ X, we have {Ui,s(x)}s≥t,i∈Ns ∈ ℓ∞ and therefore ψ(ω⃗t)(x) is well defined.

Second, in order for ψ’s codomain to indeed be B, we need to show that for ω⃗t ∈ ℓ1,

ψ(ω⃗t) is a continuous function defined on X. However, this is easily deduced as for

each fixed x ∈ X, {Ui,s(x)}s≥t,i∈Ns ∈ ℓ∞, and therefore, finite truncations of ψ(ω⃗t) are

continuous and converge monotonically pointwise to ψ(ω⃗t)—since {Ui,s(x)}s≥t,i∈Ns is

a nonnegative sequence due to assumption (5.3). By Dini’s Theorem, the convergence

is uniform. Hence, ψ(ω⃗t) is a continuous function defined on X.

Next, we’d like to verify that ψ is weakly continuous. Note that ψ is a linear map

between Banach spaces. Moreover, if a linear map between Banach spaces is strongly

continuous, it is also weakly continuous [118]. Therefore, it suffices to show that ψ

is strongly continuous. However, ψ is a positive operator5 between Banach lattices6

due to assumption (5.3), and hence, ψ is strongly continuous [119].

Next, we show that ψ(S) is closed in the weak topology induced by ca(X). Since

S is convex and ψ is linear, ψ(S) ⊂ Cb(X) is convex. By [118], ψ(S) as a convex

subset of a normed Banach space is closed in the weak topology if and only if it is

closed in the norm topology. Therefore, we only need to show that ψ(S) is closed in

the norm topology.

Indeed, take a sequence {fn}∞n=1 of ψ(S) such that fn converges to f ∈ Cb(X) in

sup norm. We want to show that f ∈ ψ(S); that is, there exists some ω⃗t ∈ S such

that ψ(ω⃗t) = f . Since fn ∈ ψ(S), there exists a sequence {ω⃗t
n}∞n=1 ∈ S such that for

any n ∈ N and x ∈ X,

fn(x) =
∞∑
s=t

Ns∑
i=1

ωn
t (i, s)Ui,s(x)

We first show that {ω⃗t
n}∞n=1 ∈ S is uniformly bounded in the ℓ1 norm. Indeed, since

the sequence {fn}∞n=1 are continuous functions on a compact metric space, sup norm

convergence implies that {fn}∞n=1 is an equicontinuous family. Moreover, define xh by

xh = (xh1 , x
h
2 , . . . ) ∈ X.

5An operator T : A → B between two ordered vector spaces A and B is said to be positive if
a ≥ 0 ⇒ T (a) ≥ 0.

6A Banach lattice X is a partially ordered Banach space with norm || · || and ordering ≥ such
that for two elements x, y ∈ X, |x| ≤ |y| ⇒ ||x|| ≤ ||y||, where |x| := x ∨ −x under the usual lattice
operations.

69



We have

fn(x
h) =

∞∑
s=t

Ns∑
i=1

ωn
t (i, s)

∞∑
τ=0

δi,s(τ).

Since fn(x
h) converges to f(xh), we know that there exists some ρ > 0 such that

fn(x
h) ≤ ρ for any n ∈ N, and because

∑∞
τ=0 δi,s(τ)’s are greater than 1,

∞∑
s=t

Ns∑
i=1

ωn
t (i, s) ≤ ρ

for any n ∈ N. Thus, the sequence {ω⃗t
n}∞n=1 is uniformly bounded.

We next wish to show that the sequence {ω⃗n
t }∞n=1 is uniformly summable and

admits a convergent subsequence with respect to the ℓ1 topology. Let xh×s :=

(xh1 , . . . , x
h
s , x

l
s+1, x

l
s+2, . . . ). For any x,y ∈ X, the metric

d(x,y) := sup
τ∈T

{min{||xτ − yτ ||τ , 1}
τ

}
induces the product topology on X, where ||·||τ denotes the metric on Xτ . Intuitively,

when x and y are close, xτ and yτ are close when τ is small, but xτ and yτ can be far

apart when τ is large. Therefore, when s is large, xh and xh×s are close.

By the equicontinuity of the sequence {fn}∞n=1, for any ϵ
′ > 0, there exists some

κ′ > 0 such that for any κ̃′ ≥ κ′ and n′ ∈ N,

ϵ′ > |fn′(xh)− fn′(xh×κ̃′
)| =

∣∣∣ ∞∑
s=t

Ns∑
i=1

ωn′

t (i, s)Ui,s(x
h)−

∞∑
s=t

Ns∑
i=1

ωn′

t (i, s)Ui,s(x
h×κ̃′

)
∣∣∣

This shows that for any ϵ′ > 0, there exists s′ > 0 such that for any s̃′ ≥ s′ and

n′ ∈ N,
∞∑

s=s̃′

Ns∑
i=1

ωn′

t (i, s) < ϵ′

Therefore, the sequence {ωn
t }∞n=1 is uniformly summable. As a consequence of the

Frechet–Kolmogorov theorem, a sequence in ℓ1 is relatively compact if and only if

it is uniformly bounded and uniformly summable [120]. Thus, {ωn
t }∞n=1 is relatively

compact. By the Eberlein–Smulian theorem, relative compactness is equivalent to

relative sequential compactness, which implies that there exists a convergent subse-

quence {ωnk
t }∞nk=1 that converges to some ω∗

t ∈ ℓ1.

In addition, since ℓ1 is a Banach lattice, the positive cone, S, is closed in the ℓ1

topology [119]. Then, because {ωnk
t }∞nk=1 is in S, it follows that ω∗

t ∈ S. Since fn
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converges to f , this implies that
∑∞

s=t

∑Ns

i=1 ω
nk
t Ui,s(x) converges to f(x) in sup norm.

Therefore, we have
∞∑
s=t

Ns∑
i=1

ω∗
t (i, s)Ui,s(x) = f(x).

This shows that ψ(S) is strongly closed and therefore weakly closed.

Finally, we want to show that the following equation

Ut =
∞∑
s=t

Ns∑
i=1

ωt(i, s)Ui,s = ψ(ω⃗t) (5.7)

has a nonnegative solution; that is, there exists some ω⃗t ∈ S that solves (5.7). For

any µ ∈ B′, ψ′(µ) ∈ S ′ if and only if ϕ(a, ψ′(µ)) = φ(ψ(a), µ) ≥ 0 for any a ∈ S. In

turn, φ(ψ(a), µ) ≥ 0 for any a ∈ S implies that∫
X

Ui,sdµ ≥ 0 (5.8)

for any s ≥ t and i ∈ Ns. By Theorem V.13, we know we can find a nonnegative

solution ω⃗t ∈ S for (5.7) if we can show that for any µ ∈ B′ such that (5.8) with s ≥ t

and i ∈ Ns implies
∫
X
Utdµ ≥ 0. A useful fact is that because each Ui,s is additively

separable in time, we have ∫
X

Ui,s(x)dµ = Ui,s(p
µ), (5.9)

where the components of pµ are pµτ - the marginal distribution of µ on Xτ . More

precisely, by applying the Fubini–Tonelli theorem, we have∫
X

Ui,s(x)dµ =

∫
X

[ ∞∑
τ=s

δi,s(τ − s)ui,s(xτ , τ)
]
dµ =

∞∑
τ=s

δi,s(τ − s)
[ ∫
X

ui,s(xτ , τ)dµ
]
.

By the Hahn–Jordan decomposition theorem, µ can be uniquely decomposed into

aµ+ − βµ− in which α, β ≥ 0 and µ+ and µ− are some probability measures on X.

Therefore, the expression in (5.8) becomes

α

∫
X

Ui,sdµ+ ≥ β

∫
X

Ui,sdµ−

for any s ≥ t and i ∈ Ns. Moreover, just as in (5.9), the probability measures µ+
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and µ− can be identified with some p,q ∈ P, in which pτ and qτ are the marginal

distributions of µ+ and µ− on Xτ , respectively. Hence, (5.8) becomes

αUi,s(p) ≥ βUi,s(q)

for any s ≥ t and i ∈ Ns. Without loss of generality, suppose that α ≥ β and denote

xl as the sequence (xl1, x
l
2, . . . ). By assumption, we have Ui,s(x

l) = 0 for any s ≥ t

and i ∈ Ns, and (5.8) becomes

Ui,s(p) ≥
β

α
Ui,s(q) +

(
1− β

α

)
Ui,s(x

l)

for any s ≥ t and i ∈ Ns. Since the Ui,s’s are time-additively separable, the above

equation implies that for every s ≥ t and i ∈ Ns, the generation-s individual i prefers

p to β
α
q+

(
1− β

α

)
xl, in which β

α
q+

(
1− β

α

)
xl ∈ P as a convex mixture between q

and xl. By intergenerational Pareto, this implies that

Ut(p) ≥
β

α
Ut(q) +

(
1− β

α

)
Ut(x

l)

αUt(p) ≥ βUt(q)∫
X

Utdµ ≥ 0.

Therefore, (5.8) has a nonnegative solution. Finally, the uniqueness of the utilitarian

weights follows from the same argument as in the proof of Lemma V.4.

The proof is demonstrative from two points of view. First, if we compare our

approach with [84] and the first proof of Theorem V.5, we see that we have worked

backwards. In [84], one constructs the planner’s linear functional on the linear sub-

space generated by individual’s utility functions, and extends the functional to a larger

space. Theorem 2 in [84] then obtains the utilitarian representation of the planner’s

preference via the Riesz representation theorem, because the (larger) space is the

space of continuous functions defined on a compact metrizable set of individuals.

This technique fails in our setting, because our corresponding space is the space

of continuous functions over N. Such an extension may have the desired utilitarian

representation, but theoretical guarantees can only be achieved if the extended func-

tional is continuous with respect to the strict topology in the sense of [121], and there

is no such guarantee in Zhou’s setting. Our result works backwards in the sense that

instead of constructing and extending a functional and invoking the Riesz represen-
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tation theorem to obtain the utilitarian representation, we start with the utilitarian

representation, which can be thought of as an uncountable set of potential planners,

and show that the generalized Farka’s lemma, paired with the Pareto condition and

the linear independence assumption, allows us to comb away all members of this set

except for one.

One may be left curious as to why the utilitarian representation works in such

a pathological space as ℓ1. Without reflexivity, compactness is difficult to recover,

which is often at the heart of representation results using separation arguments. This

brings us to the second point. For a generic set of individuals’ utility functions, there

does not seem to be a way to perform this combing procedure, as the ℓ1 space is

too large, and reducing the number of potential planners seems impossible even via

the generalized Farka’s lemma, unless we have certain closedness and compactness

conditions. It turns out that we can recover those conditions in our setting. As can

be seen in the proof of the closedness of S, the space of discounted utility functions

allows us to control the tail end of positive sequences in ℓ1, which grants uniform

control over such sequences. In particular, one is allowed to recover the desired

compactness of a subset of ℓ1.

5.5 Comparative static analyses of the utilitarian weights

Being able to determine utilitarian weights uniquely is crucial to the analysis

of utilitarian weights’ properties. In order to motivate and gain intuition for our

subsequent results, consider the following example. Suppose for any t ∈ T, Nt = 2,

Xt = [0, 1], and

U1,t(p) =
T∑

τ=t

0.8τ−tu1(pτ ) and U2,t(p) =
T∑

τ=t

0.9τ−tu2(pτ )

for some linearly independent continuous expected utility functions u1 and u2 defined

on ∆([0, 1]). Therefore, for any s, t ∈ T and i ∈ {1, 2}, the generation-t individ-

ual i shares the same discount factor and instantaneous utility function with the

generation-s individual i. One may think of individuals with the same i as ancestors

and descendants who share the same preference parameters. Suppose in period 1, the

planner’s exponentially discounted utility function is

U1(p) =
T∑

τ=t

δτ−tuα(pτ ),
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in which δ ∈ (0.9, 1) and for some α ∈ (0, 1),

uα = αu1 + (1− α)u2. (5.10)

According to Theorem V.2, Proposition V.4, and Proposition 3 of [112], U1 is equal

to some utilitarian aggregation of Ui,t’s, i ∈ {1, 2} and t ∈ T; that is, for some

nonnegative numbers ω(i, s)’s,

U1 =
T∑

s=1

2∑
i=1

ω(i, s)Ui,s.

Suppose we want to understand what happens to the individuals’ utilitarian

weights as the social discount factor δ approaches 0.9 and the social risk attitude

parameter αapproaches 1. As δ approaches 0.9, the planner’s discount factor is ar-

bitrarily close to individual 2’s discount factor. However, as α approaches 1, the

planner’s instantaneous utility function is arbitrarily close to individual 1’s instan-

taneous utility function. Hence, although it seems that either individual 1’s or 2’s

utilitarian weights will likely converge to 0, it is not obvious which one’s will. One

may think that this will depend on which parameter converges faster. As will be

shown below, the rate of convergence does not matter.

It is difficult to examine this question if the utilitarian weights cannot be uniquely

determined. Here, because u1 and u2 are linearly independent, by Proposition V.4, we

can determine the utilitarian weights uniquely. Consider any consumption sequence

with pt = xlt for any t > 1. We immediately have for any p ∈ ∆([0, 1]),

ω(1, 1)u1(p) + ω(2, 1)u2(p) = uα(p).

Because u1 and u2 are linearly independent, there is only one way to write uα as a

convex combination of u1 and u2. By (5.10),

ω(1, 1) = α and ω(2, 1) = 1− α.

Next, consider another consumption sequence with pt = xlt for any t ̸= 2. We have

for any p ∈ ∆([0, 1]),

δuα(p) = 0.8ω(1, 1)u1(p) + 0.9ω(2, 1)u2(p) + ω(1, 2)u1(p) + ω(2, 2)u2(p)

uα(p) =
1

δ
[0.8ω(1, 1) + ω(1, 2)]u1(p) +

1

δ
[0.9ω(2, 1) + ω(2, 2)]u2(p),
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which implies that

1

δ
[0.8ω(1, 1) + ω(1, 2)] = α and

1

δ
[0.9ω(2, 1) + ω(2, 2)] = 1− α.

Therefore, ω(1, 2) = α(δ − 0.8) and ω(2, 2) = (1− α)(δ − 0.9). A similar calculation

shows that for any s ≥ 2,

ω(1, s) = αδs−2(δ − 0.8) and ω(2, s) = (1− α)δs−2(δ − 0.9).

It can be seen that first, in any period s ≥ 2, ω(1, s)/ω(2, s) is constant. Second,

as α approaches 1 and δ approaches 0.9,

ω(1, s) ̸→ 0 and ω(2, s) → 0 for any s ∈ T,

regardless of the rate of convergence of α or δ. In fact, even if α is fixed and we

only let the planner’s discount factor δ go to 0.9—which is individual 2’s discount

factor—surprisingly, individual 2’s utilitarian weight ω(2, s) still converges to 0 for

any s ∈ {2, . . . , T}. Using the intuition from the above example, we derive a more

general result—Theorem V.15, but first, we introduce the following definition:

Definition V.14. For each discount function δi,t(·), let βi,t(τ) := δi,t(τ)/δi,t(τ − 1),

τ ∈ {1, . . . , T −1}, be its relative discount function. We say that the relative discount

function βi,t(·) is θ-regular if it is weakly increasing and bounded above by some

θ ∈ (0, 1). We say that a discount function is θ-regular if its relative discount function

is θ-regular.

A generic βi,t(τ) will be called a relative discount factor. The relative discount

function captures the instantaneous discounting for consumption that is τ periods

ahead relative to consumption that is τ−1 periods ahead. Regular discount functions

are closely related to (weak) present bias; see [112] for a more detailed discussion.

For example, the relative discount function of an exponential discount function is

constant, and the relative discount function of a quasi-hyperbolic discount function is

strictly increasing between τ = 1 and τ = 2 and constant afterward. With the above

definition and intuition from the example, we have the following theorem:

Theorem V.15 (Feng, Ke, and McMillan; 2022, [111]). Suppose T = +∞, and

for some N = {1, . . . , N} and compact metric space X, Nt = N and Xt = X for

every t ∈ T. Assume that for some θ ∈ (0, 1), θ-regular discount functions δi,ts with

t ∈ T and i ∈ N, and linearly independent instantaneous utility functions {ui}i∈N,
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individuals’ discounted utility functions take the following form:

Ui,t(p) =
T∑

τ=t

δi,t(τ − t)ui(pτ , τ)

for any t ∈ T and i ∈ N. Moreover, for some δ ∈
(
supi∈N,t∈T,τ≥t βi,t(τ), 1

)
and

α1, . . . , αN ∈ [0, 1] such that
∑

i∈N αi = 1, we have

Ut(p) =
T∑

τ=t

δτ−tu(pτ , τ)

for any t ∈ T, in which u =
∑

i∈N αiui. Then, the planner’s preference {≿t}t∈T
is intergenerationally Pareto if and only if for any t ∈ T, s ≥ t, and i ∈ N, the

utilitarian weight satisfies the following recursive formula

ωt(i, s) =

 αi, if s = t,
s−1∑
τ=t

[δ · δi,τ (s− 1− τ)− δi,τ (s− τ)]ωt(i, τ), if s > t.
(5.11)

Proof. Since βi,t’s are bounded above by θ < 1, supi∈N,t∈T,τ≥t βi,t(τ) ≤ θ and hence δ

is well defined. The sufficiency part follows from Theorem S2 in [112]. To prove the

necessity part, suppose the planner’s preference {≿t}t∈T is intergenerationally Pareto.

Fix any t ∈ T. By Theorem V.5, there exists a unique sequence of nonnegative

numbers {ωt(i, s)}s≥t,i∈N ∈ ℓ1 such that

Ut =
∞∑
s=t

N∑
i=1

ωt(i, s)Ui,s. (5.12)

We only need to verify (5.11).

First, consider any p ∈ P such that pτ = xlτ whenever τ ̸= t. Equation (5.12)

implies
N∑
i=1

αiui(pt, t) = u(pt, t) =
N∑
i=1

ωt(i, t)ui(pt, t)

for any pt ∈ ∆(Xt). Since {ui}i∈N is linearly independent, we have ωt(i, t) = αi.

Next, consider another p ∈ P such that pτ = xlτ whenever τ ̸= t+1. Equation (5.12)
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implies

N∑
i=1

δαiui(pt+1, t+ 1) = δu(pt+1, t+ 1) =
N∑
i=1

[ωt(i, t)δi,t(1) + ωt(i, t+ 1)]ui(pt+1, t+ 1)

for any pt+1 ∈ ∆(Xt+1). Again, since {ui}i∈N is linearly independent, we have

ωt(i, t+ 1) = δαi − ωt(i, t)δi,t(1) = [δ − δi,t(1)]ωt(i, t).

Since δ > maxi∈N δi,t(1), ωt(i, t + 1) are nonnegative. Then, for any s > t + 1, by

considering any p ∈ P such that pτ = xlτ whenever τ ̸= s, we can follow similar

calculations to obtain

ωt(i, s) =
s−1∑
τ=t

[δ · δi,τ (s− 1− τ)− δi,τ (s− τ)]ωt(i, τ).

Again, ωt(i, s)’s are nonnegative because δ > supi∈N,t∈T,τ≥t βi,t(τ).

One can also recover a generalized version of Theorem V.15 without assuming

that the planner’s discount function is exponential, which is the following:

Theorem V.16 (Feng, Ke, and McMillan; 2022, [111]). Suppose for some N =

{1, . . . , N} and compact metric space X, Nt = N and Xt = X for every t ∈ T.

Assume that for some θ ∈ (0, 1), θ-regular discount functions δi,t’s with t ∈ T and

i ∈ N, and linearly independent instantaneous utility functions {ui}i∈N, individuals’
discounted utility functions take the following form:

Ui,t(p) =
T∑

τ=t

δi,t(τ − t)ui(pτ , τ)

for any t ∈ T and i ∈ N. Moreover, for discount functions δt’s and α1, . . . , αN ∈ [0, 1]

such that infτ≥t βt(τ) > supi∈N,τ≥t βi,t(τ) for any t ∈ T and
∑

i∈N αi = 1, we have

Ut(p) =
T∑

τ=t

δt(τ − t)u(pτ , τ)

for any t ∈ T in which u =
∑

i∈N αiui. Then, the planner’s preference {≿t}t∈T
is intergenerationally Pareto if and only if for any t ∈ T, s ≥ t, and i ∈ N, the

utilitarian weights satisfy the following recursive formula:
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ωt(i, s) =

 αi, if s = t,
s−1∑
τ=t

[ δt(s−t)
δt(s−t−1)

· δi,τ (s− 1− τ)− δi,τ (s− τ)
]
ωt(i, τ), if s > t.

(5.13)

Proof. As in the proof of Theorem V.15, we only prove the necessity part. Suppose

the planner’s preference {≿t}t∈T is intergenerationally Pareto. Fix any t ∈ T. By

Theorem V.5, there exists a unique nonnegative sequence {ωt(i, s)}s≥t,i∈N ∈ ℓ1 such

that

Ut =
∞∑
s=t

N∑
i=1

ωt(i, s)Ui,s. (5.14)

We only need to verify (5.13).

First, consider any p ∈ P such that pτ = xlτ whenever τ ̸= t. Equation (5.14)

implies that
N∑
i=1

αiui(pt, t) = u(pt, t) =
N∑
i=1

ωt(i, t)ui(pt, t)

for any pt ∈ ∆(Xt). Since {ui}i∈N is linearly independent, we have ωt(i, t) = αi.

Next, consider another p ∈ P such that pτ = xlτ whenever τ ̸= t+1. Equation (5.14)

implies that

N∑
i=1

δt(1)αiui(pt+1, t+1) = δt(1)u(pt+1, t+1) =
N∑
i=1

[ωt(i, t)δi,t(1)+ωt(i, t+1)]ui(pt+1, t+1)

for any pt+1 ∈ ∆(Xt+1). Again, since {ui}i∈N is linearly independent, we have

ωt(i, t+ 1) = δt(1)αi − ωt(i, t)δi,t(1) =
[δt(1)
δt(0)

δi,t(0)− δi,t(1)
]
ωt(i, t).

Since δt(1) = βt(1) > βi,t(1) = δi,t(1), ωt(i, t + 1) is nonnegative. Then, for any

s > t+1, by considering any p ∈ P such that pτ = xlτ whenever τ ̸= s, we can follow

similar calculations to obtain that

ωt(i, s) =
s−1∑
τ=t

[ δt(s− t)

δt(s− t− 1)
· δi,τ (s− 1− τ)− δi,τ (s− τ)

]
ωt(i, τ).

Again, ωt(i, s) is nonnegative because infτ≥t βt(τ) > supi∈N,τ≥t βi,t(τ).

From Theorem V.15, it is clear that our observations about comparative statics
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and convergence from the example continue to hold when T = +∞. A surprising

finding from the example is that when the planner’s discount factor δ converges to

individual 2’s discount factor, individual 2’s utilitarian weight ω(2, s) turns out to

converge to 0 for every s ∈ {2, . . . , T}. To understand this, suppose that in Theorem

V.15 all individual discount functions are distinct and exponential. It follows that

ωt(i, t) = αi and ωt(i, s) = αiδ
s−t−1(δ−δi) for any i ∈ N, t ∈ T, and s > t. Therefore,

it can be seen that future-generation individual i’s utilitarian weights will be lower if δ

is closer to δi and will converge to zero as δ goes to δi. More intuitively, suppose there

is only one individual in each generation. If the planner wants her discount function

to be essentially identical to the individual’s, she can almost achieve it by taking

only the current-generation individual’s discounted utility function into account in

her utilitarian aggregation.

In addition, fixing an arbitrary t ∈ T, the planner assigns unique utilitarian

weights {αi}i∈N to generation-t individuals. These weights only depend on the social

risk attitude characterized by the planner’s and individuals’ instantaneous utility

functions. They do not depend on discounting.

These insights are summarized in the following corollary.

Corollary V.17 (Feng, Ke, and McMillan; 2022, [111]). Suppose the assumptions of

Theorem V.15 hold and, in addition, for some δ1, . . . , δN ∈ (0, 1) such that δ1 ≤ δ2 ≤
· · · ≤ δN−1 < δN , δi,t(τ) = δτi for any i ∈ N, t ∈ T, and τ ∈ T. Then the following

statements are true:

1. For any δ ∈ (δN , 1), ωt(i, t) = αi for any i ∈ N and t ∈ T.

2. lim
δ→δN+

ωt(N, s) = 0 for any t ∈ T and s > t.

More importantly, Theorem V.15 allows us to study the asymptotic properties of

the utilitarian weights. In particular, as Proposition V.18 shows, future-generation

individuals’ utilitarian weights diminish exponentially at a rate equal to the social

discount rate 1− δ.

Proposition V.18 (Feng, Ke, and McMillan; 2022, [111]). Suppose T = +∞ and

the assumptions of Theorem V.15 hold. Then

lim
s→∞

ωt(i, s+ 1)

ωt(i, s)
= δ

for each i ∈ N and t ∈ T.
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Proof. The utilitarian weight ωt(i, s) can be written as a polynomial in the social

discount factor δ and the relative discount factors:

ωt(i, s) =
s−1∑
τ=t

[δ · δi,τ (s− 1− τ)− δi,τ (s− τ)]ωt(i, τ)

=
s−1∑
τ=t

[δ − βi,τ (s− τ)]δi,τ (s− 1− τ)ωt(i, τ)

=
s−1∑
τ=t

[δ − βi,τ (s− τ)]
s−τ−1∏
k=0

βi,τ (k)ωt(i, τ),

in which βi,τ (0) = 1.

We claim that ωt(i, s) is a homogeneous polynomial of degree s− t and the coeffi-

cient of δs−t is always αi. To verify this claim inductively, we first have ωt(i, t) = αi,

which is a homogeneous polynomial of degree 0, and we also have ωt(i, t+1) = αiδ−
αiβi,t(1), which is a homogeneous polynomial of degree 1. Next, suppose the claim is

true for t, . . . , s− 1. Note that ωt(i, s) =
∑s−1

τ=t[δ − βi,τ (s− τ)]ωt(i, τ)
∏s−τ−1

k=0 βi,τ (k).

Each term in the summation is the product of three components, among which

[δ−βi,τ (s−τ)] is of degree 1, ωt(i, τ) is of degree τ− t, and
∏s−τ−1

k=0 βi,τ (k) is of degree

s− τ − 1. Therefore, each term in the summation is of degree s− t. Since δs−t only

shows up in the last term (when τ = s−1) in the summation, [δ−βi,s−1(1)]ωt(i, s−1),

the coefficient of δs−t in ωt(i, s) is the same as the coefficient of δs−t−1 in ωt(i, s− 1),

αi.

Since the social discount factor δ < 1 is greater than any individual relative

discount factor βi,t(τ), by L’Hospital’s rule, we have lims→∞
ωt(i, s)

αiδs−t
= 1 for all i ∈ N

and t ∈ T. Hence, lims→∞
ωt(i, s+ 1)

ωt(i, s)
= δ.

An easy way to see this is to note that when discount functions are all exponential,

ωt(i, t + 1)/ωt(i, t) = δ − δi and ωt(i, s + 1)/ωt(i, s) = δ for any i ∈ N, t ∈ T, and

s > t. Hence, intuitively, a lower social discount factor is associated with higher

intergenerational inequality measured by utilitarian weights.
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CHAPTER VI

Discussion and Future Work

In this thesis, we study dynamic processes that arise in two domains of the aca-

demic literature—dynamical systems and social choice theory.

As for the novel contributions to the dynamical systems literature, we present our

results in Chapter III. Firstly, we demonstrate the robustness of the auxiliary function

method for long-time averages paired with SOS-SDP technology in order to compute

sharp upper and lower bounds for time averaged quantities in the dynamical variables

for both non-autonomous and certain forms of trigonometric dependence in nonlinear

ODEs. Our procedure of augmenting a dynamical system with additional polyno-

mial degrees of freedom appears robust. Additionally, we observe that sharp—within

computer precision—bounds are often recovered for polynomial auxiliary functions of

reasonably restricted degree. This appears to be the case not only in this work, but

also various others [122, 45], so the SDP algorithm is able to concentrate the relative

coefficients on potentially severely truncated polynomials for which sharp bounds are

not guaranteed.

As for future directions, our technology is broadly applicable to a variety of disci-

plines in the applied sciences. There are a variety of applied science and engineering

applications where moderately low dimensional ODE systems serve as central models

for both conceptual and design purposes. These include energy harvesting [123, 124]

where the challenge is to optimally extract power from vibrations of a continuously

stimulated mechanical body where mathematical models often consist of periodically

driven nonlinear oscillators [125]. Another area is the periodic operation of chem-

ical and biochemical reactors [126] where the task is to optimize the time-average

production of certain byproducts. Mass action and related kinetic models often con-

sist of ODEs with polynomial vector fields. Circadian [127, 128] or seasonally forced

[129, 130] models in biology, ecology and epidemiology are often described by such

periodically driven ODEs with polynomial vector fields as well. Finally, we recognize
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the frontier for application of this auxiliary function approach and related numerical

methods to systems described by partial differential equations. Recent work in this

direction includes both fundamental theoretical results [49, 48] and revealing applica-

tions [47]. Still, many mathematical and computational questions remain for future

research.

We also demonstrate that the auxiliary function method can serve as a viable tool

in validating regions of stability as predicted by perturbative, asymptotic methods or

establishing the true regions of stability in the face of failed perturbative, asymptotic

methods. In §3.5, we investigate the higher order effects caused by coupling pa-

rameters on the stability region of a parametrically driven, coupled oscillator system

across a broad range of modulation frequencies. We show that the stability region

of a parametrically driven oscillator system as predicted by simplified, second order

asymptotic methods ignoring the coupling terms between the oscillators can differ

quite substantially at modulation frequencies away from parametric resonance fre-

quencies. The simplified, asymptotic solution is un-conservative compared to a full,

second order asymptotic solution when coupling terms are not ignored, which can in

turn differ and still be non-trivially un-conservative in comparison to the true stabil-

ity region at modulation frequencies away from the parametric resonance frequencies.

The differences are caused by both neglecting the coupling terms and higher order

effects.

This is a primary drawback of critical importance for asymptotic methods as

the the validity of the asymptotic results depends crucially on one’s choice of the

approximations. However, there is currently no way to know which order will be

sufficient to capture the true instability region, which depends on the strength of

the coupling terms, g and r, as well as the phase of the parametric oscillator term

ϕ. The solution is expected to be even more sensitive to these system parameters

if the resonance frequency of the individual oscillations are different or if nonlinear

terms are present. Hence, our results suggest that the auxiliary function method for

long-time averages is an efficient and robust means of computing the true long-time

averages and true regions of stability across all possible initial conditions without

the need of ad hoc approximations. Moreover, this auxiliary function method has

the advantage of being able to compute regions of stability both at and away from

parametric resonance.

The differences between the true stability region and the approximate stability

region are immaterial if one is operating withing a region of parameter space where

both boundaries agree. However, if one is operating within a region of parameter
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space for which they disagree, this may be quite problematic for both experimental

and real-world implementation—especially without the knowledge of operating within

one of these regions of disagreement. This point is exacerbated by the fact that, at

least in studying Equation (3.20), we discovered two, very narrow protruding tongues

in parameter space for which the system was potentially unstable. Moreover, these

tongues occur at very naturally occurring, non-pathological values of the driving

frequency γ.

In the context of applications and future research directions, our results have pro-

found implications on the reliance of asymptotic methods across a variety of applied

sciences. Our results also illuminate future research directions with regards to the

applicability of the auxiliary function method for long-time averages. For machine

learning and environmental modeling applications, one is often interested in estab-

lishing a dynamical system via data-driven methods [131, 132, 133, 134], and many

loss functions for the training of these machine learning models can be expressed in

terms of long-time averages. This poses a potential connection and future direction of

research between the training of machine learning models and this auxiliary function

method. Moreover, if data sampling is performed on a relatively sparse, spatial or

temporal grid, there may be narrow and protruding regions of parameter space, such

as in Figure 3.10, for which the dynamics are unstable, and utilizing asymptotic meth-

ods may fail to accurately predict the underlying stability. Hence, we recommend this

auxiliary function method as a viable method for checking system stability. For neu-

roscience and biological applications, studying synchrony behavior or global phase

locking of neuronal firing or circadian rhythms via asymptotic methods may fail to

capture sensitivity to a system’s parameters. Moreover, with measures of synchrony

being realized as time averages of the underlying oscillator’s correlations [127, 128],

this auxiliary function method may prove to be an indispensable tool in both cap-

turing dynamic sensitivity to a system’s parameters as well as concretely computing

synchrony measures. For ecological applications, many ecologists have been trying

to determine mechanisms that can stabilize ecosystems and support the biodiversity

observed empirically as well as investigate the reactivity and subsequent stability of

an ecological system [135, 136]. With previous work done on the applicability of this

auxiliary function method to control problems [46] and with our results establishing

this method’s applicability to determining regions of stability, it may be that this

method helps to illuminate these ecosystem stabilizing mechanisms as well as serve

as an effective computation tool for determining parameter dependent stability.

As for the novel contributions to the social choice literature, we present our results
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in Chapter V. Firstly, we show that in a multi-generation setting with infinite time

horizon—and hence countably infinitely many individuals (from all generations)—

if we assume that the individuals’ and the planner’s preferences have continuous

discounted expected utility representations, Harsanyi’s (1955) utilitarianism theorem

continues to hold under an additional boundedness assumption, and we provide two

proofs of varying abstraction for our main result. We introduce new assumptions on

the current generation individual’s utility functions that ensure that the utilitarian

weights are unique. This allows us to focus on utilitarian aggregation, and study

how utilitarian weights change in the comparative static analysis and the limit of

utilitarian weights for distant future generations. Among other findings, we find that

less patient social discounting is associated with a more unequal, across generations

assignment of utilitarian weights.

Our results are quite general as they follow the generality of our dynamic setting.

The number of individuals in each generation may change, the set of consumption

goods in each period may change, individuals’ preferences are not necessarily related

in any way, and individuals’ and the planner’s discount functions are not necessarily

exponential. We have only considered intergenerational Pareto, which requires that

the planner take all current- and future-generation individuals into account. It is

immediate to extend our theorem to cases in which the Pareto condition only involves

some, but not all, current- and future-generation individuals; for instance, we apply

intergenerational Pareto to an auxiliary setting that only has the individuals involved

in the Pareto condition. However, for our proof to go through, in each period t the

planner must not completely ignore the current generation (generation-t individuals).

As for future directions, our results rely quite heavily on the previous work es-

tablished by [6] and [84]. However, our results crucially depend on the expected,

discounted utility form of both current- and future-generation individuals as well as

the social planner. It is an open question as to whether a social planner’s utility

function can take on the form of utilitarian aggregation without these assumptions

on the utility function forms. Additionally, as our setting considers discrete time hori-

zons, it may be of future interest to explore utilitarian aggregation in a continuous

time setting. Finally, recent work in operational engineering has studied the effect of

multiple, temporal domains on dynamic choice [137]. Therefore, future work could

consider the effects of these temporal domains on both the form of the individual

utility functions as well as the form of the social planner’s function, and moreover the

natural analog of utilitarian aggregation in this setting.
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