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4.1 Summary of sleep patterns and bifurcation diagrams of ρ and ρREM as
the homeostatic sleep drive time constants are decreased with respect
to the scaling parameter χ. The pink shaded regions correspond to
χ-intervals of ρ = 1, 2/3, 1/2 solutions. A. Patterning of sleep-wake
behavior varies with scaling parameter χ. Sleep periods over 6 days
(y-axis) are shown as a function of χ (x-axis). As χ decreases, sleep
patterns transition from one sleep episode per day near χ = 1 to two
sleep episodes per day near χ = 0.542 to three sleep episodes per day
near χ = 0.29. B. Bifurcation diagram of the rotation number, ρ,
denoting stable (black dots) and quasi-periodic (gray dots) solutions
with respect to χ. The parameter χ is on the x-axis and the rotation
number ρ, defined as the number of circadian days over the number
of sleep episodes in the stable sleep pattern is on the y-axis. C.
Bifurcation diagram of the REM rotation number, ρREM , denoting
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5.4 Evolution trajectories of homeostatic parameters, τhw, τhs, hmax, and
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6.1 Model schematic. The physiologically-based model [71] for human
sleep incorporates equations for the average firing rate of the neu-
ronal populations promoting states of Wake, NREM and REM sleep,
and the SCN (boxes; NE, GABA, and ACh indicate the primary
neurotransmitters for each population), the homeostatic sleep drive
(h, orange triangle), and the circadian clock oscillator (c, green tri-
angle). Excitatory (inhibitory) effects of neurotransmitter-mediated
projections among populations are indicated by arrows (circles). To
simulate sleep deprivation, we impose a wake-promoting input (black)
that is excitatory to the wake population and inhibitory to the NREM
sleep population. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2 Example model simulations for sleep deprivation of 8 and 20 hours.
A,C: Time traces of population firing rates (top), homeostatic sleep
drive h (middle) and circadian drive c (bottom) for four days with sleep
deprivation of 8h (A) and 20h (C) from usual sleep onset occurring
on the 2nd day (usual sleep onset indicated with black arrows and
vertical dotted line). Light intensity input to the circadian clock
oscillator varies with simulated model behavior (background colors
in bottom panels, see also Section 6.2). B,D: Surface of steady state
solutions revealed by a fast-slow decomposition of the model when h
and c are taken as fixed parameters. The top (blue) surface represents
the stable wake state and the bottom (red) surface represents the
unstable solution surrounded by the stable periodic solution (e.g., see
blue trajectory) exhibiting NREM–REM cycles. Trajectories for the
full model when h and c are allowed to vary show how the steady state
“wake” and “sleep” manifolds influence solutions of the full model
[blue trajectory shows the stable, baseline sleep model solution while
the purple (orange) trajectory is the model solution for 8 hours (20
hours) of sleep deprivation B (D)]. We indicate sleep onsets on the
trajectories with filled circles. . . . . . . . . . . . . . . . . . . . . . 137
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6.3 Circle maps representing the dynamics of the sleep-wake network
model. A,B: Map Φss gives the circadian phase of the n + 1st sleep
onset (ϕn+1) on day (circadian cycle) i (bottom panel) or i + 1 (top
panel) as a function of the circadian phase of the nth sleep onset on
day (circadian cycle) i (ϕn). B: Cobwebbing of sleep onset phases
during simulations of 8h (purple) and 20h (orange) of sleep deprivation
as shown in Figure 6.2. C: Map Φsw gives the circadian phase of the
next wake onset [on day i (bottom) or i + 1 (top)] as a function
of the circadian phase of the nth sleep onset ϕn on day i. D: Map
Φws gives the circadian phase of the next sleep onset [ϕn+1 on day
i (bottom) or i + 1 (top)] as a function of the circadian phase of
the wake onset on day i. Phase 0/1 indicates the minimum of the
circadian variable c. The black dots are map point values computed
from the model using the median values of the parameter ensemble
for typical adult sleep-wake behavior and the gray bands indicate
variability in the maps computed using parameter values at the 25th
and 75th percentile of the ensemble (for more details, see [129]). . . 139

6.4 Predicted durations of recovery sleep following 0–24 hours of sleep
deprivation. Comparison of the total sleep time (TST, panel A) and
REM sleep time (REMST, panel B) predicted by the map Φsw for sleep
onsets at circadian phases associated with 0 to 24h of sleep deprivation
(SD) (i.e., sleep onset occurs 0–24h after the usual (baseline) sleep
onset) (black dots and gray shading) and model simulations of 0 to 24h
of sleep deprivation (red crosses). The model simulations are computed
with median parameter values and the gray shading represents the
25th and 75th percentiles of the parameter ensemble (for more details,
see [129]). Experimentally-measured durations of recovery TST and
REMST for 0h, ≈ 8h and ≈ 20h of sleep deprivation have been
reported in [20] (blue markers including ± standard deviation for
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6.5 Differences between predictions based on the map and model simula-
tions. A,C: Difference in total sleep time (A) and REM sleep time
(C) during the first (R1, blue triangles), third (R3, red circles) and
fifth (R5, yellow crosses) recovery sleep episodes following 0 to 24h of
sleep deprivation predicted by the map (TSTmap, REMSTmap) and
by model simulations of sleep deprivation (TSTsim, REMSTsim). B,D:
Difference between usual (baseline) TST (TSTBL, B) and (baseline)
REMST (REMBL, D) in the first (R1, blue triangles), third (R3, red
circles) and fifth (R5, yellow crosses) recovery sleep episodes following
0 to 24h of sleep deprivation predicted by model simulations (TSTsim,
REMSTsim). The x-axis indicates the sleep onset in 0–24h after the
usual (baseline) sleep onset (SD). For panels A and C, the usual sleep
onset is considered as the sleep onset of the fixed point of the map Φss,
while for panels C and D, the usual sleep onset is that of the stable
periodic solution in the model simulations. We note that because
of the differences in light schedules, there is a (negligible) difference
between the circadian phase of the fixed point and that of the stable
periodic solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.6 An example of long-lasting effects of acute sleep deprivation A: A
model simulation for approximately 15h of sleep deprivation (asterisks)
generates an initial sleep onset near the region of the unstable fixed
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pm). Following the transient, sleep-wake behavior re-entrains to the
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D.1 The stable periodic orbits for k = 0.434 and k = 0.317 plotted in
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ABSTRACT

Sleep patterns and timing can be influenced by gradual developmental changes

or more acute perturbations such as sleep deprivation. In this thesis, we employ

physiologically-based mathematical models of neural sleep-wake regulatory networks

to analyze 1) biological factors that influence the developmentally-mediated transition

from polyphasic to monophasic sleep, and 2) recovery responses to sleep deprivation.

In the first project, we utilize a sleep-wake flip-flop (SWFF) model to analyze

how developmentally-mediated transitions in sleep-wake dynamics are affected by

homeostatic and circadian modulation. Specifically, we show that varying the rates at

which the homeostatic sleep drive evolves leads to the transition from polyphasic to

monophasic sleep in a period adding bifurcation structure of the average number of

sleeps per day. We numerically construct circle maps that capture sleep onset phases,

and find that saddle-node and border collision bifurcations in these maps result in the

gain or loss of stable solutions. Moreover, we show that imposing a steeper circadian

temporal profile reduces the variability in sleep patterns and promotes the persistence

of specific sleep behaviors during the polyphasic to monophasic transition.

In the second project, we consider a physiologically-based model that produces

wake, rapid eye movement (REM) and non-REM (NREM) sleep states to investigate

how NREM-REM cycling influences the types of sleep patterns obtained under a

similar homeostatic variation. We conduct a computationally-based analysis, including

numerical construction of sleep onset circle maps, and find a disrupted, non-monotonic

period adding bifurcation structure in the average number of sleeps per day. Our

analysis shows that NREM-REM cycling, resulting in more complex sleep onset map

xxvii



structures in this three-state model, allows for both higher order cycles and bistability

to occur. The structure of the circle map reflects variation in the number of REM

bouts per sleep, and saddle-node, border collision and period-doubling bifurcations

causing the transition to different sleep patterns, whose characteristics can be highly

variable due to the homeostatic dynamics, ultradian dynamics of NREM-REM cycling

and their interactions.

In the third project, we focus on the transition from napping (biphasic) to non-

napping (monophasic) sleep behavior observed in early childhood (between ages of

2 and 5 years). Using the SWFF model, we set values for the parameters governing

the evolution of the homeostatic sleep drive to data estimated in preschool children.

We then identify other model parameters to generate the timing of experimentally

measured sleep patterns in 2 and 5 year old children. We show that the homeostatic

parameters and the sensitivity of the model to the sleep homeostat are sufficient

for the generation of the transition from napping to non-napping sleep behaviors.

We consider different variations of these parameters across development that lead to

distinct sleep transition behaviors that may account for interindividual differences.

Finally, we investigate the effect of forced light schedules that promote napping or

maintain wakefulness during daytime on the transition from biphasic to consolidated

sleep.

In the last project, we use the three-state model to show that sleep onset circle

maps can be employed to predict recovery from acute sleep deprivation. We compare

map predictions with experimental data and numerical simulations of the model when

behaviorally-gated light schedules are incorporated. The map predictions reproduce

trends in the durations of recovery sleep observed in both experimental data and

simulations of sleep deprivation using the full model, thus validating its use as a

predictive method.
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CHAPTER I

Introduction

Although the ultimate function of sleep has not yet been determined, numerous

studies indicate the importance of sleep in maintaining good physical and mental

health. For example, insufficient amount and poor quality of sleep can be linked to

cardiovascular diseases [85], obesity and stress. Regarding more neurological benefits,

sleep supports learning and memory consolidation, restoration of the brain from

metabolic waste and synaptic plasticity [65].

Such sleep-dependent brain tasks are especially significant during the first stages

of life, when toddlers and children develop many important skills. Interestingly, this

is also the part of one’s life that exhibits the largest variability in the types of sleep

patterns observed. In particular, during development humans transition from irregular

to more regular polyphasic (multiple per day) sleep patterns and subsequently, to

monophasic (one per day) sleep patterns, with high interindividual variability. However,

most physiological processes governing the regulation of human sleep stabilize within

the first few months after birth and are conserved thereafter.

Motivated by this transition, we use mathematical modeling to investigate possible

developmentally-mediated mechanisms that may produce the transition from polypha-

sic to monophasic sleep patterns. Our physiologically-based models are ordinary

differential equation (ODE)-based systems representing the network of brain regions
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promoting states of wake and sleep. Dynamics of model solutions resemble those of

coupled oscillator systems, since sleep-wake patterns exhibit daily periodic rhythms.

We draw on various mathematical techniques to analyze model behavior and reduce

dynamics to one-dimensional circle maps. Transitions in sleep patterns are elicited as

bifurcations of these maps.

Circle maps have long been employed to study various biological systems consisting

of coupled oscillators in which one oscillator drives another [6, 67, 42]. In addition, there

exists a vast literature on the analysis of functions of the circle to itself describing

circle maps (e.g., [92, 70, 94, 30, 72]). As reduced models for coupled oscillator

systems, these results provide a powerful framework for understanding the dynamics of

relative frequencies of coupled oscillators, including identifying types of phase-locked

or entrained solutions [82, 96, 13], bifurcations between these solutions [119, 147] and

chaotic dynamics [69, 79, 168]. Circle maps can be explicitly formulated for some

model systems, such as threshold systems [67, 119, 31, 42, 72] or integrate-and-fire

models [6, 14].

However, using circle maps to understand solutions and their bifurcations in

high-dimensional, differential equations-based, coupled oscillator models of biological

processes is generally difficult since explicit computation of an underlying circle map

is not straightforward. In this thesis, we conduct numerical computation of circle

maps to investigate responses of solutions of sleep-wake regulatory network models to

parameter variations or external inputs.

This dissertation is organized as follows: in the remaining parts of Chapter I we

review principles of sleep-wake physiology and bifurcations of dynamical systems. In

Chapter II we describe the sleep-wake models and mathematical methods utilized in our

work. Chapters III and IV discuss analyses of the bifurcations generating transitions in

sleep patterns in two sleep-wake network models, and Chapter V presents data-driven

modeling of sleep behavior in early childhood. In Chapter VI, we employ circle maps
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to predict responses to sleep deprivation. Finally, Chapter VII includes an overview

of our results and avenues for future work.

1.1 Sleep-wake physiology

1.1.1 Vigilance states and measurement methods

Sleep is composed of two main stages, Rapid Eye Movement (REM) and non-REM

(NREM) sleep. During the course of a sleep period, an alternation between REM

and NREM sleep occurs [34]. One of the key methods for discerning the different

vigilance states is the electroencephalogram (EEG) which provides measurements of

electrical activity of the brain. EEG signals measured during wakefulness, REM and

NREM sleep are distinct, with more asynchronous, high frequency and low amplitude

signals occurring during wakefulness. In particular, activity in the alpha, beta and

gamma frequency bands (8-14 Hz, 14-30 Hz, 30-100 Hz, respectively) are observed,

with the higher frequencies taking place during high alertness periods. Healthy mature

individuals enter a sleep episode through NREM sleep that is itself divided in three

stages, namely N1, N2, N3 [34]. Once again, these states can be classified based on

the frequency bands observed in EEG signals. During N1 individuals feel drowsy and

their muscle movement starts decreasing. During N2 individuals transition to light

sleep displaying minimal muscle and eye movement. In this stage, EEG activity is

in the theta band (4-7 Hz) and may exhibit spindles or K-complexes. Finally, N3 is

called slow wave sleep (SWS) and high amplitude, low frequency activity or “waves”

in the theta band (0.5-4 Hz) are prominent. REM sleep is strongly associated with the

occurrence of dreaming [7]. The electrical activity observed during the REM state is

more similar to the irregular, low amplitude, high frequency patterns observed during

wake periods [7]. Therefore, REM sleep is sometimes also called paradoxical sleep.

Other ways to discern sleep stages include the electrocardiogram (ECG), elec-
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tromyogram (EMG) and electrooculogram (EOG) that output measurements of heart

rate, muscle and eye movement, respectively. These tend to decrease as individuals

transition to deep sleep, but eye movement can be high during REM sleep. The EEG,

ECG, EMG and EOG (polysomnography) are the most accurate tools for capturing

characteristics of sleep and wake, but can only be performed in labs and sleep clinics.

However, actigraphy is an alternative method employed in many sleep research stud-

ies [22]. Participants wear watch-like devices that measure their movements which

are, subsequently, translated into information regarding sleep-wake regulation. Since

actigraphy is less accurate than polysomnography executed in labs, many participants

may also keep sleep diaries to inform their sleep assessment. In more recent years,

the need to understand and improve one’s sleep habits has become more important

in daily life. Therefore, the production of various types of commercial wearables

and mobile applications that keep track of sleep schedules, assess individuals’ sleep

habits and possibly make predictions has dramatically increased [160, 111]. These

wearable devices take into account heart rate and movement measurements (i.e. steps)

that provide quantitative sleep data. Many of these systems depend on mathemat-

ical models to make predictions. Mathematical models can be conceptual or more

physiologically-based and their construction requires a good understanding of the

biological mechanisms of sleep-wake regulation.

1.1.2 Neurobiology

The different vigilance states are driven by neuronal populations in various regions

of the brain (Figure 1.1). The brainstem and hypothalamus house key wake-promoting

regions containing monoaminergic neurons. These include noradrenergic neurons of the

locus coeruleus (LC), serotonergic neurons of the dorsal (DR) and median raphe nuclei,

dopaminergic neurons of the ventral tegmental area (VTA), and histaminergic neurons

of the tuberomammillary nucleus (TMN). Wake-promoting signals also arise from
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cholinergic regions, including the pedunculopontine (PPT) and laterodorsal tegmental

nuclei (LDT) and basal forebrain (BF) [141]. Neurons in these regions project to

higher areas of the brain through ascending pathways to promote wakefulness during

their high firing periods.

Figure 1.1: Regions of the brain involved in sleep-wake regulation. Reprinted from
[139] with permission from Elsevier and Copyright Clearance Center.

Neurons in the ventrolateral (VLPO) and median preoptic nuclei (MnPO) express

gamma-Aminobutyric acid (GABA) and inhibit the arousal-promoting areas mentioned

above to contribute to the induction of NREM sleep. These regions are innervated by

wake-promoting areas and expression of wake-associated neurotransmitters suppresses

the activity of the VLPO neurons [141, 139]. The mechanisms regulating REM sleep are

not fully understood yet. One of the early hypotheses suggests that REM is controlled

by the reciprocal interaction between REM sleep-promoting, cholinergic neurons in

the LDT/PPT and REM sleep-suppressing, monoaminergic neurons [81, 141]. More

recently, glutamatergic neurons in the sublaterodorsal tegmental nucleus (SLD) of the

pons have been shown to play an important role in promoting the transition to REM

sleep. Additionally, neurons in the ventrolateral periaqueductal gray matter (vlPAG)

and the adjacent lateral pontine tegmentum (LPT) are silent during REM sleep and

active during NREM sleep and wake. The neurons in the SLD and vlPAG/LPT

suppress the activity of one another. Hence, a mutually inhibitory circuit between
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these groups of neurons is an alternative proposed mechanism for REM sleep regulation

[103, 141].

1.1.3 Circadian rhythm

Transitions between sleep and wake states are driven by two main processes, the

circadian (∼ 24h) rhythm and the homeostatic sleep drive [26, 37, 51]. The role of the

circadian rhythm, our internal biological clock, is to synchronize the functions of the

body to external environmental cues, the primary one being the 24 h light/dark cycle.

The process of synchronization of the autonomous oscillator with an external timing

cue is called entrainment. In mammals, such as humans, circadian modulation of sleep-

wake behavior, hormonal and body temperature fluctuations, and other physiological

functions, is controlled by the suprachiasmatic nucleus of the hypothalamus (SCN).

The SCN receives light input through the retina [116]. Studies suggest that the neural

activity in the SCN is high during the light period, and the circadian clock promotes

wake during the day and sleep during the night [109, 37] by indirectly projecting to

the wake- and sleep-promoting regions of the brain.

Core body temperature and the hormone, melatonin, are two important markers of

the endogenous circadian clock [19]. Melatonin is produced in the pineal gland during

the night and can be suppressed by exposure to light. Core body temperature levels

are lowest, whereas melatonin levels are highest, during the night sleep [141, 143].

For healthy individuals, the onset of melatonin occurs close to sunset and is known

as dim-light melatonin onset, DLMO. Its offset occurs before wake time and after

sunrise. Constant routine protocol studies suggest that the core body temperature

temporal profile may be influenced by sleep and posture. In contrast, the melatonin

temporal profile shows less variability under baseline and constant routine conditions.

It is important to note that the amplitude of the melatonin secretion profile decreases

with increased age. Melatonin measured in human saliva is closely correlated with
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melatonin found in the blood and therefore, allows the evaluation of circadian timing

via a short, noninvasive collection method [159].

1.1.4 Sleep homeostasis

The timing and duration of sleep is highly dependent on the history of prior

awakening. The duration and intensity of sleep may be affected following sleep

deprivation [27]. Hence, sleep is homeostatically regulated. During wakefulness our

irresistible urge to fall asleep increases, and it decreases during sleep. The established

marker of sleep homeostasis is slow wave activity (SWA) [61]. In particular, SWA

corresponds to the EEG power in the delta band (0.5-4.5 Hz) during NREM sleep, and

provides a quantitative measure of the amplitude and incidence of sleep slow waves

[61]. SWA declines in the course of sleep, increases after a waking period, and is higher

after sleep deprivation, suggesting that it reflects the accumulation of sleep pressure

during wake and its dissipation during sleep. One of the proposed mechanisms for the

increase in SWA is the build up of adenosine, a molecular substance that has been

shown to be suppressed by caffeine [5].

1.1.5 Sleep patterns across development

Sleep patterns exhibit large variability across the lifespan with the number, duration,

timing and distribution of NREM and REM episodes changing with development.

Specifically, infants manifest polyphasic (multiple per day) sleep patterns. In newborns,

sleep episodes, constituting about 70% of a day, are scattered across the 24 hours.

Newborn infants enter sleep through REM. REM sleep predominates, with the NREM

stages emerging over the first 2 to 6 months of life. The NREM-REM alternation lasts

about 50-60 minutes. Circadian rhythms are also developed postnatally. In particular,

the melatonin rhythm emerges after 9 weeks, while the core body temperature rhythm

is prominent after 11 weeks [90]. Nighttime sleep is consolidated after about 6-9
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months with naps still persisting across the day [165]. Most toddlers tend to have one

nap after at an age of 15 months and that trend persists during the preschool years.

The duration of REM sleep decreases, and SWS starts predominating. Many children

start the transition towards monophasic sleep patterns at the age of 3, and by the age

of 5 years the majority has dropped the afternoon nap.

The percentage of time spent in SWS is largest in early childhood, but starts

decreasing during adolescence and across the lifespan. In adolescents, sleep need

does not decrease, but sleep duration does [87]. Adolescents exhibit a delay in their

circadian phase, that leads to them tending to fall asleep later and wake up later (at

least on the weekends) [87]. Healthy young adults sleep about 8 hours a day, and

NREM sleep and REM sleep alternate throughout the night every 90 minutes. REM

sleep is 20% to 25% of total sleep and occurs in about 4 to 6 bouts. The duration of

REM bouts becomes longer as the sleep episode progresses [34]. Aging is associated

with a phase advance that leads to older adults experiencing sleepiness earlier and

waking up earlier. Additionally, sleep fragmentation is more common in older adults,

the total sleep time is decreased, and a decline in SWS and REM sleep is observed

[112].

1.2 Mathematical models of sleep-wake regulation

In the 1980s, Borbèly et al. proposed a conceptual model, the Two Process

Model, involving the interaction of the homeostatic sleep drive (Process S) and the

circadian drive (Process C), to capture properties regarding sleep-wake regulation

[26]. As mentioned earlier, SWA represents the principal marker of Process S during

sleep, whereas theta activity in waking is a marker of its increasing portion. Core

body temperature and melatonin rhythms are the established markers for Process

C. According to the Two Process Model, Process S oscillates between two threshold

curves dictated by the circadian process (Figure 1.2). As Process S increases, and
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therefore, sleep debt builds up, it approaches the upper circadian threshold. Once it

intersects the upper threshold curve, sleep is initiated and Process S starts dissipating

exponentially. A wake onset occurs when Process S intersects the lower threshold curve

at the correct timing. The model predictions are in agreement with data regarding

multiple studies, such as sleep deprivation experiments and sleep duration under

shiftwork [28].

Figure 1.2: An illustration of the Two Process Model using the simulator found in
http://twoprocessmodel.math.lsa.umich.edu/. As Process S (blue curve) increases,
and therefore, sleep debt builds up, it approaches the upper circadian threshold (red
curve denoted as Cw). Once it intersects the upper threshold curve, sleep is initiated
and Process S starts dissipating exponentially. A wake onset occurs when Process S
intersects the lower threshold curve (yellow curve denoted as Cs).

The deeper understanding of the anatomy and physiology underlying sleep–wake

control has motivated the construction of network models with more physiological

basis. These models utilize various formalisms inspired by mathematical neuroscience,

since they include the interactions of neuronal populations that promote wake and

sleep states, as well as the effect of the circadian rhythm and homeostatic sleep drive

on the transitions between states [152, 17, 134, 100, 125, 71, 53]. In this thesis, we

employ variations of a previously-developed model of sleep-wake regulation [71]. In

the model, the activity of each postsynaptic cell group is captured by its associated
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mean firing rate as determined by projections from presynaptic populations. The

model network consists of wake-, NREM- and REM-promoting populations as well as

an SCN population to incorporate the circadian rhythm. Mutual inhibition between

the wake- and NREM-promoting neuronal populations represents the idea of a flip-flop

switch structure that regulates sleep-wake transitions [139]. Accordingly, in the model,

when the activity level of the wake- (NREM-) promoting population is high, it inhibits

the NREM- (wake-) promoting neurons and maintains its state. Transitions between

these states are fast and driven by the circadian and homeostatic processes. The

model representation for REM sleep regulation is based on the reciprocal interaction

hypothesis, which is reflected in an inhibitory projection from the wake population to

the REM sleep population and an excitatory projection from the REM sleep to the

wake population. A more detailed description of the model and its possible variations

is given in Chapter II.

1.3 Mathematical tools and techniques

The mathematical models for sleep-wake regulation that we utilize are piecewise-

smooth dynamical systems. In this section, we review definitions, tools and techniques

from the theory of smooth and nonsmooth dynamical systems and maps that we

employ in the chapters of this thesis mainly drawn from [45].

1.3.1 Piecewise-smooth systems

1.3.1.1 Flows

Definition 1.1. A piecewise-smooth flow is given by a finite set of ODEs ẋ = Fi(x, µ),

for µ ∈ Rm, x ∈ Si, where
⋃
i

Si = D ⊂ Rn and each Si has a non-empty interior. The

intersection Σij := Si ∩ Sj is either an Rn−1-dimensional manifold included in the

boundaries ∂Sj and ∂Si, or is the empty set. Each vector field Fi is smooth in both
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the state x and the parameter µ, and defines a smooth flow Φi(x, t) within any open

set U ⊃ Si. In particular, each flow Φi is well defined on both sides of the boundary

∂Sj.

The intersection, Σij, is called a discontinuity set, discontinuity boundary, or

switching manifold. A schematic of a piecewise-smooth flow is shown in Figure 1.3.

Si

Sj

Σij

Figure 1.3: Schematic of trajectories of a piecewise-smooth flow.

Definition 1.2. The degree of smoothness at a point x0 in a switching set Σij of a

piecewise-smooth ODE is the highest order r such that the Taylor series expansions

of Φi(x0, t) and Φj(x0, t) with respect to t, evaluated at t = 0, agree up to terms of

O(tr−1). That is, the first non-zero partial derivative with respect to t of the difference

[Φi(x0, t) − Φj(x0, t)]

∣∣∣∣∣∣
t=0

is of order r.

The mathematical models we encounter fall under a specific category of nonsmooth

dynamical systems, namely Filippov systems. Filippov systems exhibit a jump in the

derivative on the switching manifold. Formally, let

ẋ =


F1(x), x ∈ Σ+

F2(x), x ∈ Σ−
(1.1)

be a piecewise-smooth system for x ∈ D = ⋃
j∈{+,−}

Σj with one switching boundary

Σ defined by the equation H(x) = 0. The vector field F1 is defined for points

x ∈ Σ+ := {x | H(x) > 0} and generates a flow Φ1(x, t). Similarly, the vector field F2

is defined for points x ∈ Σ− := {x | H(x) < 0} and generates a flow Φ2(x, t).
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We have that ∂Φi(x, t)
∂t

∣∣∣∣∣∣
t=0

= Fi(x). The ODE system is a Filippov system, if

F1(x) ̸= F2(x) for a point x0 ∈ Σ, and thus, the first derivatives of the corresponding

flows differ at x0.

Flows generated by system 1.1 may slide along the switching manifold H(x), and

sliding dynamics should be taken into account when constructing solutions.

Definition 1.3. The sliding region of the discontinuity set of a system of the form 1.1

is given by that portion of the boundary of H(x) for which (HxF1) · (HxF2) < 0. That

is, HxF1 (the component of F1 normal to H) has the opposite sign to HxF2. Thus,

the boundary is simultaneously attracting (or repelling) from both sides.

One of the methods used to define the flow along the switching boundary Σ, is

Filippov’s convex method that represents the sliding vector field as a convex combination

of the two vector fields F12 = (1 − α)F1 + αF2 with 0 ≤ α ≤ 1, where α(x) =
HxF1

Hx(F1 − F2)
. The sliding vector field represents the tangent vector of the flow, and

α(x) is chosen so that the sliding vector field is orthogonal to the normal of the

boundary Σ, Hx, and therefore, tangent to the switching boundary itself.

1.3.1.2 Maps

Definition 1.4. A piecewise-smooth map is described by a finite set of smooth maps

x 7→ Fi(x, µ), for µ ∈ Rm, x ∈ Si, where
⋃
i

Si = D ⊂ Rn and each Si has a non-empty

interior. The intersection Σij between the closure (set plus its boundary) of the sets

Si and Sj (that is, Σij := Si ∩ Sj) is either an Rn−1-dimensional manifold included in

the boundaries ∂Sj and ∂Si, or is the empty set. Each function Fi is smooth in both

the state x and the parameter µ for any open subset U of Si.

As before, the intersection, Σij, is called a discontinuity boundary or border. A

schematic of a piecewise-smooth map is shown in Figure 1.4.
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Si

Sj

Σij

Figure 1.4: Schematic of trajectories of a piecewise-smooth map.

Definition 1.5. The order of singularity of a point x0 ∈ Σij of a continuous piecewise-

smooth map is the order of the first non-zero term in the formal power-series expansion

of F1(x) − F2(x) about x = x0.

1.3.2 Poincaré and circle maps

Poincaré maps

In dynamical systems that generate periodic or quasi-periodic solutions, a useful

tool to capture the evolution of the dynamics and reducing the dimensionality of the

system is to define a Poincaré map.

Definition 1.6. Let ẋ = f(x), with x ∈ Rn, be a smooth dynamical system with

phase space M that generates a flow Φ(x, t). In addition, let S be a n − 1 dimensional

section of the vector field, called a Poincaré section, such that the flow crosses it

transversally. Assume that there exists U ⊂ S, such that the flow from any point

in U eventually returns to a point in S. Then Π : U → S is called a Poincaré map

and associates points in U with their points of first return on S. More specifically,

for x ∈ U , Π(x) = Φ(x, τ(x)), where τ(x) is the minimal positive time such that

Φ(x, t) ∈ S.

A fixed point of the map corresponds to a closed orbit of the ODE system, and

the stability of the orbit can be determined by analyzing the stability of the fixed

point of the map. Poincaré maps can also be defined for piecewise-smooth systems.
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Circle maps

The sleep-wake regulation models we consider have dynamics that are similar to a

system of coupled oscillators. Circle maps, maps whose domain D is the unit circle

S1, are employed in the study of coupled oscillators to analyze how the timing of one

oscillator compares to the timing of the other. In systems of two coupled oscillators,

timing between the oscillators can exhibit phase-locking, and therefore, the frequency

ratio between the two oscillators is a fixed rational number. That ratio corresponds to

the rotation number.

More formally, let g : S1 → S1 be a circle map of degree 1, and G : R → R be its

corresponding lift. That is G(x + 1) = G(x) + 1 and there exists a homeomorphism

π : R → S1 such that π ◦ G = g ◦ π. Then, the rotation number, ρ, associated to the

circle map is defined as ρ(x, G) = lim
n→∞

Gn(x) − x

n
.

For monotonic and continuous circle maps or homeomorphisms of the circle the

rotation number is unique and independent of the point x [135]. Uniqueness of the

rotation number has been proved for monotonic piecewise-smooth maps under certain

conditions [75].

1.3.3 Bifurcations

In this section, we review bifurcations of smooth and nonsmooth maps that will be

of interest in Chapters III-V. The main theorems are drawn from [77] (smooth maps)

and [45, 11] (nonsmooth maps).

A bifurcation occurs when under smooth variation of parameters, there is a

qualitative change in the behavior of the system. An example is a change in the

stability of fixed points of the system.

Let x 7→ f(x, µ) with x ∈ Rn be a map that depends smoothly on the parameter µ.

Suppose that at µ = 0 the system has a fixed point, x0 = 0. To study changes in the

stability of a fixed point, we can linearize the system about the fixed point and compute
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eigenvalues of the Jacobian matrix, J
(

Jij = ∂fi

∂xj

)
. A bifurcation will occur when

for some eigenvalue, λi, of the Jacobian evaluated at the fixed point and appropriate

parameter value, |λi| = 1. We are interested in bifurcations of one-dimensional maps

(n = 1). In one dimension, computing the eigenvalue of the linearized system about

the fixed point is equivalent to determining the slope of the (smooth) map curve at

that point. Therefore, a bifurcation occurs when the magnitude of the slope of the

map at the fixed point becomes equal to 1.

Below we provide criteria for the occurrence of a saddle-node and a period-doubling

bifurcation. Moreover, we illustrate these bifurcations using the logistic map, i.e

xn+1 = µxn(1 − xn), µ ∈ R (Figure 1.5).

1.3.3.1 Saddle-node bifurcation

Intuitively, a saddle-node bifurcation occurs when a stable and an unstable fixed

point of the map collide under parameter variation, forming a single fixed point.

Further change in the parameter value leads to the disappearance of that fixed point.

This bifurcation scenario is illustrated for the logistic map in Figure 1.5A.

Theorem 1.7. Suppose that x 7→ f(x, µ), for x, µ ∈ R is a map such that fx(0, 0) = 1

(this is the bifurcation condition). Then, if the following conditions hold,

1. 1
2fxx(0, 0) ̸= 0

2. fµ(0, 0) ̸= 0

the map is topologically conjugate to the one-parameter family y 7→ σ + y + βy2 (with

respect to the parameter σ) at the origin, where σ = ±1 (determined by the sign of

the quantity in the first condition). This family of maps is called the normal form of

a saddle-node bifurcation. For σβ > 0, there are no fixed points. For σβ < 0, there

are two fixed points, and at β = 0, there is a fixed point at y0 = 0 with eigenvalue 1.
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Figure 1.5: Saddle-node and period-doubling bifurcations in the logistic map. A.
Saddle-node bifurcation in the logistic map. At µ = 0 the map (red curve) has one
stable fixed point at x = 0 (light blue circle). At µ = 1 the slope of the map (blue
curve) at x = 0 is equal to 1 and a saddle-node bifurcation occurs. At µ = 1.5 the
map (gray curve) has two fixed points. The fixed point x = 0 is now unstable, and
a new stable fixed point exists at x = 1/3 (light blue square). B. Period-doubling
bifurcation in the logistic map for µ = 3. The map has two unstable fixed points at
x = 0 (light blue circle) and x = 2/3 (light blue square). The slope of the map at
x = 2/3 is -1. The stable solution (shown in the inset) is a period-2 cycle oscillating
around x = 2/3 indicated by black diamonds.

1.3.3.2 Period-doubling bifurcation

A period-doubling bifurcation occurs when under parameter variation the eigenvalue

of a fixed point of the map becomes -1 and leads to the emergence of a period-2 orbit

or cycle. This bifurcation scenario is illustrated for the logistic map in Figure 1.5B.

Theorem 1.8. Suppose that x 7→ f(x, µ), for x, µ ∈ R is a map such that f(x0, µ0) =

x0 (fixed point at x0) and fx(x0, µ0) = −1 (this is the bifurcation condition). Then, if

the following conditions hold,

1.
(

∂f

∂µ

∂2f

∂x2 + 2 ∂2f

∂x∂µ

)
= ∂f

∂µ

∂2f

∂x2 −
(

∂f

∂x
− 1

)
∂2f

∂x∂µ
̸= 0 at (x0, µ0)

2. a = 1
2

(
∂2f

∂x2

)2

+ 1
3

∂3f

∂x3 ̸= 0 at (x0, µ0)

Then there is a smooth curve of fixed points, passing through (x0, µ0), the stability

of which changes at (x0, µ0). There is also a smooth curve γ passing through (x0, µ0) so
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that γ − {(x0, µ0)} is a union of hyperbolic period 2 orbits. The curve γ has quadratic

tangency with the line R× {µ0} at (x0, µ0). If a (in condition 2) is positive, the orbits

are stable, while if a is negative they are unstable.

1.3.3.3 Border collision bifurcation

In piecewise-smooth maps, qualitative properties of fixed points may change due

to either smooth or border-induced bifurcations, called border collisions.

We consider the case of a one-dimensional piecewise-smooth map with a single

border Σ that can be described by the equation H(x) = 0. Let

x 7→


F1(x, µ), x ∈ Σ+

F2(x, µ), x ∈ Σ−
(1.2)

be a piecewise-smooth system for x ∈ D = ⋃
j∈{+,−}

Σj, where Σ+ := {x | H(x) > 0}

and Σ− := {x | H(x) < 0}.

Definition 1.9. We say that a point x0 is an admissible (actual) fixed point of the

map 1.2, if for i = 1 or i = 2, x0 = Fi(x0, µ) and x0 ∈ Sj with j = i. We say instead

that x = x̃ is a virtual fixed point of the map 1.2, if x̃ = Fi(x̃, µ) and x̃ ∈ Sj with

i ̸= j.

Definition 1.10. Let F1(x) have a fixed point x∗
1 ∈ Σ+ for µ ∈ (µ∗ − ϵ, µ∗), for some

ϵ > 0, i.e. x∗
1 is an actual fixed point of the map 1.2. Suppose that x∗

1 is on the

boundary Σ at µ = µ∗, and x∗
1(µ) ∈ S2 for µ ∈ (µ∗, µ∗ + ϵ), i.e., x∗

1 becomes a virtual

fixed point of the map 1.2. Then, at µ = µ∗, the fixed point x∗
1 undergoes a border

collision. We say that a border collision bifurcation occurs if a border collision leads

to a qualitative change of the dynamics.

An example of border collision bifurcations is given in the following section (Figure

1.6), in which we describe bifurcation scenarios in a piecewise-linear map with a single
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boundary defined by H(x) = x.

1.3.3.4 Period-adding bifurcation

To more easily describe and understand the period-adding bifurcation, we consider

a one-dimensional discontinuous map described by linear equations. The map is given

by

x 7→


ν1x + µ, x ≤ 0

ν2x + (µ + ℓ), x > 0 .

(1.3)

We describe the case of ℓ = −1, and 0 < ν1, ν2 < 1 that corresponds to the

period-adding bifurcation scenario. Figures 1.6 and 1.7 illustrate this scenario for

ν1 = 1/2 and ν2 = 1/3.

Here, the fixed points from each piece of the map are x∗
1 = µ

1 − ν1
and x∗

2 = µ − 1
1 − ν2

.

If µ < 0, then x∗
1 is the only admissible stable fixed point, while when µ > 1, x∗

2 is

the only admissible stable fixed point. The fixed points, x∗
1 and x∗

2, are lost through a

border collision bifurcation at µ = 0 and µ = 1, respectively (Figure 1.6). For µ ∈ (0, 1),

there exist periodic orbits, but no fixed points. In a period-adding bifurcation, the

sequence of periodic orbits that exist as µ varies in (0, 1) has a specific structure.

18



-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
A B

Figure 1.6: Border collision bifurcations in the piecewise-linear map for ν1 = 1/2,
ν2 = 1/3. A. At µ = 0 the left branch of the piecewise-linear map intersects the
diagonal xn+1 = xn leading to the loss of the associated fixed point. B. At µ = 1 the
right branch of the piecewise-linear map intersects the diagonal xn+1 = xn leading to
the loss of the associated fixed point.

Let O be an orbit of the map, namely a sequence of points x1x2 . . . xk such that

xj+1 = f(xj), for 1 ≤ j ≤ k − 1, and x1 = f(xk). Then, for xj in the orbit O, we

assign the symbol L, if xj ∈ Σ− = {x ≤ 0}, and the symbol R if xj ∈ Σ+ = {x > 0}.

If the following conditions hold,

0 <
ℓ

µ
+ 1 − νk

1

νk−1
1 − νk

1
(1.4)

ν2 < −
(

ℓ

µ
+ 1 − νk−1

1

νk−2
1 − νk−1

1

)
(1.5)

an orbit of the form Lk−1R exists. Namely, the orbit visits Σ− k − 1 times, and Σ+

once during its periodic cycle. The orbit is stable if −1 < ν2ν
k−1
1 < 1, which always

holds since 0 < ν1, ν2 < 1.

To obtain the conditions above, we note that if x1x2 . . . xk is the orbit of the form
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Lk−1R, with x1 ∈ Σ+ and xj ∈ Σ− for j = 2, . . . , k, we have:

x2 = ν2x1 + (µ + ℓ) (1.6)

xj = ν1xj−1 + µ , j = 3, . . . , k (1.7)

x1 = ν1xk + µ (by periodicity) (1.8)

By iterating forward we get

xk = νk−2
1 x2 + (νk−3

1 + · · · + ν1 + 1)µ. (1.9)

Then substituting equations 1.6 and 1.8 we obtain an equation involving x1

1
ν1

(x1 − µ) = νk−2
1 [ν2x1 + (µ + ℓ)] + (νk−3

1 + · · · + ν1 + 1)µ

x1 − νk−1
1 ν2x1 = νk−1

1 ℓ + νk−1
1 µ + νk−2

1 µ + · · · + µ

(1 − νk−1
1 ν2)x1 = µ

(
νk−1

1
ℓ

µ
+ 1 − νk

1
1 − ν1

)

(1 − νk−1
1 ν2)x1 = µνk−1

1

(
ℓ

µ
+ 1 − νk

1

νk−1
1 − νk

1

)

Since µ > 0 and 0 < ν1, ν2 < 1 and x1 > 0, we obtain condition 1.4.

Next, we substitute equations 1.6 and 1.8 we obtain an equation involving xk

xk = [ν2(ν1xk + µ) + (µ + ℓ)]νk−2
1 + (νk−3

1 + · · · + ν1 + 1)µ

(1 − ν2ν
k−1
1 )xk = ν2ν

k−2
1 µ + νk−2

1 ℓ + (νk−2
1 + · · · + ν1 + 1)µ

(1 − ν2ν
k−1
1 )xk = µ

(
ν2ν

k−2
1 + νk−2

1
ℓ

µ
+ 1 − νk−1

1
1 − ν1

)

(1 − ν2ν
k−1
1 )xk = µνk−2

1

(
ν2 + ℓ

µ
+ 1 − νk−1

1

νk−2
1 − νk−1

1

)

Since µ > 0 and 0 < ν1, ν2 < 1 and xk < 0, we obtain condition 1.5.

In the period-adding bifurcation, for µ close to 0, there are highly periodic orbits
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of the form Lk−1R. As µ → 0+ and k → ∞ (see condition 1.4), a homoclinic orbit is

observed, which connects periodic points on Σ− with a fixed point on the boundary

(i.e. x = 0).

Similar results can be obtained for orbits of the form LRk−1. As µ → 1− and

k → ∞, another homoclinic orbit is observed, which connects periodic points on Σ+

with a fixed point on the boundary (i.e. x = 0).

Interestingly, between orbits of period k and k + 1 of the form Lk−1R and LkR,

respectively,
(

that is for 1
ν2 + 1−νk

1
νk−1

1 −νk
1

< µ <
1

1−νk
1

νk−1
1 −νk

1

)
we find orbits constructed

by concatenating their neighboring patterns. For example, a possible pattern of

period 2k + 1 is Lk−1RLkR (see Figure 1.7). More generally, orbits of the form

{Lk−1R}m{LkR}n are obtained.
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Figure 1.7: Higher order periodic solutions in the piecewise-linear map for ν1 = 1/2,
ν2 = 1/3 and various values of µ. A: At µ = 0.2 the orbit alternates between three
values, two on the left branch and one on the right branch. The corresponding symbol
of the orbit is L2R. B: At µ = 0.5 the orbit alternates between two values, one on
the left branch and one on the right branch. The corresponding symbol of the orbit is
LR. C. At µ = 0.32 the orbit is a concatenation of the orbits at µ = 0.2 and µ = 0.5.
Therefore, its corresponding symbol is L2RLR.

An alternative way of describing the sequence of stable orbits obtained in a period-

adding bifurcation is by the rotation number ρ defined as the number of symbols R

over the total period of the orbit. For example, the orbit Lk−1R has ρ = 1/k, while

the orbit LkR has ρ = 1/(k + 1). Therefore, the concatenated orbit Lk−1RLkR

has ρ = 2/(2k + 1). The orbits obtained as µ varies have rotation numbers that

are elements of the Farey sequence and obey the Farey addition. According to the

Farey addition, if ρ1 = r1/k1, ρ2 = r2/k2 correspond to the rotation numbers of two

orbits, then an intermediate orbit obtained by concatenation has rotation number
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ρ = (r1 + r2)/(k1 + k2). In the example shown in Figure 1.7 (ν1 = 1/2, ν2 = 1/3),

at µ = 0.2, 0.32 and 0.5, the rotation numbers of the orbits are 1/3, 2/5, and 1/2,

respectively. Note that 2/5 = (1+1)/(3+2). As µ increases, the rotation number ρ

increases monotonically from 0 to 1 and is rational almost everywhere. The resulting

graph of ρ as a function of µ is a Cantor function or a Devil’s staircase.
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CHAPTER II

Mathematical Models and Methods

In this chapter, we introduce the physiologically-based mathematical models [71]

employed in this dissertation. The models incorporate interactions between neuronal

populations that promote sleep and wake states, as well as the effects of the circadian

and homeostatic sleep drives on the populations. We implement models that generate

either two vigilance states (wake and sleep) or three vigilance states (wake, NREM,

REM sleep). First, we introduce the two-state model, called the sleep-wake flip-flop

(SWFF) model and analyze its dynamics using the techniques that were formally

introduced in Chapter I. Then, we introduce the three-state model and perform a

similar analysis.

2.1 Sleep-Wake Flip-Flop (SWFF) model

2.1.1 Model equations

The sleep-wake flip-flop (SWFF) model includes two neuronal populations that

govern the transitions between the states of wake and sleep: a wake-promoting (W )

and a sleep-promoting (S) population are coupled by mutual inhibition, and their

interaction is modulated by homeostatic sleep and circadian drives. Representative

wake-promoting monoaminergic populations include the locus coeruleus (LC) and the
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dorsal raphe (DR); NREM sleep-promoting populations include GABAergic, sleep-

active neurons of the ventrolateral preoptic nucleus (VLPO). In our SWFF model,

the circadian input is mediated by a third neuronal population representing the

suprachiasmatic nucleus (SCN), a group of cells in the hypothalamus that acts as

the circadian pacemaker and displays a 24-hour variation in neural firing. For humans

under typical conditions, the circadian rhythm and the sleep-wake cycle are entrained

with lower SCN firing rates during sleep in the night and higher SCN firing rates

during wake in daytime.
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Figure 2.1: A SWFF model for sleep-wake regulation. A: Schematic of the model
network summarizing interactions among the wake-promoting (W ), sleep-promoting
(S) and suprachiasmatic nucleus (SCN) neuronal populations with circles denoting
inhibitory and arrows denoting excitatory synaptic connections. The homeostatic sleep
drive (h) modulates activity of the sleep-promoting population and the circadian drive
(c) modulates activity of both the sleep- and wake-promoting populations through
SCN. B: Time traces of the stable solution of the model for the default parameter set
that resembles stereotypical adult human sleep. The firing rates for wake- (fW , blue),
sleep- (fS, red) promoting and SCN (fSCN , green) populations are shown in the top
panel. The middle and bottom panels include the profiles of the homeostatic sleep
drive (h) and the circadian drive (c), respectively.

We use a firing rate formalism to model the neuronal population activity. Instead

of tracking the spiking of single neurons, standard firing rate models describe the

averaged behavior of spike rates of neuronal populations (fW , fS, fSCN) [163, 41]. In

particular, the mean postsynaptic firing rates are driven by the weighted mean firing

rates of the presynaptic populations.
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Neuronal populations

The equations for the neuronal populations are as follows:

dfW

dt
= (W∞(gscnwfSCN − gswfS) − fW )

τW

, (2.1)

dfS

dt
= (S∞(−gwsfW − gscnsfSCN) − fS)

τS

, (2.2)

dfSCN

dt
= (SCN∞(c(t)) − fSCN)

τSCN

. (2.3)

The postsynaptic firing rates, fX(t) (in Hz), saturate to their steady state firing

rate response functions X∞(·) with time constants τX for X = W, S, SCN . The steady

state firing rate functions, X∞(·), have a sigmoidal profile that has been utilized in

many firing rate models [163, 25, 125, 41]:

W∞(x) = Wmax · 0.5 ·
(

1 + tanh
(

x − βW

αW

))
, (2.4)

S∞(x) = Smax · 0.5 ·
(

1 + tanh
(

x − βS(h)
αS

))
, (2.5)

SCN∞(x) = SCNmax · 0.5 ·

1 +
tanh

(
1

0.7

)
tanh

(
1

αSCN

) tanh
(

x − βSCN

αSCN

) . (2.6)

Homeostatic sleep drive

The homeostatic sleep drive (h) regulates sleep propensity and is based on experi-

mentally observed variation in the power of slow wave (0.75 - 4.5 Hz) fluctuations in

electroencephalogram (EEG) recordings during sleep [136, 39, 29, 26]. The levels of

the homeostatic sleep drive increase exponentially with the time constant τhw while in

wake and decrease exponentially with the time constant τhs during sleep according to

dh

dt
= H (fW − θW ) · (hmax − h)

τhw

+ H (θW − fW ) · (hmin − h)
τhs

, (2.7)
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where H represents a Heaviside function and h is in units of percent slow wave activity

(SWA) power. The time constants τhw and τhs are set to experimentally estimated

values for typical adult human sleep behavior [136]. The sleep drive h modulates

the activity of the sleep-promoting population through the h-dependent activation

threshold βS(h) as follows:

βS(h) = k2 · h + k1 . (2.8)

In this way as h increases during wake, the sleep promoting population will activate

to inhibit the wake population and cause the transition to sleep. Conversely, as

h decreases during sleep, the sleep population will inactivate and allow the wake

population to activate. We define sleep onset to occur when fW decreases through

θW (and h starts to decrease) and wake onset to occur when fW increases through θW

(and h starts to increase).

Circadian drive

The input to the SCN population is the circadian drive c(t) which induces a 24h

periodic variation of fSCN . We have employed various formulations for the circadian

drive in different chapters of this thesis. In Chapter III, the input c(t) is modeled by

a simple sinusoidal function and is assumed to be entrained to the 24-hour day.

dc

dt
= −ω sin θ , (2.9)

dθ

dt
= ω, where ω = 2π

24 , (2.10)

which for an initial condition
(
c(0), θ(0)

)
=
(

cos(−ϕ
2π

24 ), ϕ
)

gives the stable solution:

c(t) = cos
(

(t − ϕ) · 2π

24

)
. (2.11)

In Chapter V, the circadian drive c(t) is described by a human circadian clock model
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developed by Forger and colleagues and based on a modified van der Pol oscillator

[64]. This model involves a circadian drive variable c(t) and a complementary variable

xc(t) governed by the following equations:

dc

dt
=
(

π

720

)
(xc + B) (2.12)

dxc

dt
=
(

π

720

)[
µ

(
xc − 4x3

c

3

)
− c

[(
24

0.99669τx

)2

+ kB

]]
(2.13)

The term B represents light input to the model and involves a variable n that

describes the fraction of saturated photoreceptors and is governed by dn

dt
= α(1 −

n) − βn, where α = α0

(
I

I0

)p

and I is the light intensity in lux. The circadian drive

variable c(t) represents the phase of core body temperature and oscillates between

approximately ±1 with an intrinsic period τx = 24.2 h. We assume the circadian

oscillator is entrained to a 24 h environmental light schedule which is simulated by a

14:10 Light:Dark cycle with a light input of 500 lux during the light period and 0 lux

during the dark period.

In the analysis and figures that follow in this section, we model the circadian drive

using the first formulation, i.e. a sinusoidal function. We also summarize representative

values of the model parameters employed in Chapter III, as well as in the generation

of the time traces in Figure 2.1B.

Model parameters

We have chosen our default parameter set (see Table 2.1) to generate typical

human sleep behavior similar to previous work [25]. In Figure 2.1B the time traces of

the stable solution of the model are displayed. The wake and sleep durations, dictated

by the time intervals when fW is above or below the threshold value θW , respectively,

are approximately 15.33 and 8.67 hours. As is typical for entrained adult human sleep,
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wake onset occurs at the early rise of the circadian cycle, while sleep onset occurs as

SCN activity approaches its minimum.

Wmax = 6 Hz τW = 0.1 hr αW = 0.5 βW = −0.37
Smax = 6 Hz τS = 0.1 hr αS = 0.175

SCNmax = 7 Hz τSCN = 0.05 hr αSCN = 0.7 βSCN = 0
gsw = 0.3 gscnw = 0.06 gws = 0.28 gscns = 0.0825

hmax = 323.88 hmin = 0 τhw = 15.78 hr τhs = 3.37 hr
k1 = −0.1 k2 = −0.006 θW = 4 Hz

Table 2.1: Parameter values for the SWFF model. For X = W, S, SCN , αX and
βX are in units of effective synaptic input. Additionally, for Y = W, S, gXY (where
X ̸= Y ) has units of (effective synaptic input / Hz). Units for hmax and hmin are
percentage mean SWA. The parameters k1 and k2 are measured in effective synaptic
input and effective synaptic input/(% mean SWA), respectively. The remaining units
are included in the table.

2.1.2 Summary of the model dynamics

In this section, we analyze the model equations (Eq. 2.1-2.10) with the default

parameter values (see Table 2.1) and introduce the relevant techniques employed to

understand the model dynamics.

Piecewise smooth dynamical system

Switching in the homeostatic sleep drive from increasing during wake to decreasing

during sleep introduces a discontinuity in the derivative of h. On either side of this

discontinuity, model dynamics are smooth, but the presence of the discontinuity can

influence model trajectories at the boundary of the smooth regions. In our system, the

switching boundary is Γ = {fW = θW }, where θW = 4 Hz, that separates the system

into two smooth vector fields.

To formally define the model as a piecewise smooth system, let X = [fW , fS, fSCN , h, c, θ].

Define Γ+ = {fW > θW } and Γ− = {fW < θW } as the regions on either side of Γ

where F1(X), F2(X), respectively, are the corresponding vector fields dictating model

dynamics. Then we can rewrite our model system as follows:
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dX
dt

=


F1(X) X ∈ Γ+

F2(X) X ∈ Γ−

On Γ+, dh

dt
= hmax − h

τhw

and on Γ−, dh

dt
= hmin − h

τhs

, while the rest of the differential

equations are defined as above. Since the vector fields are discontinuous across the

switching boundary Γ, we have a Filippov system (see [45]).

As discussed in Section 2.1.2, in Filippov systems as model trajectories approach

the switching boundary, they may move along or “slide” on the switching boundary

depending on the directions of the vector fields on either side of the boundary. If this

occurs, then sliding dynamics on the switching boundary have to be taken into account

in the numerical simulations. Sliding along Γ never occurs in our system, because Γ is

never simultaneously attracting (or repelling) for the flows in the vector fields on both

sides [45]. To show this, for the sliding condition, let us consider g(X) = fW − θW = 0

to define the boundary Γ. Then, ∇g = [1, 0, 0, 0, 0, 0] and on Γ:

(
∇g(X)T · F1(X)

)(
∇g(X)T · F2(X)

)
=

Wmax · 0.5 ·
(

1 + tanh
(

gscnwfSCN − gswfS − βW

αW

))
− fW

τW

2

≥ 0 (2.14)

for X = [θW , fS, fSCN , h, c, θ].

Condition 2.14 implies that the directions of the vector fields at the switching

boundary Γ are the same on either side. Thus, model trajectories cross Γ when

transitioning from one vector field to the other and no sliding along Γ occurs. It is

important to note that for all X on Γ where ∇g(X)T · F1(X) is equal to zero, then

∇g(X)T · F2(X) is also zero. Therefore, their product will remain positive even if both

quantities change sign.
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Fast and slow subsystems in the model

In our model, the homeostatic sleep drive h, the circadian input c, and the circadian

phase θ vary more slowly compared to the firing rates fW , fS and fSCN . Hence, there

is a separation of time scales which allows us to divide our system into a fast and slow

subsystem, consisting of neuronal firing rates (fW , fS, and fSCN) and the variables

h, c, and θ, respectively. Following a similar analysis as in [54, 25, 147], we define

τ = max {τW , τS, τSCN} << min {τhw, τhs, 1/ω} = χ. These time scales introduce the

parameter ϵ = τ
χ
, where ϵ has small magnitude. Moreover, min {τW , τS, τSCN} = µτ

and max {τhw, τhs, 1/ω} = λχ, where λ = O(1) and µ = O(1). Let us call t̃ = t
τ

the

time variable of the fast subsystem and T = t
χ

the time variable of the slow subsystem,

such that t̃
T

= 1
ϵ
. Making the change of variables in Equations (2.1 – 2.7) and (2.9)

leads to
dXfast

dt̃
= M(Xfast, Xslow) (2.15)

dXslow

dt̃
= ϵN(Xfast, Xslow) (2.16)

where Xfast = [fW , fS, fSCN ], Xslow = [h, c, θ], M and N are mapped to R3. Coupling

between Xfast and Xslow occurs due to the dependence of the steady state functions

S∞(·) on h and SCN∞(·) on c. We note that the separation of time scales is valid in

both vector fields on either side of the switching boundary Γ.

To analyze solution dynamics, we implement the fast-slow decomposition of our

system by setting Xslow = Xslow to time-fixed parameters and considering equilib-

rium solutions of the fast subsystem
(

dXfast

dt̃
= 0

)
. We represent the solutions of

M(Xfast, Xslow) = 0 in terms of the firing rate, fW , of the wake-promoting population.

Specifically, setting c and θ constant and computing solutions with respect to the

bifurcation parameter h yields a Z-shaped curve of steady states (Figure 2.2A). The

upper and lower branches of the Z-curve represent stable steady states corresponding

to the wake and sleep state, respectively. The middle branch represents an unstable
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steady state that separates the basins of attraction of the stable steady states. Finally,

the folds of each Z-curve are saddle-node bifurcation points where the unstable steady

state collides with one of the stable steady states.

For different (fixed) values of c and θ, the Z-shape of the curve is preserved, but

the locations of the saddle-node bifurcation points with respect to h change (Figure

2.2A). Thus, as the circadian drive c varies slowly, it affects the bifurcation structure

of the fast subsystem. By definition, c varies periodically between -1 and 1, and θ

is such that c = cos(− π
12θ). Hence, a Z-shaped surface is defined between these two

extremes of the circadian cycle for the steady state solutions of the fast subsystem as

a function of h and c (Figure 2.2B).

When h, c and θ vary slowly, model trajectories traverse the upper plane of the

Z-surface during wake and the lower plane during sleep. Transitions between states

occur when the trajectory reaches the curve of saddle-node points on either plane

and evolves to the other plane. Note that the switching boundary Γ lies between

the upper (wake) and lower (sleep) planes of the Z-surface and trajectories cross it

during the transition. At Γ crossing, h changes direction leading to trajectory flows

that follow a hysteresis loop around the Z-shaped surface. In this way, sleep (wake)

onset is initiated when the model trajectory passes over the upper (lower) curve of

saddle-nodes.

Bifurcation diagrams were computed numerically using the software AUTO XP-

PAUT [59], and the fast-slow Z-shaped surfaces were created using Mathematica.

Sleep onset circle map

To analyze model dynamics and predict solution trajectories, we compute circle

maps for the circadian phases of successive sleep onsets as in previous work [25].

Specifically, we define a Poincaré section for sleep onset as the firing rate of the

wake-promoting population, fW , decreasing through the switching boundary Γ =
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Figure 2.2: Fast-slow decomposition of the SWFF model A: Bifurcation diagrams of
the steady state solutions of the fast subsystem (Eq 2.15) with respect to bifurcation
parameter h in the h − fW plane for fixed values of c and θ: c = −1, θ = 12 (green),
c = 0, θ = 6 (red) and c = 1, θ = 0 (blue). The upper and lower branches (in green,
red and blue) represent the stable steady wake and sleep states, respectively. The
middle branch (dashed) represents an unstable state that separates the basins of
attractions of the stable steady states. Notice that each curve has different upper
and lower saddle-node points that eventually will define a curve in the c − h − fW

space. B: Obtaining the Z-shaped curves for all values of c ∈ [−1, 1] defines a surface
that maintains the general Z-shape. The upper and lower saddle-node points of each
Z-shaped curve define upper and lower saddle-node curves (curves in black).

{fW = θW }. We define the circadian phase of the nth sleep onset, Φn, as the time

difference between the intersection of the model trajectory with the section (sleep

onset) and the preceding minimum of the fSCN variable divided by the period of the

circadian drive c(t):

Φn = 1
24(time of sleep onset section crossing - time of preceding circadian minimum)

(2.17)

We then define Π : [0, 1] → [0, 1] as the circle map with Φn+1 = Π(Φn).

To compute the map Π, we simulate the model from initial conditions corresponding

to sleep onset occurring at each circadian phase. Recall that the transition to sleep is

initiated when the model trajectory passes over the curve of saddle-node points on the

upper plane of the Z-shaped surface of steady state solutions of the fast subsystem.

Thus, we select points on the upper saddle-node curve as a stable solution of the sleep-

33



wake network that is near sleep onset and use those values for initial conditions for the

sleep-wake network variables in the map construction. We compute these values on

the upper saddle-node curve for all c values over one circadian cycle by two-parameter

numerical continuation, implemented in AUTO using XPPAUT [59]. By numerically

integrating the model from these initial conditions, the circadian phases of sleep onsets

are computed as the trajectories pass through the switching boundary Γ. From the

majority of these initial conditions, model trajectories immediately transition down

to the lower plane of the Z-shaped surface crossing Γ on the way. However, there

is an interval of circadian phase values (where Φn is between approximately 0.2 and

0.4) for which the model trajectory does not immediately transition to sleep but

instead continues to move along the upper plane until eventually transitioning at a

later circadian phase. This produces a horizontal gap in the map. This phenomenon

occurs during the rising phase of c that promotes the waking state at higher values of

the homeostatic sleep drive h. Dynamically speaking, the variables c and h vary on

similar time scales at these moments, and the drive to sleep associated with increasing

h is balanced by a drive to wake associated with increasing c. To overcome this issue

and fill in the horizontal gap in the map, for this interval of circadian phases, we

substituted initial condition values that lie on the unstable manifold associated with

the saddle of the upper saddle-node point that are closer to the switching boundary Γ

(purple points in Figure 2.3A).
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Figure 2.3: Circle map and model trajectories relative to the fast-slow decomposition
of the SWFF model. A: First return circle map for circadian phase of n + 1st sleep
onset, Φn+1 as a function of circadian phase of nth sleep onset, Φn. Purple points
indicate circadian phases obtained by integrating the model from initial conditions
“forced” to lie on the unstable manifold. The blue diamond corresponds to the stable
orbit shown in panel B (in blue). The green and red asterisks correspond to circadian
phases associated with the trajectories in panel C (red and green, respectively). B: The
stable trajectory for the default parameter set (blue curve) plotted on the Z-surface
computed from equilibrium solutions of the fast subsystem in Eq. (2.15). Sleep is
initiated when the trajectory falls off the upper saddle-node curve. Sleep onset is
defined as the time the trajectory crosses the switching boundary Γ = {fW = 4}
(yellow plane) and h starts decreasing. C: Trajectories with initial conditions on either
side of the gap in the sleep onset map exhibit distinct behavior. The green trajectory
becomes tangent to the lower saddle-node curve, resulting in a longer sleep episode,
while the red one passes over the saddle-node curve and transitions to the wake state.

Figure 2.3A illustrates the circle map; the circadian phase of the nth crossing of

the section defined by Γ, Φn, is on the x−axis, and the circadian phase of the n + 1st

section crossing Φn+1 is on the y−axis. This first return sleep onset map is periodic

in phase, consists of two branches, and has one stable fixed point at approximately

(0.824,0.824), indicating that sleep onset of the stable solution occurs close to the

trough of the circadian cycle. The stable solution trajectory is shown relative to the

Z-shaped surface in Figure 2.3B.
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The map is piecewise-smooth due to the discontinuity or gap around Φn = 0.5.

The left branch of the map relative to the discontinuity has an infinite slope which is

a consequence of trajectories approaching a tangent intersection with the saddle-node

curve of the Z-shaped surface (Figure 2.3C). To see this, consider trajectories initiated

on either side of the gap with sleep onsets very close to the peak of the circadian drive

(c = 1, red and green curves). The trajectory initiated on the infinite slope to the left

of the gap (red curve) exhibits a short sleep episode, as it jumps up from the lower

saddle-node curve and transitions to the wake plane resulting in the next sleep onset

phase of about Φn+1 = 0.0722. By contrast, the trajectory initiated on the right of the

gap (green curve) becomes tangent to the lower saddle-node curve (grazing), resulting

in a longer sleep episode. As the green trajectory evolves further, wake onset occurs

close to the circadian minimum (that is c = −1), followed by a long wake episode

resulting in the next sleep onset at a phase of about Φn+1 = 0.8033.

2.2 Three-state sleep-wake network model

In this section we first describe our three-state sleep-wake regulatory network

model and then discuss the methods used to construct the one-dimensional circle

maps that represent its dynamics.

2.2.1 Model equations of the three-state model

In Chapters IV and VI, we utilize a previously developed, sleep-wake regulatory

network model to simulate sleep-wake behavior [53, 63, 129]. This model is based on

neurotransmitter-mediated interactions between neuronal populations that promote

the states of wake, NREM and REM sleep (Figure 2.4). REM-promoting populations

include the REM-active, cholinergic areas of the laterodorsal tegmental nucleus (LDT)

and pedunculopontine tegmental nucleus (PPT). Similar to the SWFF model, mutual

inhibition between the wake-promoting and NREM sleep-promoting populations
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introduces a flip-flop switch governing transitions between sleep and wake states.

Transitions between NREM and REM sleep states are dictated according to the

reciprocal interaction hypothesis for REM sleep [81], in which the wake-promoting

population projects inhibitory synapses to the REM sleep-promoting population,

while the REM sleep-promoting population projects excitatory synapses back to the

wake-promoting population. The model also represents the suprachiasmatic nucleus

(SCN) which is entrained to the environmental light cycle, and displays a 24-hour

variation in neural firing.

A BA

NREM

(GABA)

REM

(ACh)

SCN

(GABA)

W

(NE)

W

(NE)

Figure 2.4: A physiologically based, three-state model for sleep-wake regulation. A:
Schema of the model network summarizing interactions among the wake-promoting,
NREM-promoting, REM-promoting and suprachiasmatic nucleus (SCN) neuronal
populations with circles denoting inhibitory and arrows denoting excitatory synaptic
connections. The representative neurotransmitters for each population are also indi-
cated (NE: noradrenaline, ACh: acetylcholine, GABA: gamma aminobutyric acid).
B: Time traces showing the evolution of the model variables corresponding to the
stable solution with one daily sleep episode. The top panel includes the firing rates
fW (Wake), fN (NREM), fR (REM), fSCN . The middle panel shows the evolution of
the sleep homeostat, h, and the bottom panel shows the evolution of the circadian
drive, c. The light blue and rose backgrounds correspond to the times at which the
model is in wake and sleep, respectively.

As before, neuronal population activity is modeled using a firing rate formalism

that captures averaged behavior of spike rates of the neuronal populations, fW ,

fN , fR, where W , N , and R denote Wake, NREM and REM, respectively. The
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neurotransmitter concentration released as a result of activity of the presynaptic

neuronal population depends on the mean firing rate of the presynaptic neuronal

population. In particular, we assume that a firing rate fX induces instantaneous

expression of neurotransmitter concentration that is described by its steady state

function: Ci(fX) = tanh
(

fX

γi

)
, where X = W, N, R, SCN and corresponding i = NE

(noradrenaline), G (GABA), ACh (acetylcholine), S (GABA expressed by the SCN).

The postsynaptic firing rates, fX(t) (in Hz), saturate to their steady state firing rate

response functions with time constants τX for X = W, N, R, SCN . The steady state

firing rate functions, X∞(·), have a sigmoidal profile that has been utilized in many

firing rate models [41, 123, 124, 24, 163]. Here, X∞(z) = Xmax

2

(
1 + tanh

(
z − βX

αX

))
.

Neuronal populations

Hence, in this formalism the firing rates fX for X = W, N, R, SCN are governed

by the following equations:

dfW

dt
= W∞(gACh,W CACh(fR) + gS,W CS(fSCN) − gG,W CG(fN)) − fW

τW

(2.18)

dfN

dt
= N∞(−gNE,NCNE(fW ) − gS,NCS(fSCN) − gG,NCG(fN)) − fN

τN

(2.19)

dfR

dt
= R∞(gACh,RCACh(fR) − gNE,RCNE(fW ) − gS,RCS(fSCN) − gG,RCG(fN)) − fR

τR

(2.20)
dfSCN

dt
= SCN∞(c(t)) − fSCN

τSCN

(2.21)

The parameters Xmax, αX , and βX represent the maximum firing rate, sensitivity

of response, and half-activation threshold, respectively. The weights gi,X convert the

concentrations Ci into effective synaptic input. A positive sign in front of gi,X denotes

excitation of the postsynaptic population X due to release of the neurotransmitter i;

a negative sign denotes inhibition.
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Circadian Drive

Simulations of the three-state model in this thesis have been conducted using the

limit cycle model for the circadian drive [64] described earlier that includes equations

2.12-2.13.

Homeostatic Sleep Drive

The homeostatic sleep drive (h) regulating sleep propensity is modeled using

equation 2.7 and modulates the activity of the NREM sleep-promoting population

through βN(h), a linear function of h.

Model Parameters

All default model parameter values are given in Table 2.2. This parameter set is

used in the work presented in Chapters IV and VI.

Wmax = 6 Hz τW = 23 min αW = 0.4 βW = −0.4
Nmax = 5 Hz τN = 10 min αN = 0.2
Rmax = 5 Hz τR = 1 min αR = 0.1 βR = −0.8

SCNmax = 7 Hz τSCN = 0.5 min αSCN = 0.7 βSCN = −0.1
gACh,W = 0.8 gS,W = 0.1911 gG,W = 1.4928
gNE,N = 1.5 gS,N = 0.2141 gG,N = 0
gACh,R = 2.2 gNE,R = 10.7473 gS,R = 0.8 gG,R = 1.07

hmax = 323.88 hmin = 0 τhw = 946.8 min τhs = 202.2 min
k1 = −0.1 k2 = −0.0045 θW = 2 Hz

Table 2.2: Parameter values for the network model for human monophasic sleep. For
X = W, N, R, SCN , αX and βX are in units of effective synaptic input. Additionally,
for i = NE, G, ACh, S, giX has units of (effective synaptic input / Hz). Units for
hmax and hmin are percentage mean SWA. The parameters k1 and k2 are measured
in effective synaptic input and effective synaptic input/(% mean SWA), respectively.
The remaining units are included in the table.

For the default parameter values, the model produces a stable solution representing

monophasic sleep with 16.11 hours of wake and 7.89 hours of sleep including 6.58 and

1.31 hours of NREM and REM sleep, respectively (Figure 2.4). During each sleep
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episode, cycling between NREM and REM sleep produces four distinct REM bouts.

For the stable default solution, the sleep onset phase (defined as in equation 2.17) is

Φ = 0.829, so the sleep onset occurs on the decreasing phase of c. This is consistent

with the relationship between sleep onset and the phase of core body temperature in

typical adult human sleep behavior.

2.2.2 Summary of the three-state model dynamics

In this section, we analyze the model equations (Eq. 2.18-2.21 and 2.7, 2.12-2.13)

with the default parameter values (see Table 2.2) and describe model dynamics using

the techniques introduced earlier.

Fast-slow decomposition of the three-state model

As in the SWFF model, the steady state solutions of the fast subsystem, which are

represented in terms of the firing rate fW of the wake-promoting population, form a

Z-shaped curve with respect to h at each value of c (Figure 2.5A). The upper branch

of the Z-shaped curve comprises the stable steady state solutions that correspond to

the wake state. The middle and lower branches correspond to unstable fixed points of

the fast subsystem, and the folds of the Z are saddle-node bifurcation points where

two steady states coalesce. Associated with the lower branch of unstable solutions are

stable periodic solutions corresponding to NREM-REM cycling in which the REM

firing rate fR displays high amplitude oscillations and fW displays low amplitude

oscillations. The unstable fixed points of the fast subsystem separate the basins of

attraction for the stable fixed point and the stable periodic solution.
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Figure 2.5: Fast-slow decomposition of the three-state sleep-wake model. A. The
Z-shaped curve obtained by the fast-slow decomposition for c = 0 illustrates the
steady state solutions of the variable fW as a function of the varying parameter, h.
The red solid and black dashed curves correspond to stable and unstable steady state
solutions of the fast subsystem, respectively. The light blue circles correspond to the
periodic solution representing the NREM-REM cycling occurring during the sleep
state. B. The fast-slow Z-shaped surface for varying h and c values and the stable
orbit (blue curve) of the model for the default parameter set. C. Frequency plot of
NREM-REM cycling for various values of the parameters c and h, corresponding to
the periodic solutions in the fast subsystem during the sleep state. The black curve
corresponds to the lower saddle-node points of the Z-shaped surface. The darkest
blue region (to the left of the saddle-node curve) corresponds to (h, c) values for which
the stable solution of the fast subsystem is not periodic and corresponds to the wake
state.

For each fixed c value we obtain similar solutions with respect to h which collectively

form a Z-shaped fast-slow surface on which trajectories of the full system evolve (Figure

2.5B). On this surface the lower manifold representing the sleep state captures the

periodic solutions corresponding to the oscillations of fR which occur at different

frequencies depending on the strength of the circadian rhythm drive (c) (Figure 2.5C).
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Lower values of c lead to lower frequency NREM-REM cycling with longer REM

bouts, while higher values of c yield higher frequency cycling with shorter REM bouts.

Additionally, NREM-REM cycling is more sensitive to changes in the strength of the

circadian drive than in the strength of the homeostatic sleep drive.

As explained previously, in the two-state model the lower branch of the Z-shaped

curve is stable, and the sole mechanism for transition from sleep to wake is the passage

through the saddle-node point at the lower knee of the Z-shaped curve. In contrast,

transitions from sleep to wake in our three-state model depend on the interaction of the

lower saddle-node point with the periodic solution representing the REM oscillations

[54].

Sleep onset circle map of the three-state model

The map is constructed by tracking the circadian phases when trajectories cross

the fW = θW section during numerical integration of the model from initial conditions

representing sleep onsets occurring across the range of circadian phases.

Following the process described in Section 2.1.2, we obtain initial conditions

that place the sleep-wake variables on a stable solution of the sleep-wake subsystem

(fW , fN , fR, h) near the transition to sleep that is associated with a fixed value of the

circadian drive c, and to place the circadian rhythm variables on a stable solution of the

circadian subsystem (c, xc, n) associated with the same fixed value of c. Assumption of

a fixed light:dark schedule is required for the map computation to maintain a rigorous

definition of circadian phase, but, based on previous work, we expect that similar

results would be obtained if light intensity was allowed to vary with behavioral state

(see [128], Chapter VI and Discussion in Chapter IV for more details).

The map for the three-state sleep-wake model is piecewise, non-monotonic, non-

invertible and exhibits both large vertical discontinuities or gaps, and smaller gaps

occurring at cusps that separate distinct branches of the map (Figure 2.6). The
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separate branches of the map correspond to sleep-wake cycles with distinct sleep and

wake bout durations, and numbers of REM bouts. For default parameter values, the

map has one stable fixed point at Φn = 0.829 corresponding to the stable periodic

solution displayed in Figure 2.4. This solution has one sleep episode per circadian day

with a duration of 7.89 h; each sleep episode contains four REM bouts.

0 0.2 0.4 0.6 0.8 1
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Figure 2.6: One dimensional circle map illustrating the circadian phase of the n + 1st
sleep onset, Φn+1 as a function of circadian phase of the nth sleep onset, Φn. For
each branch of the map we indicate the distinct number of REM bouts occurring in
sleep episodes initiated at the associated circadian phase. We distinguish the branches
representing 4 REM bouts (green), 5 REM bouts (red) and 6 REM bouts (light blue),
as these are significant for our later analysis.

The map exhibits a large vertical gap close to the phase associated with the peak

of the circadian drive (Φn = 0.5), similar to the gap in the map of the SWFF model

(Figure 2.3A). The left branch at the discontinuity has an infinite slope which is a

consequence of trajectories starting from these initial conditions approaching a tangent

intersection with the saddle-node curves of the Z-shaped surface (grazing).

The unique features of maps for the three-state model are the cusp gaps between

map branches for trajectories with distinct numbers of REM bouts. The number

of REM bouts during a sleep episode depends on how the trajectory traverses the

periodic solutions on the lower manifold of the Z-surface, especially as it approaches

the lower curve of saddle nodes. Trajectories that are initiated at similar sleep onset

phases may approach the lower saddle-node curve at slightly different circadian phases
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resulting in a difference of one REM bout and thus different subsequent sleep onset

phases, placing their corresponding phase points on distinct map branches.

44



CHAPTER III

Bifurcations of Sleep Patterns Under Circadian and

Homeostatic Variation

3.1 Introduction

In this chapter1, we investigate changes in sleep patterns under homeostatic and

circadian variation using the SWFF model presented in Chapter II. Specifically, we

consider varying the time constants of the homeostatic sleep drive and the temporal

profile of the circadian drive. Several experimental studies have shown that character-

istics of sleep homeostasis depend on individual traits such as age and sex [48, 136, 87]

and may vary with development [136]. For example, the transition from polyphasic

(multiple sleeps per day) to monophasic (one sleep per day) sleep behavior that occurs

in infancy/early childhood is thought to result from differences in the time constants

of the homeostatic sleep drive dictating the accumulation and dissipation of sleep

pressure [89, 138, 88]. The temporal profile of the circadian drive, reflecting the firing

rate of neurons in the SCN, can also vary with age [38], the Earth’s latitude, as well

as in response to seasonal changes in day length. In particular, the mean duration

of high SCN firing activity was shorter in animals entrained to a short photoperiod

(i.e., daily illumination) (Light:Dark 8 h:16 h) and longer in those entrained to a long
1A manuscript on these results has been accepted for publication in SIAM Journal on Applied

Dynamical Systems.
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photoperiod (Light:Dark 14 h:10 h)[117]. Similar results were reported in [109, 157]

who found longer intervals of peak firing activity of the SCN during long days and

shorter peak firing intervals during short days.

Physiologically-based models of sleep-wake networks are based on the interactions

of neuronal populations that promote wake and sleep states, with the suprachiasmatic

nucleus (SCN) that generates the circadian rhythm [125, 17, 53, 71, 134, 100, 24]. The

simplest of such ordinary differential equation (ODE) -based models [125] has been

formally reduced to the same form as the Two Process model [147] and a numerical

study suggests that similar types of phase-locked solutions are obtained as the time

constants of the homeostatic sleep drive and amplitude of circadian drive are varied

[127]. However, to our knowledge, the types of bifurcations governing the gain and loss

of stability of the phase-locked solutions in the ODE model have not been reported.

Here, we draw on multiple mathematical methods, including numerical computation

of circle maps, to analyze the bifurcations of phase-locked solutions in an ODE-based

sleep-wake flip-flop model. Motivated by changes that have been documented in the

experimental literature, we consider the effects of variation in both the homeostatic

sleep and the circadian drives on the types of bifurcations leading to changes in the

number of daily sleep episodes. To our knowledge, this has not been thoroughly

analyzed in a physiologically-based sleep-wake model previously.

Previous analysis of mathematical models of sleep-wake regulation has considered

the effects of changing homeostatic time constants in the transition from polyphasic to

monophasic sleep [127, 147, 14]. However, these studies have not taken into account

the effects of the steepness of the circadian waveform and how this interacts with

changing homeostatic time constants. Therefore, we extend these previous findings

by additionally considering how the temporal profile of the circadian drive affects

the bifurcation sequences of entrained sleep-wake patterns that are observed in the

transition from polyphasic to monophasic sleep behavior and driven by changing

46



homeostatic time constants.

To identify types of bifurcations and understand how they arise in the SWFF

model, we employ multiple methods (described in detail in Chapter II) to analyze

model dynamics and numerically compile a two-parameter bifurcation diagram.

Similarly to the maps explicitly derived from the Two Process model, SWFF circle

maps are discontinuous with an infinite slope on one side of the vertical discontinuity.

Tracking fixed points of the circle maps as the homeostatic and circadian drives are

varied allows us to characterize the types and sequences of bifurcations when different

phase-locked solutions lose and gain stability. Finally, to explain changes observed

with increasing steepness of the circadian drive waveform, we consider the limit of

the circadian drive as a step function which we call the circadian hard switch model

(CHS). This limit introduces a second switching boundary to the piecewise smooth

model, and we analyze its bifurcation sequence as the homeostatic sleep drive is varied

to verify the trends observed in the original SWFF model. Thus, with these multiple

techniques and numerical simulations, we obtain a complete understanding of the

dynamics of the SWFF model, and detect and classify the types of bifurcations that

occur as two key parameters are varied.

The chapter is organized as follows: in Section 3.2 we briefly discuss the mathe-

matical model utilized in this study. In Section 3.3 we analyze the bifurcations of

entrained sleep-wake patterns under variation of the time constants of the homeostatic

sleep drive and the duration of peak activity of the circadian drive waveform. In

Section 3.4 we formulate the circadian hard switch model and describe the bifurcations

in this case. In Section 3.5, we provide a brief discussion of our results.

3.2 Sleep-Wake Flip-Flop (SWFF) model

In this work, we employ the SWFF model presented in Chapter II using a sinusoidal

function to produce the 24h-periodic signal of the circadian oscillator. Parameter values
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are shown in Table 2.1 and generate a sleep pattern typical for healthy young adults.

The wake and sleep durations are approximately 15.33 and 8.67 hours, respectively.

As is typical for entrained adult human sleep, wake onset occurs at the early rise of

the circadian cycle, while sleep onset occurs as SCN activity approaches its minimum

(Figure 2.1B).

3.3 Analysis of bifurcation sequences in the SWFF model

For our analysis of bifurcations in the SWFF model, we first identify the bifurcation

sequences associated with the emergence and change of stable, phase-locked solutions

as the time constants of the homeostatic sleep drive are varied. We then consider how

the steepness of the circadian waveform affects the bifurcations of stable, phase-locked

solutions and the associated bifurcation sequences as homeostatic time constants

vary. We end this section by examining how the bifurcation sequences change in the

regime of the fastest homeostatic time constants when sleep onset circle maps may be

continuous.

3.3.1 Varying time constants of the homeostatic sleep drive

To examine how decreasing the homeostatic time constants τhs and τhw affects

model solutions, we introduce a scaling constant k ∈ (0, 1] that multiplies both τhs

and τhw in Eq. 2.7. This is a simple scaling that preserves the ratio between time

constants and is consistent with approaches in previous work [147, 14]. We numerically

computed model solutions (Figure 3.1A) with respect to the bifurcation parameter k

to understand the change in the types of stable phase-locked solutions obtained as

we decrease k from 1. Specifically, we tracked the timing and duration of the sleep

episodes of the stable solutions (black intervals) over the course of 10 days.
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Figure 3.1: Multiple sleep episodes per day occur as time constants for the homeostatic
sleep drive are decreased. A: Simulated sleep periods (dark intervals) over the course
of 10 days as the homeostatic sleep drive time constants are decreased by the scaling
parameter k (x-axis). B: Bifurcation diagram of stable solutions in terms of the
rotation number ρ for the default parameter set. The parameter k is on the x−axis
and the rotation number ρ, defined as the number of circadian days over the number
of sleep episodes in the stable sleep pattern is on the y-axis. The step size for k was
0.001.

We found that the number of sleep episodes per day increased as the time constants

for the homeostatic drive decreased. At the default value k = 1, the model produces

one sleep episode per day (which we define here as a 24-hour cycle measured between

two minimums of the circadian variable (c(t)). As we reduce k, the stability of solutions

with one sleep episode per day is lost, and higher order patterns in which some days

contain two sleep episodes may occur. In the interval (k ∈ [0.317, 0.403]) a stable

solution with two sleep episodes per day emerges. For smaller values of k, higher order

patterns in which some days contain three sleep episodes appear, eventually resulting

in the stable solution with three sleep episodes per day, and so on.

To quantify the sleep patterns associated with the attracting periodic orbits

obtained for each value of k, we define the rotation number, ρ, to be the number

of circadian days q over the number of sleep episodes p occurring in one period of

the stable orbit, i.e. ρ = q
p
. Tracking ρ as k is decreased from 1 to 0 (Figure 3.1B),
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we find that the rotation numbers vary as dictated by a Farey sequence [75, 11]. In

between neighboring intervals of k displaying solutions with rotation numbers ρ1 = a
b

and ρ2 = c
d
, where the greatest common divisor gcd(a, b) = 1, gcd(c, d) = 1, and

|ad − bc| = 1 is a k interval with rotation number ρ = a+c
b+d

. Such a Farey sequence of

rotation numbers will generate a Devil’s staircase-like structure for the rotation number

as a function of k. This suggests that the stable solutions follow a period-adding

bifurcation sequence that is consistent with previous work on systems governed by

monotonic circle maps with discontinuities [75, 14, 42]. Here, we numerically detect a

subset of a Farey sequence of rotation numbers (see Appendix B for a description of

the algorithm used for the computation of the bifurcation diagram of ρ).

Interestingly, for small values of k (0 < k ≤ 0.18), we obtain a denser set of

rotation numbers from the computed solutions compared to the rotation numbers

observed for larger values of k. For small k, the numerical results suggest that solutions

with rotation numbers for all rational numbers less than about 1
4 may exist. This

is expected as sufficiently fast homeostatic time constants will result in continuous

sleep onset circle maps. This occurs because fast time constants will prevent model

trajectories from making tangent intersections with the saddle-node curves of the

Z−shaped surface. In this case, the theory for monotonic, continuous circle maps

guarantees that solutions exist with rotation numbers for all rational numbers [75, 11].

3.3.1.1 Bifurcation sequences for emergence of stable solutions

To identify the types of bifurcations leading to the gain (or loss) of stability of

different sleep patterns for decreasing k, we track how the stable model trajectories

and sleep onset maps evolve as we reduce k for representative solutions associated

with ρ = 1, 2
3 , and 1

2 . Our analysis suggests that other stable solutions with ρ ∈ [1
2 , 1]

will show the same bifurcation sequences. Solutions with smaller ρ values may show

different bifurcation sequences and are considered in Section 3.3.4.
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For k = 1, the associated solution has rotation number ρ = 1. As k decreases,

we describe the bifurcations associated with the loss of the ρ = 1 solution. Similarly,

we identify k−intervals associated with the existence of solutions with ρ = 2
3 and 1

2

and observe the bifurcation sequences associated with the emergence and loss of these

solutions. These bifurcation sequences will include saddle-node (SN) bifurcations and

border collision bifurcations of both stable (BC-S) and unstable (BC-U) fixed points

of the maps. A border collision bifurcation in the map occurs when the border of a

map curve intersects the diagonal, and therefore, a fixed point is created or destroyed.

In the listing of the sequences, for all cases except ρ = 1, the leftmost and rightmost

bifurcations create and destroy, respectively, the stable solution with rotation number

ρ = q
p

as k is decreased.

Border collision → saddle-node

We first consider the loss of stability of the ρ = 1 solution as k is decreased from

1. The smallest value of k for which this solution is stable is k = 0.503 (Figure

3.2A,B). As k is decreased towards this value, the stable periodic orbit shifts on the

Z−shaped surface such that sleep onset occurs at earlier phases. The sleep onset

map for k = 0.503 reveals a saddle-node bifurcation to the right of the discontinuity

(Figure 3.2A). The unstable fixed point associated with the saddle-node bifurcation

was created at a higher value of k (k = 0.504) in a border collision bifurcation on the

right side of the discontinuity (referred to as a Type I border collision in [14, 42]).

Numerical simulations suggest that at the border collision bifurcation of the map the

unstable orbit makes a tangent intersection with the curve of saddle-node points on

the upper plane of the Z−shaped surface, also called a grazing bifurcation of the flow

[45]. Thus, as k decreases, the ρ = 1 solution loses stability in the bifurcation sequence

of

BC-U → SN.
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Saddle-node → border collision → border collision

Next we describe the bifurcation sequences associated with the emergence and loss

of a stable solution with alternating 1 and 2 sleeps per 24-h circadian cycle (ρ = 2
3).

This solution gains stability at k = 0.4663 and loses stability at k = 0.434. Fixed

points associated with this solution appear in the 3rd return sleep onset map (Figure

3.2C,D). These maps consist of 3 separate branches, each showing an infinite slope

at its right end and a finite slope at its left end (see Appendix A). Note that the

two segments for lower Φn+3 values form one connected branch (modulo 1) due to

periodicity of the circle map. At k = 0.4663, the map shows a saddle-node bifurcation

near the infinite slope end of the map branches (numbered 1-3 in Figure 3.2C). The

unstable fixed points are destroyed in a border collision (referred to as a Type II border

collision in [14, 42]) at a slightly lower value of k (k = 0.466). Numerical solutions

suggest that this border collision is associated with the unstable orbit making a tangent

intersection with the upper curve of saddle-node points of the Z−shaped surface. As k

decreases to k = 0.434, the map transitions so the stable fixed points move towards the

left end of the map branches and disappear in a border collision bifurcation (Figure

3.2D). Numerical simulations indicate that this border collision bifurcation occurs due

to a tangent intersection with the upper curve of saddle-node points of the Z−shaped

surface. Thus, as k is decreased, the emergence and disappearance of the ρ = 2
3 stable

solution occurs in the bifurcation sequence

SN → BC-U → BC-S.

We find that other stable solutions for lower values of k also emerge through this

same bifurcation sequence. For example, the ρ = 1
2 solution with two sleep episodes

per circadian cycle is stable in the interval k ∈ [0.317, 0.403]. Fixed points for this

solution appear in the second return sleep onset maps which in this regime consist of
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two separate branches, each with an infinite slope at the right end and a finite slope

at the left end (Figure 3.2E,F). Again, as k decreases the solution gains stability in

a saddle-node bifurcation at the right end of the map branches where the unstable

fixed points are destroyed in a border collision at k = 0.401. Numerical simulations

suggest that the unstable orbit makes a tangent intersection with the upper curve of

saddle-node points of the Z−shaped surface. The fixed points disappear in a border

collision with the left end of the map branches (Figure 3.2F), where again the stable

orbit makes a tangent intersection with the upper curve of saddle-node points of the

Z−shaped surface (Figure D.1 in Appendix D).

We have demonstrated that as k varies, the appearance of tangent intersections

of model trajectories with the curves of saddle-node points of the Z−shaped surface

influence the occurrence of the bifurcations, and thereby, the emergence of stable orbits.

The presence of tangent intersections depends, in part, on the circadian waveform and

highlights the importance of the circadian drive on the bifurcation sequences.
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Figure 3.2: Sleep onset circle maps reveal the types of bifurcations at the emergence
and disappearance of stable solutions as k is varied. Distinct branches of the circle
maps are labelled by numbers 1,2 and 3 as needed. A: The first return sleep onset map
for k = 0.503, the smallest value where the one sleep episode per day solution (ρ = 1)
is stable, shows a saddle-node bifurcation. B: Evolution of stable ρ = 1 periodic orbits
plotted in relation to the Z−shaped surface in the c − h − fW space as k approaches
k = 0.503. Each closed orbit corresponds to the stable solution for a particular value
of the parameter k: k = 1 (red), k = 0.8 (green), k = 0.7 (magenta), k = 0.6 (orange),
k = 0.503 (blue). C,D: Third return sleep onset maps for k = 0.4663 (C) and k = 0.434
(D). For this range of k values the stable solution alternates between one and two sleep
episodes per circadian cycle (ρ = 2

3). The map has three branches (modulo 1) with a
saddle-node bifurcation occurring at the right branch end at k = 0.4663 (C) and a
border collision occurring at the left branch end at k = 0.434 (D). E,F: The second
return sleep onset maps for k = 0.403 (E) and k = 0.317 (F) between which exists
the stable solution with two sleep episodes per circadian cycle. The map has two
branches (modulo 1) with a saddle-node bifurcation occurring at the right branch end
at k = 0.403 (E) and a border collision occurring at the left branch end at k = 0.317
(F). 54



3.3.2 Varying the circadian waveform

The circadian waveform reflects the time-varying profile of the firing rate of the SCN

population. The properties of the SCN waveform are determined by interindividual

differences, the Earth’s latitude as well as environmental light schedules that change

with the seasons [157]. To investigate the effect of this waveform on the stable sleep-

wake patterns, we varied the firing rate profile of the SCN population and tracked

the existence of tangent intersections between model trajectories and the curves of

saddle-node points of the Z−shaped surface.

Specifically, we modulated the circadian waveform such that its “steepness” (the

transition region between low and high values of the SCN firing rate) varies without

affecting the amplitude of the waveform. This is achieved by allowing the parameter

αSCN in the steady state response function of the SCN firing rate (Eq. 2.6) to vary

from its default value αSCN = 0.7 (Table 2.1). We consider αSCN ∈ (0, 3]. Decreasing

or increasing αSCN results in longer or shorter intervals, respectively, of high SCN

firing rate activity (Figure 3.3A) consistent with the response of SCN activity to

longer or shorter environmental light periods [117, 157].
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Figure 3.3: Effect of the parameter αSCN on the circadian waveform, fast-slow decom-
position surfaces and first return circle maps. A: Profile of SCN∞(c(t)) over 24 h for
αSCN=0.7 (default value, blue), αSCN=1.5 (gray), αSCN=0.3 (red) and the limiting
case αSCN → 0+ (dashed green). B: The Z−shaped surface of steady state solutions
of the model fast subsystem showing the variation in the curve of saddle-node points
with αSCN (αSCN = 1.5 (black), 0.7 (dashed blue) and 0.3 (dashed red)) with stable
trajectories for k = 1 (αSCN = 1.5 (gray), 0.7 (blue) and 0.3 (red)). C,D: First return
sleep onset circle maps for k = 1 and αSCN = 1.5(C) and 0.3(D). Distinct branches of
the circle maps are labelled by the number 1 and 2 as needed.

To illustrate the effects of changing the profile of the SCN∞(c(t)) function on

solutions with k = 1 , we consider sleep onset maps and fast-slow decomposition for

representative αSCN values, αSCN = 0.3 and 1.5 (Figure 3.3B-D). In the Z−shaped

surface, the curves of saddle-node points have smaller (larger) curvature for larger

(smaller) values of αSCN . Stable trajectories trace out similar hysteresis loops over

the Z−surface. In addition, the sleep onset first return maps have the same general

shape as the default case, displaying a similar discontinuity with an infinite slope on

its left side. The fixed points also occur at similar phases for αSCN equal to 0.3, 0.7

and 1.5: namely (Φn, Φn+1) = (0.8057, 0.8057), (0.8242, 0.8242), and (0.833, 0.833),
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respectively.

The map for αSCN = 1.5 exhibits a second discontinuity resulting in a small

map branch near Φn = 0.5 (Figure 3.3C). This discontinuity is caused by tangent

intersections for trajectories associated with Φn values near 0.5: one initial phase

produces a trajectory that makes a tangent intersection with the lower saddle-node

curve, and a slightly higher initial phase produces the trajectory that makes a tangent

intersection with the upper saddle-node curve.

3.3.3 Varying both homeostatic time constants and circadian waveform

We study the combined effect of the parameter αSCN ∈ (0, 3] on the stable sleep-

wake patterns obtained and bifurcation sequences arising as the homeostatic sleep

drive time constants are scaled by k. To that end, we first consider the stable, phase-

locked solutions obtained as k is decreased for representative αSCN values greater

(αSCN = 1.5) and less (αSCN = 0.3) than the default value (αSCN = 0.7). We initially

analyze the αSCN effect on the bifurcation sequence for the loss of stability of the

ρ = 1 solution. Next, we compute the (k, αSCN) two-parameter bifurcation diagram

to illustrate the evolution of bifurcation sequences over ranges of k and αSCN values.

As we describe below, for lower values of αSCN , numerical simulations detect many

fewer stable solutions associated with rotation numbers ρ ∈ [1
2 , 1]. To verify this trend

for the lowest values of αSCN , we additionally consider the limiting case of αSCN → 0+

corresponding to the SCN firing rate changing as a step function (see Section 3.4).

3.3.3.1 Stable solutions for shallow and steep circadian waveforms (i.e.,

αSCN =1.5 and 0.3)

One key effect of changing the circadian waveform is that as k is decreased from

1, the ρ = 1 solution corresponding to one sleep episode per circadian cycle loses

stability earlier for larger values of αSCN (shallower waveforms) (Figure 3.4). For
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example, the ρ = 1 solution loses stability at k = 0.556, k = 0.503, and k = 0.455 for

αSCN = 1.5, 0.7 and 0.3, respectively. As discussed above, the creation of tangencies of

trajectories with the upper saddle-node curves of the Z−shaped surface is important

in order for bifurcations to occur. Both parameters k and αSCN influence the creation

of such tangent trajectories since the latter dictates the shape of the saddle-node curve

and together they determine the angle at which a trajectory approaches it. As the

upper saddle-node curve becomes steeper (for lower values of αSCN), h must evolve

faster for a trajectory orbit (stable or unstable) to become tangent to it, thus leading

to the lower k values when the ρ = 1 solution loses stability.
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Figure 3.4: Comparison of the bifurcation diagrams of the rotation number ρ for
αSCN = 1.5 (top) and αSCN = 0.3 (bottom). Using a numerical approach to construct
these diagrams, we obtained more types of periodic solutions with ρ ∈ [1

2 , 1] for larger
αSCN (shallower circadian waveform) compared to the solutions for smaller αSCN

(steeper circadian waveform).

Additionally, for larger values of αSCN , numerical simulations detect more stable

solutions (than in the default αSCN = 0.7 case) corresponding to distinct values of the

rotation number, particularly types of ρ = q
p

periodic solutions within the intervals

between ρ = 1
p

periodic solutions (Figures 3.4 (top) and 3.1B). Conversely, for smaller
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αSCN values, a winnowing (i.e., shrinking of the k-distance) of stable solutions with

ρ ∈ [1
2 , 1] is observed (Figure 3.4 (bottom)). While the arithmetic precision and the

step size of the parameter k in our numerical simulations could account for the inability

to detect more solutions, we can conclude that stable solutions in this ρ range exist

over shorter k intervals.

3.3.3.2 Bifurcations sequences for ρ = 1 solutions for representative αSCN

values

Border collision → saddle-node

To understand the bifurcation leading to the loss of stability of the ρ = 1 solution

as k decreases when αSCN=1.5, Figure 3.5A displays the evolution of the stable

periodic orbits for various values of k ranging from k = 1 to k = 0.556, the k value

just before the loss of stability of the ρ = 1 solution. As suggested by the absence of a

tangent intersection of the trajectory with the saddle-node curve, the sleep-onset map

demonstrates a saddle-node bifurcation near the right side of the discontinuity for

the bifurcation value of k=0.556 (Figure 3.5B). The unstable fixed point associated

with the saddle-node bifurcation was created at a higher value of k (k = 0.56) in a

border collision bifurcation on the map branch on the right side of the discontinuity.

The associated unstable orbit makes a tangent intersection with the upper curve of

saddle-node points of the Z−shaped surface. Similarly to the default αSCN = 0.7 case,

the ρ = 1 solution for αSCN > 0.7 loses stability in the bifurcation sequence of BC-U

→ SN as k is decreased.

Border collision

For αSCN = 0.3, we observe a different bifurcation sequence when the ρ = 1 solution

loses stability at k = 0.445. At this bifurcation point, the associated sleep-onset map

continues to show two discontinuities as observed for the map for k = 1. The map
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demonstrates that the bifurcation occurs due to a border collision on the right side

of the discontinuity (Figure 3.5D). This border collision corresponds to the stable

trajectory (Figure 3.5C, blue curve) creating a tangency at the upper saddle-node

curve of the Z−shaped surface (Figure 3.5C). This suggests that for smaller αSCN

values, the ρ = 1 solution ceases to exist due to a BC-S bifurcation.

Figure 3.5: Bifurcations at the loss of stability of the ρ = 1 solution for representative
large (A,B) and small (C,D) αSCN values. A: Stable trajectories for αSCN = 1.5 and
k = 1 (red), k = 0.8 (green), k = 0.6 (orange) and k = 0.556 (blue). B: First return
sleep onset map for αSCN = 1.5 and k = 0.556 indicates the loss of stability of the
ρ = 1 solution occurs due to a saddle-node bifurcation. C: Stable trajectories for
αSCN = 0.3 and k = 1 (red), k = 0.8 (green), k = 0.6 (magenta), k = 0.55 (orange)
and k = 0.506 (blue). D: First return map for αSCN = 0.3 and k = 0.445 indicates
the ρ = 1 solution loses stability due to a border collision bifurcation.
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3.3.3.3 Bifurcation sequences in (k, αSCN) parameter space

To illustrate the evolution of bifurcation sequences over a range of homeostatic

time constants and circadian waveforms, we constructed a two-parameter bifurcation

diagram with respect to k and αSCN (Figure 3.6). The ρ = 1 entrainment region

(cyan) is bordered on the left by a curve of (k, αSCN) values associated with stable

fixed points at which a saddle-node bifurcation (dashed black) or a border collision

(solid red) occurs.

The transition from the regime where the stable ρ = 1 solution is lost due to

the BC-U → SN bifurcation sequence to the regime where it is lost due to a BC-S

bifurcation occurs continuously as αSCN decreases. In the BC-U→SN regime, at the

k value associated with the border collision the slope of the map at the created fixed

point is greater than 1 (but finite) resulting in an unstable fixed point. As αSCN

decreases, the slope of the map curve at the unstable fixed point created in this

bifurcation also decreases.

The two regimes are separated at (k, αSCN) = (0.486, 0.6) which is marked with

a diamond. At this point, the curve of stable fixed points (solid red) merges with

the curve of unstable fixed points (solid yellow). For αSCN > 0.6, the unstable fixed

points are created in a border collision bifurcation occurring at a higher k value than

the k value associated with the saddle-node bifurcation that forms the boundary of

the ρ = 1 entrainment region. The transition between bifurcation regimes occurs at

(k, αSCN ) = (0.486, 0.6). Here, the fixed point of the map coincides with the end point

(border) of the map curve, and the slope of the map curve at that point is equal to

1. For αSCN < 0.6, the stable fixed point associated with the ρ = 1 solution is lost

directly due to a border collision bifurcation.
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Figure 3.6: Two parameter bifurcation diagram with respect to k and αSCN . The
resolution of the diagram is not uniform, with the modes in alphaSCN and k step
sizes being 0.02 and 0.002, respectively. Colored areas indicate parameter regions (or
tongues) where the following stable, phase-locked solutions exist (from left to right):
ρ = 1

4 , 1
3 , 1

2 , 2
3 , 3

4 , 1. Line type indicates bifurcation type: saddle-node (dashed black),
border collision of a stable fixed point (solid red), border collision of an unstable
fixed point (solid yellow). Diamond indicates transition between bifurcation sequences
governing loss of stability of the ρ = 1 solution (see Figure 3.5). Arrows indicate the
default αSCN value of 0.7. The green line is the set of (k, αSCN) points that forms
the boundary between regions where maps are discontinuous and continuous, and
the light green shaded region indicates the (k, αSCN) values for which the map is
continuous. The black dotted rectangle indicates a zoomed in version of the two-
parameter bifurcation diagram shown in Figure 3.7. The three light purple bullets
indicate the (k, αSCN) values of the maps shown in Figure 3.8.

The two parameter bifurcation diagram of Figure 3.6 also shows the entrainment

regions (or tongues) in (k, αSCN) space for stable solutions with ρ = 3
4 , 2

3 and 1
2 . For

αSCN ≥ 0.2, each of these solutions gains stability, as k is decreased, through a

saddle-node bifurcation (dashed black curve) that is followed by a border collision

(solid yellow curve) that eliminates an unstable fixed point. For the ρ = 3
4 , 2

3 solutions

as k is further decreased, stability is lost through a border collision (solid red curve)
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resulting in the bifurcation sequence SN → BC-U → BC-S, similar to the bifurcation

sequence observed for these solutions for the default αSCN = 0.7.

While not computed explicitly, we argue that this bifurcation sequence delimits

the entrainment regions of all solutions with ρ ∈ (1
2 , 1) and αSCN ≥ 0.2. Specifically,

for a stable solution with rotation number ρ = q
p

we consider the pth order return

map. As explained in Appendix A, the pth order map retains similar structure as

the first return map. For example, for values of (k, αSCN) where the first return map

is discontinuous, the pth return map is likewise discontinuous. Furthermore, the pth

return map has p discontinuities corresponding to each discontinuity in the first return

map. For αSCN ≥ 0.2 and all the k values where solutions with these ρ values exist,

first return maps display an infinite slope at the left of a discontinuity and a finite slope

on the right. The pth return map similarly shows this structure in each of the branches

of the map. Computing maps at the k values where these solutions gain and lose

stability reveals that stable fixed points are created on map branches to the left of a

discontinuity and are lost on map branches to the right of a discontinuity. Specifically,

for fixed αSCN , we consider the pth return map at the highest value of k for which

ρ = q
p

exists. On the p branches associated with this map, there are p saddle-node

points formed by the infinite slope end of the map branches. As k is decreased, p

unstable fixed points are eliminated in a border collision bifurcation on the infinite

slope ends of the p map branches. As k is decreased further, the p stable fixed points

for the ρ = q
p

solution disappear in a border collision bifurcation at the finite slope

end of the p map branches. Since, for decreasing k, the bifurcation sequence SN →

BC-U → BC-S is predicted by the structure of the map, we expect that all solutions

with ρ ∈ (1
2 , 1] and αSCN ≥ 0.2 will show a similar bifurcation sequence.

The bifurcations bounding the ρ = 1
2 entrainment region are the same for

αSCN > 0.42. However, the bifurcation governing the loss of stability of the ρ = 1
2

solution changes to a saddle-node for αSCN < 0.42 (Figure 3.6). This exchange in
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the bifurcations is a result of a small region or “island” of bistability emerging in the

interior of the ρ = 1
2 entrainment tongue (Figure 3.7E). The “bistability island” exists

for αSCN ∈ [0.25, 0.48]. It is bounded by curves of saddle-node bifurcations for high k

values while for lower k, it is bounded by a saddle-node curve for αSCN ∈ (0.42, 0.48)

and a curve of border collisions for αSCN ∈ [0.25, 0.42). As described below, at

αSCN = 0.42, both bifurcations occur at the same value of k, enabling the switch in

bifurcation type eliminating the stable ρ = 1
2 solution.

The region of bistability occurs due to the curves of the second return map becoming

S-shaped which allows for multiple intersections with the diagonal Φn+2 = Φn, and

thus multiple fixed points. Specifically, in this αSCN interval, as k decreases within

the ρ = 1
2 entrainment interval, the second pair of stable fixed points (and a pair of

unstable fixed points) are created in the second return map due to a saddle-node

bifurcation at the lower knees of the S-shaped map curves (Figure 3.7C, figure shows

one of the map branches). On the map branch shown in Figure 3.7C, the original

ρ = 1
2 solution corresponds to the stable fixed point at higher sleep onset phase and

the newly created solution with the stable fixed point at lower sleep onset phase.

The newly created unstable solution has a sleep onset phase between those of the

stable fixed points. For αSCN ∈ (0.42, 0.48], as k decreases further, the new unstable

fixed points and the original stable fixed points approach each other and eventually

collide in a saddle-node bifurcation at the upper knees of the S-shaped map curves

(Figure 3.7B). This bifurcation marks the end of the interval of bistability and the

newly created stable fixed points remain. These fixed points are eliminated, and the

ρ = 1
2 solution loses stability, in a border collision at the left ends of the map branches

(Figure 3.7A). Thus, the complete bifurcation sequence for αSCN ∈ (0.42, 0.48] is

SN → BC-U → SN → SN → BC-S.
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Figure 3.7: Bifurcations creating a bistability island in the ρ = 1
2 stable entrainment

region. A-C: Evolution of the second return map for αSCN = 0.45. Here only one
branch of the map is shown. For k = 0.341 (C) a saddle-node bifurcation occurs at
the lower part of the map curve. This gives birth to a new pair of stable and unstable
fixed points. At k = 0.335 (B) another saddle-node bifurcation leads to the collision
of the new unstable and original stable fixed points. Complete loss of stability of the
ρ = 1

2 solution occurs at k = 0.327 (A) in a border collision. D: At αSCN = 0.42,
the loss of bistability coincides with the loss of stability of the ρ = 1

2 solution. At
k = 0.329 a saddle-node and a border collision eliminate two stable and one unstable
fixed points. E: Close up of the two-parameter bifurcation diagram in (k, αSCN ) space
shown in Figure 3.6 shows the bistability island within the ρ = 1

2 stable entrainment
region. Letters in panel E correspond to maps shown in panels A-D and F. F: Second
return map curve showing a “sharp cornered S" shape for αSCN = 0.3 and k = 0.338
where a saddle-node bifurcation initiates the interval of bistability.
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At αSCN = 0.42, the end of the bistability interval coincides with the loss of

stability of the ρ = 1
2 solution as the saddle-node bifurcation at the upper knees of

the S-shaped map curves occurs at the same k value as the border collision at the left

ends of the map branches (Figure 3.7D, k = 0.329). At this value of k, the two pairs

of stable fixed points (one on each map branch of the second return map) lose stability

simultaneously. The fixed points corresponding to the original stable solution that

initiated the ρ = 1
2 tongue (at higher sleep onset phase in Figure 3.7D) lose stability

due to a saddle-node bifurcation with the unstable fixed points. The other stable

fixed points (at lower sleep onset phase in Figure 3.7D)lose stability due to a border

collision. This causes the exchange of the bifurcation dictating the loss of stability of

the ρ = 1
2 solution from a border collision to a saddle node. Thus at αSCN = 0.42 the

full bifurcation sequence is

SN → BC-U → SN → BC-S + SN.

For αSCN ∈ [0.25, 0.42), the shape of the map branches in the second return map

transitions to a “sharp cornered S” (Figure 3.7F). When the map is continuous in this

sharp cornered S shape, the following bifurcation sequence takes place

SN → BC-U → SN → BC-S → SN.

Here, the stable fixed points that introduced bistability (at lower phase in the figure)

lose stability first in a border collision at the left end of the map curves. For lower k

values, the unstable and original stable fixed points collide in a saddle-node bifurcation

which eliminates the stable ρ = 1
2 solution.

As αSCN approaches 0.25, a discontinuity can occur in the map in this sharp

cornered S shape, where the slope of the map branches are infinite from the left and
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finite from the right. In this case, the complete bifurcation sequence is

SN → BC-U → SN → BC-S → BC-U → SN.

The last border collision bifurcation creates another pair of unstable fixed points (one

on each of the associated branches of the second return map), as the sharp cornered S

shape of the map curves starts deforming as k is decreased.

3.3.4 Bifurcation sequences for small k

As noted previously, for small values of k, the homeostatic sleep drive varies more

quickly relative to the SCN firing rate especially for high values of αSCN , thereby

making tangent intersections of the solution trajectory with the curve of saddle-node

points on the Z−surface less likely. As a result, the associated sleep onset maps can be

continuous. This affects the bifurcation sequence delimiting stability of solutions with

rotation numbers ρ ≤ 1
3 . The two parameter bifurcation diagram can be separated

into regimes associated with continuous or discontinuous sleep onset maps. There

exists a curve of (k, αSCN ) points (Figure 3.6, solid green curve) above which the map

is continuous (Figure 3.6, light green area). We will refer to this (green) curve as the

transition zone.

We note that bifurcation sequences closer to the continuous regime, and hence

across the transition zone, may not involve border collision bifurcations associated with

the creation or destruction of stable fixed points (BC-S). As the maps obtain larger

discontinuities, we observe bifurcation sequences similar to the ones delimiting the

entrainment regions we have encountered so far. We describe representative examples

of the bifurcations across the transition zone with the ρ = 1
4 solutions for different

values of αSCN .
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Saddle-node → saddle-node

For pairs of (k, αSCN) values above the transition zone (see light green area),

the first and fourth return sleep onset maps are continuous, and hence saddle-node

bifurcations lead to loss of stability of the ρ = 1
4 periodic solution (Figure 3.8A). The

fourth return map has four pairs of stable and unstable fixed points, and the unstable

fixed points remain over the k interval where the solution is stable, i.e. the unstable

fixed point is not lost through a border collision. Thus, the stability of the ρ = 1
4

periodic solution in this regime occurs in the bifurcation sequence

SN → SN.

Figure 3.8: Transition from a continuous to a discontinuous sleep onset map within
the ρ = 1

4 entrainment region. Fourth return sleep onset maps are shown at smallest k
values where the ρ = 1

4 solution is stable for different αSCN values. A: For αSCN = 1
the map is continuous and loss of the stable ρ = 1

4 solution is due to a saddle-node
bifurcation. B: For αSCN = 0.55 the map is discontinuous, but the slope of the map
branches on the right of each discontinuity is greater than 1 in magnitude, leading to
a border collision that generates an unstable fixed point followed by a saddle-node
bifurcation as k decreases. C: For αSCN = 0.3 the map is discontinuous. A border
collision on the right of each discontinuity leads to loss of the stable fixed points
associated with the ρ = 1

4 solution.

Saddle-node → border collision → border collision [→ saddle-node]

For (k, αSCN ) pairs below the transition zone, the first and fourth return maps are

discontinuous with infinite slopes to the left of the discontinuity and finite slopes to
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the right of the discontinuity. A saddle-node bifurcation leads to gain of stability of

the ρ = 1
4 periodic solution as k is decreased. This is followed by a border collision

bifurcation at a slightly lower value of k.

For larger αSCN values, right below the transition zone, the slope of the discontin-

uous map is greater than 1 at the right of the discontinuity (Figure 3.8B). Therefore,

for decreasing k there is first a border collision bifurcation that generates an unstable

fixed point, and then this unstable fixed point eventually collides with the stable fixed

point in a saddle-node bifurcation as k decreases. Thus, stability of the ρ = 1
4 solution

in this regime occurs in the bifurcation sequence of

SN → BC-U → BC-U → SN.

As αSCN is reduced, the slope of the map decreases smoothly to values less than 1.

Then the stable fixed point ceases to exist due to a border collision bifurcation as k

decreases. In particular, the full bifurcation sequence is SN → BC-U → BC-S.

Transitions between these bifurcation sequences occurred smoothly. Specifically,

for the ρ = 1
4 solution at the transition zone, the unstable fixed points associated

with the border collisions appear at the same k value and their k values diverge for

smaller αSCN . Additionally, for the ρ = 1
4 and 1

3 solutions, as the bifurcation at the

loss of stability as k decreases changes, the k values at the border collisions associated

with the creation of unstable fixed points (solid yellow curve) merges with the values

associated with the destruction of the stable fixed points (solid red curve) as αSCN

decreases, as we have observed with solutions of ρ > 1
3 . We expect that similar

bifurcation sequences delimit other stable solutions with ρ < 1
3 across the transition

zone, as the associated maps are expected to maintain a similar structure.
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3.4 Circadian Hard-Switch model in limit αSCN → 0+

As shown in the k-αSCN bifurcation diagram (Figure 3.6), as αSCN decreases, the

widths of the k intervals associated with each stable entrainment regime change in

the following way: For some rotation numbers, such as ρ = 1, 1
2 , and 1

4 , the k intervals

expand for low αSCN values, while for ρ = 3
4 , 2

3 and 1
3 , the k intervals contract. In

the limit αSCN → 0+, this leads to the loss of stable solutions with ρ ∈ (1
2 , 1) and

ρ ∈ (1
4 , 1

3), and a change in the bifurcation sequence bordering the ρ = 1
2 and ρ = 1

4

stable solutions. To analyze this change in the size of k-intervals for a small αSCN , we

consider the model in the limit αSCN → 0+. We refer to this model as the circadian

hard switch (CHS) model.

In this section, we first formally define the CHS model and then describe the stable

solutions obtained as k decreases from 1 with a particular focus on the bifurcations

delimiting the stable ρ = 1
2 , 1

3 and 1
4 solutions. Based on how the ρ = 1 (and ρ = 1

3)

solutions directly transition to the ρ = 1
2 (and ρ = 1

4) solutions in the CHS model,

allows us to explain why the k intervals for stable solutions with ρ ∈ (1
2 , 1) (and

ρ ∈ (1
4 , 1

3)) shrink for small αSCN .

3.4.1 Definition of the Filippov system with two switching boundaries

In the limit as αSCN → 0+, the firing rate response function of the SCN population

can be approximated by a step function. This introduces a second discontinuity in

the fSCN derivative, when c crosses βSCN :

dfSCN

dt
=

SCNmax · 0.5 ·
(

1 + tanh
(

1
0.7

)
(2H (c − βSCN) − 1)

)
− fSCN

τSCN

, (3.1)

where H is the Heaviside function. Then, our model becomes a Filippov system
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with two switching boundaries [62]: one represents the switch between sleep and wake,

and the other represents a switch between high and low activity in the circadian drive

c(t) as occurs in SCN firing rate over the 24 hour day [157].

To define the circadian hard switch (CHS) model, we introduce the new switching

boundary Σ in addition to the original switching boundary Γ where Σ is defined as:

Σ = {c = βSCN}, where βSCN = 0 (Figure 3.9A).

The regions lying on either side of each boundary are then defined as:

• Σ+ = {c > βSCN} and Σ− = {c < βSCN},

• Γ+ = {fW > θW } and Γ− = {fW < θW }.

These boundaries divide the domain of the model into the following four subregions:

1. Σ+ ∩ Γ+ = {c > βSCN and fW > θW } (wake state with increasing h and high

fSCN),

2. Σ− ∩ Γ+ = {c < βSCN and fW > θW } (wake state with increasing h and low

fSCN),

3. Σ− ∩ Γ− = {c < βSCN and fW < θW } (sleep state with decreasing h and low

fSCN),

4. Σ+ ∩ Γ− = {c > βSCN and fW < θW } (sleep state with decreasing h and high

fSCN).

In each of these subregions, the model has smooth dynamics dictated by subsets

of Equations (2.1) - (2.10), while on the boundaries Σ and Γ one way to define the

dynamics is Filippov’s convex method. In Appendix C, we show that the model flow is

transversal across the boundaries of these four subregions and thus, a solution of this

piecewise smooth system can be concatenated from trajectories in its four subregions.
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Figure 3.9: Dynamics and bifurcation structure in the circadian hard switch (CHS)
model. A: The CHS model is a Filippov system with two boundaries, Γ (yellow plane)
and Σ (green plane). Therefore, in the c − h − fW space we can visualize the fast-slow
surface being divided into four regions, Γ+ ∩ Σ+, Γ+ ∩ Σ−, Γ− ∩ Σ− and Γ− ∩ Σ+. We
have plotted the individual fast-slow surfaces for the dynamical system when c > βSCN

(corresponds to Σ+) and c < βSCN (corresponds to Σ−). In each of these regions, the
system is smooth, but a discontinuity in the derivative occurs as the system crosses a
boundary. B: The bifurcation diagram of the rotation number ρ for the CHS model.
C: The evolution of the stable solutions leading to the loss of stability of the ρ = 1
solution. In this regime, a sleep onset always occurs at the same circadian phase
when the trajectory crosses the boundary Σ. D: Decreasing the value of the scaling
parameter k leads to loss of stability of the ρ = 1 solution and emergence of the stable
ρ = 1

2 solution.

3.4.2 Bifurcations in the CHS model

Using a numerical algorithm by Calvo et al. [33] to integrate the CHS model, we

numerically computed the bifurcation diagram of the rotation number ρ for k ∈ (0, 1]

(Figure 3.9B). The bifurcation diagram maintains a period-adding-like structure, as

well as similar trends to those observed for small αSCN values. As k was decreased
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from 1, the ρ = 1 solution in the CHS model lost stability at k = 0.45, a similar value

as found for αSCN = 0.3. As suggested by the shrinking of k intervals for solutions

with ρ ∈ (1
2 , 1) for small αSCN , the next stable solution detected as k was decreased

was ρ = 1
2 . Specifically, we did not detect any intermediate ρ = q

p
solutions between

the ρ = 1 and ρ = 1
2 solutions in the CHS model. As k decreased further, there

were fewer stable solutions between the ρ = 1
2 and ρ = 1

3 solutions in the CHS model

than for solutions associated with larger αSCN values. Between the ρ = 1
3 and ρ = 1

4

solutions, no intermediate solutions were detected in the CHS model.

Below, we explain why we detect many or few types of intermediate solutions

between certain ρ values using the fast-slow surface associated with the CHS model.

Winnowing of entrainment regions

In the CHS model, the smoothly varying Z-shaped surface associated with contin-

uous c(t) is split into two connected Z-shaped surfaces corresponding to the positive

and negative c(t) of the CHS model. By considering model trajectories on this double

Z−shaped surface, we identify a change in the bifurcation sequence delimiting the

ρ = 1
2 and ρ = 1

4 stable solutions. We note that the switching boundary Σ constrains

sleep onset phases for stable ρ = 1 solutions. Namely, as k is decreased from 1,

sleep onset phases remain at Φ = 0.75 due to trajectories falling off the upper wake

manifold of the Z−shaped surface at Σ during decreasing circadian drive c(t) (Figure

3.9C). At k = 0.45 where the ρ = 1 solution loses stability, the trajectory additionally

approaches Σ during increasing circadian drive at h values where a transition off the

upper manifold is possible (Figure 3.9D). For slightly smaller k = 0.449, the ρ = 1
2

solution gains stability in a border collision bifurcation due to sleep onsets occurring

at Σ for Φ = 0.25 and Φ = 0.75.

The absence of solutions with ρ ∈ (1
2 , 1) is due to the trajectory intersecting Σ

as c(t) increases and falling off the upper wake manifold at every circadian cycle.
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A stable solution with ρ ∈ (1
2 , 1) requires that sleep onset phases slightly shift on

successive circadian cycles such that some cycles only have 1 sleep episode and some

cycles have 2 sleep episodes. Here, since one sleep onset always occurs at Φ = 0.75

and the trajectory during the sleep episode is similar even if the h value at sleep onset

is different (Figure 3.9D), trajectories do not shift to avoid falling off the upper wake

manifold at Φ = 0.25 at the Σ boundary.

In contrast, stable solutions with ρ ∈ (1
3 , 1

2) were obtained. The existence of stable

ρ ∈ (1
3 , 1

2) solutions can be understood by considering the sleep onset phases of the

multiple sleep episodes in those solutions. When the ρ = 1
2 solution loses stability at

k = 0.28, sleep onsets occur near Φ ≈ 0 near the minimum of c and at Φ = 0.75. Thus,

the switching boundary Σ constrains the phase of only one of the sleep episodes. For

k slightly smaller, i.e. h slightly faster, sleep onsets will occur at earlier phases. For

the sleep onset occurring near Φ ≈ 0, the phase is not constrained by the boundary Σ

and can shift such that a third sleep onset may occur in a circadian cycle resulting in

a solution with ρ ∈ (1
3 , 1

2). The evolution of sleep onset phases and sleep patterns as

the period-adding structure progresses with decreasing k introduces the beginning of

the stable ρ = 1
3 solution with sleep onset phases close to 0, smaller and larger than

0.75.

The ρ = 1
3 solution loses stability in a border collision bifurcation and directly

transitions to the stable ρ = 1
4 solution similarly to the way in which the ρ = 1 solution

transitions to the ρ = 1
2 solution. At the loss of stability of the ρ = 1

3 solution at

k = 0.208, the three sleep onset phases occur near the extrema of the circadian drive

(i.e. Φ ≈ 0 and Φ ≈ 0.5) and at Φ = 0.75 at the Σ boundary with decreasing c(t). For

k = 0.207, the ρ = 1
4 solution gains stability as a fourth sleep onset occurs at Φ = 0.25

at the Σ boundary with increasing c(t). The constraint that the trajectory always

intersects Σ as c(t) increases, causing the border collision, does not permit the slight

shifting of sleep onset phases on successive circadian cycles necessary to result in a
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solution with ρ ∈ (1
4 , 1

3). Instead, the trajectory falls off the upper wake manifold at

Φ = 0.25 on every circadian cycle resulting in the stable ρ = 1
4 solution.

Understanding the small αSCN > 0 case

For small αSCN > 0, similar constraints on sleep onset phases near Φ = 0.75 and

0.25 also explain the shrinking k intervals for stable solutions with ρ ∈ (1
2 , 1) and

ρ ∈ (1
4 , 1

3). Sleep onset phases in these solutions have slightly different values on

successive circadian cycles that can result in different numbers of sleep episodes per

cycle. For small αSCN , the steep fSCN profile similarly constrains sleep onset phases

to be near Φ = 0.75 and Φ = 0.25 as observed in the CHS model. This restricts

the ability to sustain differences between trajectory orbits on successive circadian

cycles and prevents the slight shifts in sleep onset phases necessary for the stability

of these solutions. The solutions in these particular ρ intervals are affected because

the additional sleep episode occurring in a circadian cycle (the 2nd sleep episode for

ρ ∈ (1
2 , 1) and the 4th sleep episode for ρ ∈ (1

4 , 1
3)) occurs at phases near Φ = 0.25.

These constraints do not affect the newly obtained sleep onset phase in the stable

ρ = 1
3 solution (Φ ≈ 0), and therefore more types of solutions with ρ ∈ (1

3 , 1
2) are

detected in this regime. The ρ = 1
2 , 1

4 stable solutions are delimited by a BC-S →

BC-U → SN bifurcation sequence, while the ρ = 1
3 solution is characterized by the

sequence SN → BC-U → BC-S.

3.5 Discussion

In this Chapter, we analyzed the bifurcations in an ODE based sleep-wake flip-

flop model under circadian rhythm modulation. Our study highlights how applying

multiple techniques that reveal model solution structures and their dependence on

parameters can facilitate a full bifurcation analysis for a non-autonomous, high-

dimensional piecewise smooth dynamical system. We applied fast-slow decomposition
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to reveal an underlying Z−shaped solution manifold that supported the orbits of

stable solutions. Tracking stable orbits on the Z−shaped surface as homeostatic sleep

drive time constants were varied showed how the profile of the folds of the surface

dictated and participated in border collision bifurcations of solutions when solution

trajectories made tangent intersections with the folds. For border collision bifurcations

of stable solutions, we were able to visualize the tangent intersection of the trajectory

with the folds of the Z−shaped surface, which informed understanding of border

collision bifurcations of unstable solutions. Importantly, knowledge of the Z−shaped

surface enabled the numerical computation of circle maps for model dynamics, as

initial conditions were chosen at the upper fold (saddle-node) curves. The circle maps

allowed tracking of fixed point solutions, representing periodic solutions in the model,

as parameters varied and identification of saddle-node bifurcations as well as border

collision bifurcations of unstable periodic solutions. The value of using circle maps

to identify and track bifurcations was previously demonstrated in the Two Process

Model [14] (see below) for which the maps can be computed analytically. Overall, our

multi-pronged approach may be applied to other non-autonomous, piecewise-smooth

systems.

Our analysis focused on the effects of varying two physiologically-motivated factors

that affect timing and duration of sleep episodes: The time constants of the homeostatic

sleep drive and the profile of the SCN firing rate. The primary bifurcation sequence

delimiting stable solutions as the homeostatic drive time constants were decreased (by

decreasing the scaling parameter k) was SN → BC-U → BC-S. This sequence was

dictated by the shape of the circle maps which exhibit discontinuities with infinitely

increasing slopes on one side and finite slopes on the other side. The SN → BC-U

sequence reflects the gain and loss of fixed points on the map branch(es) near the

infinite slope(s) while the BC-S bifurcation reflects the loss of the stable solution on the

other end of the map branch(es). This primary bifurcation sequence was modulated
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by variation of the profile of the SCN firing rate, through the parameter αSCN .

One such modified sequence observed for stable solutions displaying multiple sleep

episodes per circadian cycle at smaller values of k, for example ρ ≤ 1
3 for some αSCN

values, was SN → BC-U → BC-U → SN. This sequence occurred due to deformation of

circle maps such that the finite slope at the discontinuity was less than -1. Our analysis

of the loss of stability of the ρ = 1 solution as αSCN was decreased provided a clear

illustration of how this modification can occur as the finite slope at the discontinuity

passes through 1.

Another modified sequence observed for multiple sleep episode solutions at small

k values and larger αSCN values was SN → SN. This sequence occurred when circle

maps were continuous and tangent intersections of trajectories with the folds of the

Z−shaped surface did not occur. This was because the homeostatic sleep drive varied

sufficiently fast (small k) and the SCN firing rate profile varied sufficiently slowly

(large αSCN).

These bifurcation sequences obtained in the SWFF model are similar to those iden-

tified in the classic Two Process model under similar parameter variation. Specifically,

Bailey et al. [14] performed an analytic bifurcation analysis of the Two Process model

using circle maps as the level of the lower circadian threshold was varied leading to

similar transitions between monophasic and polyphasic sleep patterns as obtained

when homeostatic time constants are varied. In regimes where the amplitude of

the circadian thresholds were sufficiently large, they found SN → BC-U → BC-S

bifurcation sequences delimiting the stable regimes of solutions that followed a period

adding sequence. In this regime, the analytically computed circle maps were mono-

tonic and discontinuous with an infinite slope on one side of the gap, similar to the

computed circle maps for the SWFF model. In regimes where the circadian threshold

amplitudes were small, the circle maps became continuous due to the absence of

tangent intersections of the homeostatic sleep process with the circadian thresholds
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and bifurcation sequences as circadian threshold levels were varied changed to SN →

SN.

In our analysis, we found that that the complexity of bifurcations increased for

small values of αSCN , as may be expected with steeper profiles of the folds of the

Z−shaped surface. This was especially true for ρ = 1
2 solutions which displayed

intervals of bistability for some αSCN values. Interestingly, the evolution of the two

stable ρ = 1
2 solutions as k decreased changed for different values of αSCN . For the

highest αSCN values in this region of bistability, the 2nd stable solution gained stability

in a saddle node and then a subsequent saddle node bifurcation destroyed the original

stable solution, thus the solutions replaced one another as k decreased. For lower αSCN

values in the bistability region, the 2nd stable solution gained stability in a saddle

node bifurcation and then was destroyed in a border collision (stable) bifurcation,

leaving the original solution as the only stable solution. For an intermediate value of

αSCN , both solutions lost stability at the same k value in a coincident saddle node

and border collision (stable) bifurcation, each bifurcation involving one of the stable

fixed points.

Coexistence of stable solutions can occur in piecewise smooth maps with disconti-

nuities [11, 94]. In many such maps showing coexistence of stable solutions, such as

bistability, the values of the map branches across the discontinuity cover an overlapping

interval. In our maps, there is no overlap of values of the map branches across the

discontinuities, instead bistability emerges due to a deformation of the shape of map

branches that introduces multiple fixed points. Given the similarity in its dynamics

with the SWFF model, the Two Process model may be a good reduced system to

formally analyze this mechanism for bistability, since it is analytically tractable. While

bistability has not been previously reported in the Two Process model, an analysis in

which the profile of Process C is varied as done here has not been conducted to our

knowledge.
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The striking effect of steeper profiles of the SCN firing rate (small αSCN) was

the winnowing of certain stable solutions, namely the ρ ∈ (1
2 , 1) and the ρ ∈ (1

4 , 1
3)

solutions. Solutions that persisted in these ρ intervals as αSCN decreased had rotation

numbers of the form n/(n + 1). A similar winnowing of solutions has been observed in

threshold models when the profile of the threshold is a square wave [6]. By analyzing

the CHS model, where the SCN firing rate profile is a square wave, we found that

solution winnowing was due to constraints on sleep onset phases near Φ = 0.75 and

Φ = 0.25, at the edges of the square wave. Specifically, the steep slope of the SCN

profile limited the slight variation in sleep onset phases on successive circadian cycles

necessary for ρ ∈ (1
2 , 1) and the ρ ∈ (1

4 , 1
3) solutions.

Our work demonstrates that the combined effects of the sleep homeostat and

circadian waveform modulate the timing, duration and number of sleep episodes in

complex ways. These findings suggest that interindividual differences manifested in

the time constants dictating the variation of the homeostatic sleep drive [136] affect

the transition from early childhood sleep schedules that include naps to monophasic

nighttime sleep that characterizes adult sleep schedules [89, 138, 88]. This transition

process could be further modulated by the circadian rhythm. Future work is needed

to connect the changes observed in the theoretical context of this simplified model

to behavior observed in early childhood development. However, our results suggest

a pertinent role of SCN activity profile, which is affected by seasonality and light

conditions [157], in modulating the effects of homeostatic sleep drive variations.
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CHAPTER IV

Bifurcations of NREM-REM Cycling and

Sleep-Wake Patterns by Homeostatic Sleep Drive

Modulation

4.1 Introduction

In humans, regular alternations between REM and NREM sleep give rise to

ultradian (recurring with a period less than 24 hours) cycling across the sleep episode

[7]. In this chapter1, we use physiologically-based mathematical modeling to determine

how the time scale of sleep homeostasis affects sleep episode timing with a particular

focus on the influence of and variation in NREM-REM ultradian cycling during sleep

episodes.

The circadian and homeostatic sleep drives influence the interactions between

REM and NREM sleep states during a sleep episode. In humans and other species,

the occurrence of REM sleep is strongly modulated by the circadian rhythm with

a lower propensity for entering into the REM state during times of high circadian

drive [37, 51]. High homeostatic sleep drive following sleep deprivation promotes

NREM sleep over REM sleep during initial recovery sleep [51]. Furthermore, there is

evidence that changes in sleep need interact with ultradian NREM-REM cycling in
1A manuscript based on these results has been submitted to Mathematical Biosciences.
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early childhood [102].

Neuronal sleep-wake regulatory networks are largely conserved across mammalian

species, but differences in network interactions give rise to the great phylogenetic

diversity of sleep-wake behavior [124, 155]. As mentioned previously, the sleep-wake

regulatory network produces a range of sleep behaviors across the human lifespan

with frequent transitions between sleep and wake states in infants, regular napping

behavior in early childhood, and a consolidated nighttime sleep period in adults [34].

These ontogenetic changes are likely driven by changing dynamics of the homeostatic

sleep drive, and experiments have identified differences in the rates of growth and

decay of SWA in humans at different life stages [66, 87].

Mathematical modeling has contributed to our understanding of the effects of

changing homeostatic dynamics on sleep timing. Previous studies in two-state mathe-

matical models of sleep-wake regulation examined implications of homeostatic variation

for inter-species differences [124] and changes in sleep from adolescence to old age [147].

These results support a key role for homeostatic time constants in producing distinct

patterns of sleep-wake behavior. In addition, previous studies, including our work

in Chapter III, have analyzed the types and sequences of bifurcations produced as

homeostatic time constants changed [147, 14]. However, the analyzed models simulate

only two behavioral states, wake and sleep, and do not account for NREM-REM

cycling during the sleep period. Indeed, it is unknown how NREM-REM cycling may

affect the patterns of sleep-wake behavior as homeostatic time constants change.

As a first step in understanding the effects of NREM-REM cycling on homeostati-

cally driven changes in sleep patterns, this chapter presents a computationally-based

analysis of the bifurcations in sleep timing produced by varying homeostatic time

constants in the three-state sleep-wake regulatory network model. This work provides

novel insights into the potential role of REM sleep in the evolution of sleep-wake

behavior across development. To analyze the types of bifurcations that occur in the
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piecewise smooth sleep-wake network model, we construct one-dimensional circle maps

that represent key dynamics of the full sleep-wake network model [25]. By computing

representative maps for distinct intervals of homeostatic time constants, we gain

insight into the types of bifurcations that occur and elucidate the effects of REM sleep

on sequences of bifurcations in sleep timing.

The chapter is organized as follows: in Section 4.2 we present notation utilized

to describe solutions of the mathematical model; in Section 4.3 we describe the

bifurcations produced by varying the time constants of the homeostatic sleep drive

with a specific focus on the transition from monophasic to polyphasic daily sleep; and

in Section 4.4 we provide a brief summary of our results, relate them to previous

results in two-state models of sleep-wake regulation, and discuss implications for sleep

in early childhood.

4.2 Varying the dynamics of homeostatic sleep drive: our

framework

In this work, we employ the three-state sleep-wake regulatory network model

presented in Chapter II to investigate the effects of NREM-REM cycling on bifurcations

occurring in the transition from monophasic (one sleep per day) to polyphasic (multiple

daily sleeps) sleep behavior induced by decreasing the time constants of the homeostatic

sleep drive h. The model incorporates the circadian clock model by Forger et al. [64]

and parameter values implemented in this work can be found in Table 2.2.

We scale the time constants τhw and τhs by a parameter 0 < χ ≤ 1. Thus, as χ

decreases, h grows and decays more quickly causing sleep propensity to accumulate

and dissipate faster, respectively. Recall that for default parameter values (χ = 1),

the model generates a stable periodic solution displayed in Figure 2.4B. This solution

has one sleep episode per circadian day with a duration of 7.89 h; each sleep episode
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contains four REM bouts.

We will use the following notation to indicate the numbers of sleep episodes per

circadian cycle and REM bouts per sleep episode in stable solutions. A stable pattern

that repeats after n circadian cycles is represented as {p1
r1, p2

r2, . . . , pn
rn}∞ where the

number pi gives the number of sleep episodes on the ith circadian cycle and the number

ri is a pi-tuple whose entries represent the number of REM bouts in each sleep episode.

For example, the default solution at χ = 1 is represented as {14}∞, and a stable

2-cycle that occurs at χ = 0.8625 is represented as {14, 14}∞. As another example,

a pattern that alternates between 1 and 2 sleeps per day occurs at χ = 0.649 and is

represented as {13, 2(4,3)}∞. On the first circadian cycle one sleep episode involving 3

REM bouts (13) occurs. On the second circadian cycle, two sleep episodes occur; one

involves 4 REM bouts, while the other involves 3 REM bouts (2(4,3)).

To quantify the sleep patterns generated as χ is decreased, we define a ‘rotation

number’ of sleep episodes, ρ = q
p
, where p is the number of sleep episodes in the

pattern occurring over q circadian days [11]. If a stable pattern is not detected, we

approximate ρ to be the average number of the total circadian days over the total

sleep episodes in a 120 day simulation.

Similarly, to quantify NREM-REM cycling patterns during sleep episodes, we

define a ‘REM rotation number’ as ρ̃REM = p
r
, where r is the number of REM bouts

occurring during the p sleeps in the pattern. If a stable pattern cannot be detected,

we approximate ρ̃REM by the total number of sleep episodes over the total number of

REM bouts in a 120 day simulation. ρ̃REM takes on values less than 1. However, since

it is more intuitive to talk about REM episodes per sleep, we will use the reciprocal

of the REM-rotation number for the rest of this study. We will denote that as ρREM

and refer to it as the ‘REM rotation number’ for simplicity.

Based on these definitions, the stable sleep patterns for χ = 1 and χ = 0.8625

discussed above are both associated with ρ = 1 and ρREM = 4. The sleep pattern for
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χ = 0.649 is associated with ρ = 1
2 and ρREM = 10

3 .

In the analysis below, we investigate whether there is an underlying structure

in ρ and ρREM as χ is reduced and how to properly describe it. For example, one

such structure emerges from a period-adding bifurcation. A period-adding bifurcation

dictates that the average number of sleep episodes per circadian cycle, i.e. the

reciprocal of the rotation number as defined above, follows a predictable sequence

that can be characterized by a Farey sequence. Elements of the Farey sequence obey

the Farey addition (see Chapters I and III for more details).

4.3 Results

In the three-state sleep-wake model representing wake and NREM-REM cycling,

we find complex sequences in the transitions of solutions as the homeostatic sleep drive

time constants are decreased. Previous work in two-state sleep-wake models analyzing

the transition from monophasic to polyphasic sleep patterns as time constants for

the homeostatic sleep drive were decreased showed that sleep patterns varied in

period-adding bifurcation sequences [14, 147, 10].

In the three-state model, as shown below, while the Farey sequence in sleep

episodes per circadian cycle is overall generally retained, bifurcations in NREM-REM

cycling introduce additional features including period-doubling cascades, intervals of

bistability, and disruption of the period-adding structure. When the scaling parameter

χ = 1, the model produces a stable solution corresponding to the typical adult sleep

pattern of one consolidated nocturnal sleep episode per day. As χ is decreased, we

find χ intervals that generate polyphasic sleep solutions consisting of regular and

alternating daily sleep patterns. For example, an average of two sleep episodes per

day occurred for (χ ∈ [0.41, 0.542]), and three sleep episodes per day occurred for

(χ ∈ [0.264, 0.29]) (Figure 4.1). Between the χ-intervals associated with n and n + 1

sleep episodes per day, respectively, there are χ values associated with higher order
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sleep patterns with periods over several circadian days that involve some days with n

sleeps and some days with n + 1 sleeps. For example, around χ = 0.65 we observe

that the pattern alternates between one and two sleeps per day.

As described in Section 4.2, these sleep patterns may be quantified with a ‘rotation

number’ of sleep episodes, ρ = q
p
, where p is the number of sleep episodes in the

pattern occurring over q circadian days. The bifurcation diagram of ρ as a function of

the scaling parameter χ (Figure 4.1B) depicts stable solutions (black points) obtained

after simulating the model for 120 days. If a stable pattern was not detected, the

approximate ρ is plotted (gray points). The sequence of rotation numbers of stable

sleep patterns is similar to a Farey sequence that reflects a period adding bifurcation

structure. In contrast, for the Two Process model, and simple sinusoidal threshold

systems under similar parameter variations, the rotation number is a Cantor function or

a Devil’s staircase in terms of the varying parameter (namely a monotonic, continuous

function that has derivative equal to 0 almost everywhere that attains every rational

number in the Farey sequence) which results from the period-adding bifurcation. In

two-state sleep-wake models, numerical simulations suggest a similar trend for typical

circadian signaling [14]. Here, we numerically detect rotation numbers that form a

subset of the full Farey sequence.

A significant difference between the two-state and three-state model is that the

rotation numbers do not decrease monotonically with χ and are not unique in the

three-state model. For example, within the ρ = 2
3 interval there are χ values that

generate a ρ = 7
10 stable solution indicating bistability of solutions.

In the three-state model, NREM-REM cycling additionally varies with χ within

intervals of constant ρ. As described in Section 4.2, we quantify NREM-REM cycling

patterns during sleep episodes using a ‘REM rotation number’ ρREM = r
p
, where r is

the number of REM bouts occurring during the p sleeps in the pattern (Figure 4.1C,

blue points). If a stable pattern is not detected, an approximate ρREM is computed

85



A
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C

Figure 4.1: Summary of sleep patterns and bifurcation diagrams of ρ and ρREM as
the homeostatic sleep drive time constants are decreased with respect to the scaling
parameter χ. The pink shaded regions correspond to χ-intervals of ρ = 1, 2/3, 1/2
solutions. A. Patterning of sleep-wake behavior varies with scaling parameter χ. Sleep
periods over 6 days (y-axis) are shown as a function of χ (x-axis). As χ decreases, sleep
patterns transition from one sleep episode per day near χ = 1 to two sleep episodes
per day near χ = 0.542 to three sleep episodes per day near χ = 0.29. B. Bifurcation
diagram of the rotation number, ρ, denoting stable (black dots) and quasi-periodic
(gray dots) solutions with respect to χ. The parameter χ is on the x-axis and the
rotation number ρ, defined as the number of circadian days over the number of sleep
episodes in the stable sleep pattern is on the y-axis. C. Bifurcation diagram of the
REM rotation number, ρREM , denoting stable (blue dots) and quasi-periodic (gray
dots) solutions with respect to χ. The REM rotation number, ρREM , is defined as the
number of REM bouts over the number of sleep episodes in the sleep pattern. For all
panels, the step size for χ was 0.0005.
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(gray points). For χ = 1 we have ρREM = 4 corresponding to 4 REM bouts per sleep

episode.

As χ is decreased from 1, ρREM changes within χ intervals of constant ρ indicating

that the number of REM bouts during sleep episodes changed while the number of

sleep episodes per circadian cycle did not. Additionally, bistability is exhibited in

the bifurcation diagram of ρREM , as there are χ−values in which two stable REM

rotation numbers were found (Figure 4.2). In the three-state sleep-wake model, the

associated circle maps are non-invertible which can lead to non-uniqueness of the

rotation number of either sleep or REM episodes [95].

4.3.1 Bifurcations associated with NREM-REM cycling during monopha-

sic sleep

Changes in NREM-REM cycling are particularly observed over the χ interval

where ρ = 1 (χ ∈ [0.7235, 1]) during which ρREM increases from 4 to 6 (Figure 4.2). In

this section we show that, in this χ interval, ρREM values of stable solutions (in blue)

in neighboring χ intervals are related by Farey addition with period-doubling cascades

in intervals of constant ρREM and bistability of ρREM between some χ intervals.

To understand the types of bifurcations generating the changes in NREM-REM

cycling as well as the occurrence of bistability, we employ our sleep onset circle maps.

We explain the bifurcations in the maps and the evolution of sleep patterns as χ

decreases from 1, and we follow the bifurcation diagram of ρREM (Figure 4.2) from

lower to higher values of ρREM .

The types of bifurcations observed include saddle-node, period-doubling and border

collision bifurcations. A border collision in the kth return map occurs when the border

of the map curve intersects the diagonal, Φn+k = Φn, and results in the creation or

destruction of a fixed point (stable or unstable). This border collision bifurcation in

the map corresponds to an orbit (stable or unstable) making a tangent intersection
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Figure 4.2: The bifurcation diagram of ρREM in the range of χ for which ρ = 1. There
is an underlying, but not strict, period-adding structure in the sequence of ρREM

values as χ is decreased. In addition, there are intervals of χ in which bistability
occurs (denoted by the yellow shaded regions).

with the saddle-node curves of the Z-shaped surface (Figure 2.5B) which is referred as

a grazing bifurcation of the flow [45].

ρREM = 4

As described above, for the default value χ = 1, the sleep onset map exhibits a

stable fixed point on the map branch corresponding to 4 REM bouts per sleep episode

(green branch in Figure 2.6). As χ decreases, the map evolves and the location and

stability of the fixed point changes (Figure 4.3). For χ = 0.867, the fixed point persists

on the same map branch and occurs at a slightly earlier circadian phase. However, at

this χ value the slope of the map curve at the fixed point is estimated to be equal to

-1 (Figure 4.3A), indicating a loss of stability of the fixed point. For χ values in this

regime, stable solutions correspond to higher order cycles. For example, for χ = 0.8625

we observe a two day pattern in which one sleep episode occurs on each day, but the

sleep onset phases of these episodes are distinct. Each sleep episode contains four

REM bouts occurring at slightly different circadian phases. This pattern consists of

two sleep episodes per two days with 4 REM bouts per sleep which means that the

rotation numbers are ρ = 2
2 = 1 and ρREM = 8

2 = 4. Thus, the decrease in the value
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Figure 4.3: Maps in the ρREM = 4 regime showing a period doubling bifurcation.
The green, red and light blue map branches correspond to circadian phases of sleep
episodes involving 4, 5, and 6 REM bouts, respectively. A. The first return map for
χ = 0.867 has one stable fixed point on the green branch involving sleep episodes with
4 REM bouts. The slope of the map at the fixed point is -1 designating the loss of
stability of the fixed point at a period doubling bifurcation. B. The first return map
for χ = 0.8625 has one unstable fixed point and a higher (second) order cycle detected
by cobwebbing (inset) involving 2 phase points on the green branch representing sleep
episodes with 4 REM bouts.

of the slope at the fixed point below -1 leads to a period-doubling bifurcation. In

this regime, the period of the pattern described by higher order cycles is a power of

2, and contains sleep episodes involving four REM bouts. These higher order cycles

can be detected in the map through the method of cobwebbing. In particular, one

can determine which map branches are visited and the order in which they are visited

by starting at one of the phases in the stable pattern. For example, for χ = 0.8625

a cobwebbing cycle of order two exists that alternates between two values on the

four-REM-branch on either side of the unstable fixed point (Figure 4.3B).

As χ decreases slightly further from the period-doubling bifurcation, we find a

{14, 14, 14, 14}∞ pattern, corresponding to another period doubling. As shown in

Figure 4.2, the ρREM = 4 regime ends at χ = 0.8545 with a {14, 14, 14}∞ solution

that follows the apparent period doubling cascade that we detect numerically for

χ ∈ [0.8585, 0.866].

Additionally as the map shifts with decreasing χ, the shapes of the map branches
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also change and some branches are lost. For example, for χ ∼ 0.86, the branch

associated with eight REM bouts has disappeared. Since sleep need accumulates and

dissipates at a higher rate with lower χ, the total number of REM bouts that can

occur during a sleep episode decreases leading to the loss of sleep episodes with highest

numbers of REM bouts.

ρREM ∈ (4, 5)

As χ continues to decrease, the map evolves further such that stable orbits visit

the map branch involving sleep episodes with five REM bouts (Figure 4.4, red branch).

Stable solutions consist of higher order cycles where sleep onset phases alternate

between points on the four-REM- and five-REM-branches of the map. For example,

at χ = 0.8535 the stable solution {14, 14, 14, 14, 15}∞ is detected. These higher order

cycles follow a period-adding type sequence as χ decreases with the number of sleep

episodes with 4 REM bouts decreasing incrementally with each stable solution. In

the interval χ ∈ [0.811, 0.8375], the stable solution is {14, 15}∞ with ρREM = 4.5, and

for lower χ values the number of sleep episodes with 5 REM bouts in the pattern

increases incrementally as ρREM approaches 5. Within this period-adding sequence,

we detected some period-doubling transitions where the same sequence is repeated

twice with slight variation in the phases of sleep onsets.

As shown in the ρREM bifurcation diagram (Figure 4.2), the {15}∞ solution with

ρREM = 5 gains stability at χ ≈ 0.786 where higher order cycles also are stable,

leading to an interval of bistability in the system. Interestingly, the structure of

the map predicts the existence of the two stable solutions that are associated with

distinct sets of fixed points on the map (Figure 4.4A). Specifically, the higher order

cycles {14, . . . , 14, 15, . . . , 15}∞ manifest on the map as an orbit that moves between

the left side of the four-REM-branch (green) and the right side of the five-REM-

branch (red). In contrast, the {15}∞ solution first appears when the left side of
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the five-REM-branch makes a tangent intersection with the Φn+1 = Φn diagonal,

resulting in a saddle-node bifurcation. At χ = 0.786 (Figure 4.4A), there are 4 fixed

points on the map. The higher order cycle {14, 15, 15, 15}∞ occurs near unstable

fixed points on the four-REM-branch and the right side of the five-REM-branch.

The {15}∞ solution is associated with the stable fixed point of the stable-unstable

fixed point pair on the left side of the five-REM-branch. Bistability with the {15}∞

solution and higher order cycles is also found at χ = 0.785 and 0.7795 where the

respective ρREM values for the higher order cycles are 58
12 = 29

6 and 59
12 and the

solutions are {15, 14, 15, 15, 15, 15, 15, 14, 15, 15, 15, 15}∞ (a period-doubling solution)

and {15, 15, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15}∞, respectively.

ρREM = 5

The {15}∞ solution is stable in the interval χ ∈ [0.773, 0.786] (Figure 4.2). The

stable fixed point associated with this solution corresponds to sleep onset phases on

the left side of the five-REM-branch that represent earlier phases compared to the

phases that participate in the higher order cycle. The {15}∞ solution loses stability

when the slope of the branch at this fixed point decreases below -1. In the narrow

interval χ ∈ [0.7805, 0.7815], we establish numerical evidence for a period-doubling

cascade involving {15, . . . , 15}∞ solutions.

ρREM ∈ (5, 6]

The bifurcation sequence associated with the appearance of sleep episodes with 6

REM bouts is similar to the sequence described for the sleep episodes with 5 REM

bouts. Specifically, as χ decreases from 0.773, we find stable higher order cycles with

sleep onset phases alternating between the 5-REM- (red branch) and 6-REM-branches

(light blue branch) of the map (Figure 4.4B). These stable orbits form a period-

adding-type sequence as χ decreases with the number of sleep episodes containing 5
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Figure 4.4: First return maps designating the onset of the ρREM = 5 and ρREM = 6
solutions. The green, red and light blue map branches correspond to circadian phases
of sleep episodes involving 4, 5, and 6 REM bouts, respectively. A. First return map
for χ = 0.786 showing bistability of solutions with 4 < ρREM < 5 and ρREM = 5.
The light blue asterisk (at (Φn, Φn+1) = (0.71, 0.71) on the red branch) indicates the
onset of the stable ρREM = 5 solution in a saddle-node bifurcation. This solution
coexists with a higher order cycle of ρREM = 19

4 illustrated by cobwebbing on the
map (inset). B. The first return map for χ = 0.765 showing bistability of solutions
with 5 < ρREM < 6 and ρREM = 6. The red asterisk (at (Φn, Φn+1) = (0.6379, 0.6379)
on the light blue branch) indicates the onset of the stable ρREM = 6 solution in a
saddle-node bifurcation. This solution coexists with a higher order cycle of ρREM = 11

2
illustrated by cobwebbing on the map (inset).

REM bouts decreasing until the {15, 16}∞ solution is obtained at χ = 0.7595. At the

higher value χ = 0.765, the stable solution {16}∞ with ρREM = 6 appears for the first

time when the six-REM-branch of the map intersects the diagonal Φn+1 = Φn at a

saddle-node bifurcation. As above, the bistable solutions correspond to different sets

of fixed points on the map. The stable fixed point of the stable-unstable fixed point

pair on the left side of the six-REM-branch is associated with the {16}∞ solution,

while the sleep onset phases of the higher order orbits alternate between the right side

of the six-REM-branch and the left side of the five-REM-branch (Figure 4.4B, inset).

There are also 2 unstable fixed points near the right end of the five-REM-branch (one

on the four- and one on the five-REM branch), however, we did not numerically detect

any stable higher order orbits near those points.
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Summary

In summary, we have shown that in the ρ = 1 regime of the three-state model,

NREM-REM cycling introduces a sequence of bifurcations as χ is reduced. These

bifurcations are initiated by a loss of stability in the {14}∞ solution and include period-

adding-type patterns in the numbers of REM bouts and bistability at the transitions

to the {15}∞ and {16}∞ solutions. Specifically, the {1n}∞ (n = 4, 5) solutions lose

stability in period-doubling bifurcations when the slope of the map at the stable fixed

point decreases below -1 because of the non-monotonic shape of the map branches.

For n = 4, 5, period-doubling solutions are replaced by solutions involving daily sleep

episodes with n and n + 1 REM bouts that follow a period-adding sequence. These

higher order stable orbits display sleep onset phases near an unstable fixed point on the

map. The stable solutions {1n}∞ (n = 5, 6) are initiated at saddle-node bifurcations

which introduce stable and unstable fixed points on the map. These saddle-node

bifurcations occur at χ values where the higher-order cycle solutions retain stability

leading to intervals of bistability near these bifurcations. The unstable fixed point

associated with higher order cycling between {14}∞ and {15}∞ solutions is eventually

lost through a border collision bifurcation.

Interestingly, this sequence of bifurcations does not fully apply in the evolution

and finally disappearance of the {16}∞ solution at χ = 0.7235. As χ is reduced

from 0.765 (where the {16}∞ solution gains stability in a saddle-node bifurcation),

the six-REM-branch shrinks to cover a narrower interval of circadian phases but the

stable and unstable fixed points remain on the branch. At χ = 0.7235, the lowest

χ value where the ρ = 1 solution exists, the stable and unstable fixed points on

the six-REM-branch coalesce in a saddle-node bifurcation leading to the loss of the

{16}∞ solution (Figure 4.5B). Additional occurrences of bistability appear near this

bifurcation where at the slightly higher χ value of χ = 0.726 we find a stable higher

order orbit with ρ = 4
5 , ρREM = 20

5 = 4, and a pattern of {15, 15, 13, 2(4,3)}∞ (Figure
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4.5A). Thus, near where the ρ = 1 solutions lose stability, the period-adding solutions

in the number of sleep episodes per circadian cycle start to appear. Such bistability

between these types of solutions has not been observed in two-state sleep-wake models.

The first return map eventually deforms so that the six-REM-branch vanishes, as

at χ = 0.7165 (Figure E.1B in Appendix E), while the two neighboring five-REM

branches merge into a single branch. As a result, stable or transient solutions involving

sleep episodes with six REM bouts are not predicted by the map for this value of χ.
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Figure 4.5: First return maps toward the end of the χ range for the stable ρ = 1
solution. The green, red, light blue map, and purple branches correspond to circadian
phases of sleep episodes involving 4, 5, 6, and 5 REM bouts, respectively. A. The first
return map for χ = 0.726 showing the cobwebbing of the stable solution with ρ < 1
({15, 15, 13, 2(4,3)}∞) in a bistable regime with the {16}∞ solution (stable fixed point
on the light blue branch). The stable solution with ρ < 1 visits the five-REM (purple
and red), four-REM (green) and three-REM (dark blue) branches. B. The first return
map for χ = 0.7235. The ρ = 1 solution ceases to exist in a saddle-node bifurcation
on the six-REM branch (light blue).

4.3.2 Effects of NREM-REM cycling on the monophasic to biphasic sleep

transition

The loss of existence of the ρ = 1 solution designates the appearance of circadian

cycles with two sleep episodes. As χ decreases through the transition from stable

monophasic to stable biphasic sleep, the ρ bifurcation diagram reflects an underlying

period adding structure (Figure 4.1B and 4.6A). However, in some χ intervals the
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monotonic change in ρ characterizing the period adding structure is disrupted (Figure

4.6A). Specifically, the sequence of rotation numbers ρ is irregular and non-monotonic

at high values of χ in this region (χ ∈ (0.7015, 0.7235)) and exhibits jumps within

particular ρ-intervals resulting in bistability. For example, at χ = 0.6305 stable

solutions ρ = 2
3 and ρ = 13

19 both exist. Additionally, bistability is observed at the

transition between distinct ρ values. For example, for χ ∈ [0.659, 0.661] stable solutions

with ρ = 7
10 (with ρREM = 3.4) and ρ = 2

3 (with ρREM = 3) coexist (right end of pink

shaded region in Figure 4.6A).

Variations in NREM-REM cycling contribute to the irregularity of variation in ρ

as χ decreases, as illustrated in the ρREM bifurcation diagram (Figure 4.6B). In this

section, we qualitatively describe characteristics of the diversity of solutions in the

transition from monophasic to biphasic sleep. Since stable solutions with ρ ∈ (1
2 , 1) are

represented in higher order return maps that are quite complex, we discuss bifurcation

sequences more quantitatively and show second return maps for the ρ = 1
2 solutions

in the next section.

Diversity of NREM-REM cycling for solutions with constant ρ

In χ intervals of constant ρ for ρ ∈ (1
2 , 1), changes in ρREM may or may not follow

a monotonic period-adding type sequence with decreasing χ as observed for ρ = 1

solutions. For example, for χ ∈ [0.5685, 0.5875] (red box in Figures 4.6A,B) all stable

solutions have ρ = 3
5 and ρREM = 3 corresponding to the pattern {13, 2(2,4), 2(3,3)}∞.

In fact, for all solutions in χ ∈ (0.542, 0.606), all solutions with the same ρ value have

a consistent ρREM value. In contrast, for solutions with ρ = 3
4 , for χ ∈ [0.6875, 0.7015]

(green box in Figures 4.6A,B), ρREM jumps from 3.75 to 4 for χ ∈ [0.6935, 0.695]

indicating a difference in NREM-REM cycling patterns in solutions with the same ρ.
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Figure 4.6: Bifurcation diagrams of ρ and ρREM in the transition from monophasic to
polyphasic sleep. A,B: Bifurcation diagram of ρ (A) and ρREM (B) with ρ ∈ (1

2 , 1).
Pink shaded regions indicate the χ interval where the majority of solutions have ρ = 2

3 .
Green and red boxes correspond to stable solutions with ρ = 3

4 for χ ∈ [0.6875, 0.7015]
and with ρ = 3

5 for χ ∈ [0.5685, 0.5875], respectively. These χ intervals illustrate the
diversity of ρ and ρREM variations as χ decreases caused by variations in NREM-REM
cycling. C: ρREM bifurcation diagram for χ ∈ [0.606, 0.6605] corresponding to an
average sleep pattern of three sleeps per two days (i.e. ρ = 2

3). The light yellow shaded
region indicates an interval of bistability of stable solutions with ρ = 7

10 and ρ = 2
3 .

Intervals of constant ρREM are colored and labelled appropriately with the particular
sleep pattern. Each subinterval may involve a period doubling bifurcation which is
not labelled.

ρ = 2
3

As a further example, the bifurcation diagram of ρREM over the interval χ ∈

[0.606, 0.6605] (Figure 4.6C) illustrates the diversity of NREM-REM cycling patterns

that occur in ρ = 2
3 solutions. Here, ρREM values generally increase in a period-adding
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type sequence. In the range χ ∈ [0.617, 0.649], ρREM = 10
3 and reflects a stable

pattern with an average number of 10 REM bouts per 3 sleep episodes. However,

the distribution of REM bouts across the 3 sleep episodes varies with χ and results

in four distinct stable sleep patterns across this range. At χ = 0.649, the stable

sleep pattern is {13, 2(4,3)}∞, but at χ = 0.645 the pattern changes to {14, 2(3,3)}∞.

This change occurs due to a phase advance of the second sleep episode with 3 REM

bouts that eventually shifts it to the previous circadian day. For lower χ values,

NREM-REM cycling patterns shift, leading to variable ρREM that then re-stabilizes at

χ = 0.6235 where the stable sleep pattern is {15, 14, 2(4,2), 2(3,3)}∞. A period doubling

bifurcation takes place for χ ∈ [0.6235, 0.6245] and at χ = 0.6225 the pattern becomes

{14, 2(3,3)}∞.

This representative example emphasizes the great range of NREM-REM cycling

patterns generated by the 3-state model. As the rates of build-up and dissipation of

the homeostatic sleep drive modulate the timing and duration of sleep onsets, sleep

onsets occur at different circadian phases that then affect the number and duration

of REM bouts. Thus, small differences in homeostatic and circadian modulation can

produce large variability in sleep-wake behavior. Thus, ρ, ρREM , NREM-REM cycling

patterns, and, when feasible, corresponding maps should be considered simultaneously

to characterize the solutions exhibiting this variability.

It is worth noting that as χ decreases, some ρREM values reoccur over different χ

intervals (e.g. ρREM = 3). In this case, the sleep patterns are characterized by distinct

ρ values, thereby allowing for the same average number of REM bouts per sleep cycle.

Reoccurrence of ρREM values can take place even within the same ρ interval. This

phenomenon as well as the map structure leading to it is illustrated in the next section.
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4.3.3 NREM-REM cycling bifurcations in biphasic sleep

Stable biphasic sleep (ρ = 1
2) solutions occur for χ ∈ [0.41, 0.542]. NREM-

REM cycling changes across this regime, with ρREM varying non-monotonically in

ρREM ∈ [2, 2.5] (Figure 4.7A). This non-monotonic variation in ρREM with χ is due to

more variability in NREM-REM cycling patterns across the two daily sleep episodes,

as described in the previous section for ρ = 2
3 solutions. To analyze the bifurcation

sequences occurring in this regime, we employ second return maps and follow the

ρREM bifurcation diagram (Figure 4.7A) as χ is reduced from 0.542.
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Figure 4.7: The biphasic sleep (ρ = 1
2) regime. A. The bifurcation diagram of ρREM

in the ρ = 1
2 regime. B. The second return map for χ = 0.542 introducing the ρ = 1

2
solution in a saddle-node bifurcation. The stable solution has ρREM = 2.5. The map
branches are colored and labelled according to the number of REM bouts involved
in the sleep onsets with phase Φn and Φn+1. The dark blue and light blue branches
correspond to model solutions having 2 and 3 REM bouts during the two sleep episodes,
respectively. The black branches correspond to solutions with 2 and 4 REM bouts
during the two sleep episodes, respectively.

Note that the second return map can be thought of as consisting of two similar

copies of the same curves (Figure 4.7B). Each pair of associated curves involves the

same set of model trajectories that produce two sleep cycles during their first circadian

day. One curve represents the sleep onset phases of the first sleep episode of the day,

while the associated curve represents the sleep onset phase of the second sleep episode

98



of the day .

ρREM = 2.5

The ρ = 1
2 regime is initiated at χ = 0.542 in a saddle-node bifurcation illustrated

in the second return map (Figure 4.7B). This map has two fixed points at phases

about (0.0857,0.0857) and (0.6641,0.6641) formed by map curves (light blue) making

tangential intersections with the diagonal. Thus, at the start of this regime, the

stable periodic orbit consists of a sleep episode with two REM bouts occurring at

the early rise of the circadian rhythm (near Φn = 0.0857) followed by a sleep episode

with three REM bouts occurring a little after the peak of the circadian rhythm (near

Φn = 0.6641). This results in a REM rotation number, ρREM , of 2.5. We refer to the

branches on which the fixed points lie as the (2, 3)A (near Φn = 0.0857) and (3, 2)A

(near Φn = 0.6641) branches. The first number in the 2−tuple of a map branch refers

to the number of REM bouts occurring in the sleep episode with onset phase, Φn. The

second number refers to the number of REM bouts in the subsequent sleep episode

with onset phase, Φn+1. The subscripted letters distinguish between multiple, but

distinct, map branches corresponding to model solutions exhibiting the same numbers

of NREM-REM cycles.

As χ decreases from this saddle-node point, the map attains two pairs of fixed

points, one pair from each saddle-node, a stable and an unstable fixed point in each

pair. The slope of the map branches at the stable fixed points is initially positive and

less than 1, but as χ decreases, it becomes negative and eventually decreases through

-1 at approximately χ = 0.503, indicating a period-doubling bifurcation. The stable

fixed points lose stability and a stable 4-cycle emerges with the pattern {2(2,3), 2(2,3)}∞

at χ = 0.5025. On the second return map (Figure 4.8A), the 4-cycle appears as two

2-cycles, one with sleep onset phases on the (2, 3)A branch (light blue) near Φn ≈ 0

and the other with phases on the (3, 2)A branch (light blue) near Φn ≈ 0.6. The
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sleep onset phases of the sleep episodes are almost equal. Note that the unstable

fixed points still exist at the right side of these map curves. This period-doubling

bifurcation does not change ρREM .
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Figure 4.8: Higher order cycling solutions in the ρ = 1
2 regime represented in the

second return maps. The two insets in panels B and C show the 2-cycles associated
with the sleep onsets in the stable solution occurring at earlier and later circadian
phases. The behavior is qualitatively the same, thus we show only one inset in the
remaining figures. The map branches are labelled according to the number of REM
bouts involved in the sleep onsets with phase Φn and Φn+1 in panel C. The light and
dark blue, black and green branches correspond to model solutions involving 2 and 3,
2 and 4, and 2 and 2 REM bouts during their first two sleep episodes, respectively. A.
Second return map for χ = 0.5025 in the ρREM = 2.5 regime. The stable solution is
characterized by higher order cycles after a period doubling bifurcation. B. Second
return map for χ = 0.5005 in the ρREM = 2.25 regime. The stable solution participates
in a higher order cycle involving neighboring map branches. C. Second return map for
χ = 0.4995 in the ρREM = 2 regime. A saddle-node bifurcation introduces the stable
solution with pattern {2(2,2)}∞.
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ρREM = 2.25

As χ decreases a little further, ρREM decreases to 2.25 as the stable solution

transitions to the pattern {2(2,2), 2(2,3)}∞ for χ ∈ [0.5005, 0.501]. In this solution, sleep

onset phases alternate between neighboring map branches (2, 3)A (or (3, 2)A, light

blue) and (2, 2) (green) which appeared during the evolution of the map with χ (Figure

4.8B). Unlike the bifurcation sequences seen in the ρ = 1 regime, where higher order

cycle solutions consisting of sleep onset phases on two distinct map branches follow

a period-adding-type sequence, here only the {2(2,2), 2(2,3)}∞ pattern persists with

an abrupt transition to the {2(2,2)}∞ solution (Figure 4.7A). This abrupt transition

occurs in a border collision bifurcation at χ = 0.5005 when the (2, 3)A and (3, 2)A

(light blue) map branches intersect the diagonal, Φn+2 = Φn, at the unstable fixed

points lying on their leftmost side (Figure 4.8B).

ρREM = 2

The stable {2(2,2)}∞ solution is found at approximately χ = 0.4995 as a result of a

pair of saddle-node bifurcations via a tangent intersection of both (2, 2) (green) map

curves with the diagonal (Figure 4.8C).

The saddle-node bifurcation creates two pairs of stable and unstable fixed points,

one pair on each (2, 2) map branch. As before, as χ decreases further, the slope of

map branches at the stable fixed points eventually decreases through -1 at χ = 0.462

leading to a period-doubling bifurcation.

Evolution of map branches

Note that during this evolution of decreasing χ, the shape of the second return

map has significantly changes compared to its structure at χ = 0.542 (Figure 4.7B).

In particular, for χ = 0.542 the (2,4) and (4,2) branches existing on phase intervals

Φn ∈ (0.1242, 0.2624) and Φn ∈ (0.6778, 0.764), respectively, correspond to trajectories
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that generate sleep episodes involving four REM bouts (Figure 4.7B, black curves).

As χ is reduced, and the homeostatic sleep drive varies at a higher rate affecting the

total sleep time, the total number of REM bouts during a sleep episode decreases as

well. The map reflects this phenomenon as the (2,4) and (4,2) branches exist over

narrower Φn intervals and are eventually annihilated, while their neighboring (2, 3)A,

(2, 3)B, (3, 2)A, (3, 2)B branches on either side merge into continuous S-shaped (2,3)

and (3,2) curves (Figure 4.9).

Reoccurrence of solutions with ρREM > 2

For χ <≈ 0.4875, the second return map comprises curves that correspond to sleep

cycles that involve only two or three REM bouts (Figure 4.9A). Stable period doubling

orbits are obtained on the (2,2) (green) branches of the map for χ ∈ [0.4595, 0.462]

(Figure 4.9B). For lower χ values, we obtain more stable higher order cycle solutions

with sleep onset phases alternating between distinct map branches. Specifically, at

χ = 0.4565, a stable 6-cycle with the pattern of {2(2,3), 2(2,2), 2(2,2)}∞ is observed with

sleep onset phases on the (2, 2) (green) and on the S-shaped (2, 3) (or (3,2)) (blue)

branches (Figure 4.9C). This pattern corresponds to ρREM = 13
6 and loses stability

at χ = 0.453 where the higher order pattern {2(2,3), 2(2,2), 2(2,2), 2(2,3), 2(2,2), 2(2,2)}∞

occurs. As χ decreases further, the stable sleep patterns visit the (2,2) (green) map

branches less, and thus, the REM rotation number starts increasing incrementally

from 2 in a period-adding type fashion.

As χ values approach the lower end of the ρ = 1
2 regime, the ρREM = 2.25 solution

with pattern {2(2,3), 2(2,2)}∞ is introduced once more for χ ∈ [0.43, 0.4435] (Figure

4.9D).

In this occurrence of the solution, the phases of sleep episodes have shifted to the

second half of the circadian day. That is, the earlier sleep onsets occur close the peak

of the circadian rhythm and the later ones occur close to the trough of the circadian
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Figure 4.9: Second return maps capturing ρ = 1
2 solutions with only two or three

REM bouts per sleep episode. The maps deform and comprise only four branches
corresponding to a distinct number of REM bouts. The map branches are labelled
and colored according to the number of REM bouts involved in the sleep onsets with
phase Φn and Φn+1 in panel B. The light blue and green branches correspond to model
solutions involving 2 and 3, and 2 and 2 REM bouts during the two sleep episodes,
respectively. A. Second return map for χ = 0.4875 exhibiting the annihilation of the
branches involving sleep onset phases with four REM bouts. B. Second return map
for χ = 0.4595. The stable solution has ρREM = 2 and follows a period-doubling
bifurcation. C. Second return map for χ = 0.4565. The stable solution has ρREM = 13

6
manifesting the monotonic increase of ρREM as χ is reduced. D. Second return map
for χ = 0.4435. The stable solution has ρREM = 9

4 and alternates between the (2, 3)
(or (3, 2)) and (2, 2) map branches.

rhythm. As χ decreases further, a period doubling cascade from the {2(2,3), 2(2,2)}∞

pattern occurs for χ ∈ [0.43, 0.431] (Figure E.2A in Appendix E).

Finally, as χ decreases out of the ρ = 1
2 regime, the REM rotation number, ρREM ,

keeps increasing incrementally reflecting a period-adding-type sequence as more days

with 2(2,3) sleep cycles are added to the pattern with 2(2,2) days. In the map, this
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translates to more phase onsets in the higher order cycles lying on the S-shaped (2,3)

and (3,2) (blue) branches.

At χ = 0.41, a border collision at the unstable fixed points on each of the (2,2)

(green) map branches designates the loss of stability of the ρ = 1
2 solution (Figure

E.2B in Appendix E). Given the structure of the map branches, no stable fixed points

exist in the second return map and no higher order cycles can be created. As a result,

sleep patterns with days involving three sleep episodes emerge.

Summary

In summary, the bifurcation sequence in the ρ = 1
2 regime displays similarities

with the ρ = 1 regime, including period doubling when fixed points lose stability

due to a change in the slope of the map branch at the fixed point, creation of stable

fixed points through saddle-node bifurcations, and higher order cycling solutions with

period-adding-type patterns in ρREM involving sleep onset phases on distinct map

branches. A large portion of this regime supports the existence of the ρ = 1
2 solution

not through fixed points, but higher order cycles around unstable fixed points. Thus,

this regime shows more occurrences of the loss of unstable fixed points through border

collision bifurcations that lead to transitions in solution patterns. Additionally, certain

ρREM solutions in the interval [2,2.5] reoccur at different χ values. However, the size

of the χ-interval for each occurrence of ρREM differs due to the asymmetrical shape of

the map branches. Specifically, the higher order cycling solutions exist over larger χ

values when the unstable fixed point that they surround lies on the left side of the

map branch that has a longer vertical distance from its border associated with the

cusp.
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4.3.4 Loss of NREM-REM cycling in polyphasic sleep limit

The loss of existence of the ρ = 1
2 solution initiates the appearance of circadian

cycles with three sleep episodes. As χ decreases through these regimes (χ ∈ [0.2, 0.41]),

similar bifurcations, bistability regimes and disruptions of the ρREM period-adding

structure take place leading up to the ρ = 1
4 solution regime (Figure 4.1C). We note

that NREM-REM cycling is restricted in the small χ limit because the timings of

REM activation and REM bout duration do not scale with χ and the homeoestatic

sleep drive time constants. However, we want to point out how model dynamics and

map structure evolve as NREM-REM cycles are shortened when sleep episodes have

shorter durations. We expect that these same trends would occur for faster time scales

of NREM-REM cycling which would be more appropriate when sleep episodes get too

short. But, we do not expect these results to be representative of actual polyphasic

sleep patterns in other species where REM episodes can be very short.

As χ decreases and sleep episodes become shorter, the loss of multiple NREM-REM

cycles weakens the influence of this cycling on sleep-wake dynamics. For example,

the average number of REM bouts per sleep reduces to 1 for χ ∈ [0.099, 0.226] which

encompasses the regime where ρ = 1
4 solutions are stable (χ ∈ [0.205, 0.2185]). When

solutions have only one REM bout per sleep episode, it always occurs at the end of the

sleep episode at the transition from the sleep and to the wake state. In this way, the

timing of the REM bout is constrained within the sleep episode, and the occurrence

of REM sleep is influenced primarily by the timing of wake onset. In this regime,

the map becomes continuous, and gain and loss of stability of the ρ = 1
4 solution

occurs due to saddle-node bifurcations at χ = 0.2185 and 0.205, respectively (Figure

4.10A,B).

In both the two- and three-state models, a significant reduction in the homeostatic

time constants leads to the transition to a regime where the map is continuous

[147, 14, 10], resulting in a regime where no border collision bifurcations can occur.
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Figure 4.10: Maps showing the transition from a continuous to a discontinuous regime.
A. The fourth return map for χ = 0.2185 designates the beginning of the ρ = 1

4
solution. The map is continuous in this regime, and thus, the stable solution emerges
in a saddle-node bifurcation. B. The fourth return map for χ = 0.205 demonstrating
the loss of existence of the ρ = 1

4 solution. The map remains continuous and thus, the
stable solution ceases to exist in a saddle-node bifurcation. C. The first return map
for χ = 0.097. Occurrence of solutions with one or no REM bouts due to the fast time
scales of the homeostatic sleep drive lead to the reappearance of discontinuities in the
map. Each discontinuity exists to differentiate between map branches that correspond
to sleep episodes with different number of REM bouts. The branches are labelled
according to the number of REM bouts involved in the initial sleep occurring at phase,
Φn.
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In this continuous regime, the homeostatic sleep drive time scale is faster than the

time scale of the circadian drive at all phases. Thus, grazing bifurcations that led

to discontinuities in the map at phases when the circadian drive was evolving faster

than the sleep homeostat, do not occur anymore. In the three-state model, there is an

additional requirement for the map to be continuous; the average number of REM

bouts per sleep should not differ between distinct sleep episodes. Therefore, in the

three-state model discontinuities can reappear in the map as χ is decreased further

when the number of REM bouts at different circadian phases is distinct. Here, this

occurs due to the occurrence of sleep episodes with either 1 or 0 REM bouts (Figure

4.10C). This is in contrast to studies analyzing two-state models that suggest that

once the map becomes continuous, continuity is preserved as model parameters are

further varied in the same fashion.

4.4 Discussion

In this chapter, we investigated the role of NREM-REM cycling in sleep patterning

generated by varying homeostatic time constants in a sleep-wake network model that

simulates three states: wake, NREM sleep, and REM sleep. We found that increasing

the rates of growth and decay of homeostatic sleep need resulted in a transition

from monophasic to polyphasic sleep suggesting that more frequent sleep periods

are associated with more rapid build up of sleep need. This finding is consistent

with the experimental characterization of the time constants of the homeostat in

multiple mammalian species [124, 155] and in different human life stages [2, 84, 86].

The Two-Process Model and other physiologically-based models that simulate only

two states, wake and sleep, without differentiating between REM and NREM sleep

[124, 147, 10] (see Chapter III) have also analyzed the transition from monophasic

to polyphasic sleep patterns, as the homeostatic time constants were reduced (or an

equivalent parameter varied). As this transition takes place, an underlying period
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adding structure in the average number of sleep cycles per day was observed. Results in

the two-state models suggest a strict monotonic change associated with this structure.

We have shown, however, that this monotonic change is disrupted when the dynamics

associated with NREM-REM cycling are included in the model. Specifically, the

three-state model allows for more complicated transitions as solutions evolve from

monophasic to biphasic sleep patterns, including intervals of bistability, as well as

diversity of solutions with varied patterns of NREM-REM cycling across the same

number of daily sleep episodes.

Bifurcations in sleep onset maps

We presented a computationally-based analysis of changes in sleep patterning

and investigated the bifurcations that produce these changes using a piecewise con-

tinuous one-dimensional circle map. The map was constructed numerically from

a high-dimensional, physiologically-based sleep-wake regulatory network model for

human sleep [53]. The map is non-monotonic, noninvertible and characterized by

discontinuities separating branches that correspond to solutions with distinct REM

bout patterns. The particular map structure predicts the transitions in the numbers of

average sleep cycles per day as homeostatic time constants are varied. Simultaneously,

one can determine the number of REM bouts associated with stable solutions by

cobwebbing on the map and tracking which map branches are visited by the solution.

Changes in the average number of sleep cycles per day and the associated REM

patterns result from sequences of period doubling, saddle-node and border collision

bifurcations.

Specifically, we have shown that decreasing the homeostatic time constants in the

model causes the stable fixed point corresponding to entrained monophasic (ρ = 1)

sleep-wake behavior to first lose stability and then lose existence by moving through

a discontinuity of the map. The change in stability of the fixed point results in the
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emergence of higher-order cycles in a period doubling bifurcation and a transition in

the REM patterns (quantified by ρREM ) is observed. Saddle-node bifurcations initiate

the existence of stable solutions with fixed daily numbers of REM bouts, and border

collisions lead to the destruction of unstable fixed points and higher order cycles. The

solutions obtained in saddle-node bifurcations correspond to monophasic sleep-wake

behavior with incrementally increased number of REM bouts. These can coexist with

higher order cycles whose REM patterns can be determined by cobwebbing on the

associated neighboring map branches around the cusps of the map branches.

Our results show that generally similar bifurcation sequences take place in regimes

with multiple sleeps per day (ρ less than 1) as homeostatic time constants decrease.

However, NREM-REM cycling can be more variable and not show an incremental

period-adding type increase in the number of daily REM episodes, quantified by ρREM .

Specifically, when multiple daily sleep episodes occur the distribution of the number

of REM bouts across the sleep episodes can vary, leading to multiple patterns of

NREM-REM cycling exhibiting the same ρREM value. Additionally, as we analyzed

for biphasic (ρ = 1
2) sleep, the number of daily REM bouts can show incremental

decreases and incremental increases in different ranges of the homeostatic time constant

caused by sequences of bifurcations in higher order cycling solutions and saddle-node

bifurcations.

Contrast with two-state sleep-wake models

The observed nested hierarchy of bifurcations that take place in sleep patterns with

homeostatic variation under the scaling parameter, χ, is a consequence of accounting

for the NREM-REM cycling that occurs during sleep. Circle maps have been employed

in two-state models to analyze bifurcation phenomena associated with the transition

to consolidated sleep. In particular, the dynamics of the Two-Process model have been

reduced to a one-dimensional map that is piecewise smooth and may be monotonic or
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non-monotonic depending on parameter regimes [118, 147, 14]. Similarly-structured

maps have been computed numerically for other two-state models [10]. However, these

maps mainly account for the circadian effect on the timing of sleep onset, which may

result in a large time separation of nearby solutions. This phenomenon is reflected

in a large discontinuity close to peak values of the circadian rhythm, which is also

captured in the maps computed for the three state model, e.g at Φn ≈ 0.5 for χ = 1

(Figure 2.6).

Studies in two-state models have reported border collision and saddle-node bifur-

cations as a mechanism of creating or destroying stable and unstable fixed points

in the map and thus, causing the transition in sleep patterning. However, to our

knowledge, regimes of bistability or period doubling solutions have not been reported

in the two-state models. In our three-state model, the existence of these regimes is

associated with the increased complexity of the map structure caused by differences

in NREM-REM cycling at distinct circadian phases. This suggests that there may be

important aspects of the transition from polyphasic to monophasic sleep that are not

captured by two-state models.

For example, in our model, a change in the number of REM bouts leads to a change

in the duration of the sleep episode and its circadian onset phase. Additionally, the

propensity for REM bouts to occur varies with the circadian rhythm [71], consistent

with experimental characterizations of REM sleep propensity [37]. Thus, as χ varies,

the interaction between circadian and homeostatic processes leads to changes in the

timing and duration of sleep episodes which, in turn, interact with the NREM-REM

cycling dynamics within the sleep episode. The distribution of REM bouts in each

sleep episode varies for different values of χ, leading to patterns with different average

numbers of REM bouts per sleep (that is different REM rotation numbers, ρREM ), but

same average numbers of sleep cycles per day, ρ. In some cases, we found patterns with

the same ρ and ρREM , but distinct NREM-REM cycling sequences. This dependence
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of NREM-REM cycling on circadian phase is consistent with experimental evidence

examining NREM-REM cycling in preschool children [102].

Implications, limitations and future considerations

Our modeling approach also incorporates the effect of light on sleep timing during

the transition from monophasic to polyphasic regimes. In our analysis, the map

construction requires that we assume a fixed light:dark schedule based on environmental

light in order to maintain a rigorous definition of circadian phase. However, the light

exposure of most humans does not occur at a constant intensity and is not strictly

dependent on the environmental light cycle. Instead, individuals experience a wide

range of light intensities, and artificial light enables a significant level of self-selection

in light exposure that may result in variable daily schedules of both light exposure

and sleep-wake behavior [148, 149, 105]. In the model, manipulations of light levels,

such as those arising from behavioral gating of light as occurs when eyes are closed,

give rise to feedback between sleep timing and light input to the circadian clock,

which then can affect circadian phase. In previous work we have shown that the

map maintains a good approximation of the dynamics of the full model even when

behaviorally-gated light input is included [128]. Thus, we expect that results reported

here are qualitatively similar to those that would be obtained if light:dark schedules

were allowed to vary with simulated behavioral state.

In adults, REM sleep is gated by the circadian system [37], but circadian and

other features of REM sleep differ across species and in humans at different life stages

[121, 145, 154]. Therefore, the role of REM sleep should be considered when analyzing

sleep-wake dynamics, particularly during transitions from biphasic to monophasic

sleep as occur with the dropping of naps in early childhood. Future work is needed

to assess model predictions by characterizing concurrent changes in REM sleep and

the dynamics of homeostatic sleep need across qualitative transitions in sleep-wake
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behavior. In addition, the reciprocal interaction hypothesis incorporated to capture

the REM sleep dynamics is one of multiple proposed mechanisms for REM generation

and therefore, should be reassessed as sleep research makes steps in determining

appropriate mechanisms.

Since changes in homeostatic time constants may not be uniform for the increase and

dissipation of sleep need [87], it will also be important to investigate the consequences of

separately altering the rates of homeostatic growth and decay to provide physiological

constraints for model parameters and allow assessment of the contribution of homeostat

dynamics to changes in sleep patterning. Other factors, including circadian influences

on sleep and on ultradian cycling between NREM and REM sleep, likely also impact

observed changes in sleep-wake patterning. Future modeling work investigating the

relative contributions of these factors would complement ongoing experimental studies

of sleep across development.
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CHAPTER V

Data-driven Modeling of Sleep Patterns in

Preschool Children

5.1 Introduction

Early childhood is characterized by a transition from highly variable polyphasic to

monophasic sleep behaviors (see Chapter I for more details). By the age of 2 years

most children exhibit a biphasic pattern that includes a long nocturnal sleep and

a short nap in the middle of the day [84]. As children develop, the duration and

frequency of the naps may decrease until they adopt a sleep schedule that involves

a single nighttime sleep. The majority of 5 year old children exhibits a monophasic

sleep pattern [2].

This transition is mediated developmentally. Properties of the homeostatic sleep

drive, one of the main processes dictating the timing and types of sleep patterns,

change with development. In particular, experimental studies have shown a change

with age in the values of the time constants associated with the rise and decline

of the sleep homeostat, as well as differences between lower and upper asymptotes

of the homeostat [101]. For example, the rise time constant of the sleep homeostat

increases between the ages of 2 and 5 years old, and can lead to longer wake bouts.

Behaviorally, however, the transition from a non-napping to a napping sleep schedule
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is highly variable and can be rather challenging. Additionally, caregivers may influence

the transition. Namely, they might promote a non-napping behavior or maintain a

napping behavior if children show signs of sleepiness or mood changes [21].

In Chapters III and IV, we considered a scaling of the homeostatic time constants

which was a sufficient mechanism for generating a transition between polyphasic

and monophasic sleep patterns in our physiologically-based sleep-wake models. More

specifically, we found regimes of the scaling parameter that capture the transition from

biphasic to monophasic sleep. However, the sleep episodes of the patterns produced

may not occur at phases appropriate to characterize sleep behavior in early childhood.

Here, we we incorporate the experimentally estimated values of homeostatic parameters

determined for 2-year and 5-year old children reported in [101] into our SWFF model

and determine parameter sets that generate biphasic and monophasic sleep patterns

consistent with experimental data on sleep timings in young children [4].

Although homeostatic parameters have been estimated for these age groups, the

manner at which they vary between the ages of 2 and 5 years is not known and may

differ across individuals. In this work, we consider a subset of model parameters that

are developmentally regulated, including the homeostatic parameters, and investigate

the effects of different variations of the parameters that produce distinct transitions

from biphasic to monophasic sleep. Furthermore, we investigate the effect of external

light schedules on sleep patterns that may promote or suppress napping in this

transition process.

This chapter1 is organized as follows: in Section 5.2 we introduce the experimental

data employed to determine the light schedules and characteristics of sleep patterns

for the 2- and 5-year olds, as well as how these will be incorporated in the SWFF

model. In Section 5.3 we present our findings. Finally, in Section 5.4 we give a brief

overview of our results and discuss future directions.
1This work is joint with Shelby Stowe, Department of Applied Mathematics & Statistics, Colorado

School of Mines.
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5.2 Experimental data and mathematical model

We employ the sleep-wake flip-flop (SWFF) model described in detail in Chapter

II to produce sleep patterns in early childhood consistent with metrics based on

[4]. Akacem et al. provide detailed statistics for circadian and sleep measures in

toddlers that exhibit a napping and a non-napping behavior (Figure 5.1). Our primary

measures for comparing characteristics of model solutions to the data are the durations

of sleep and wake episodes, as well as the circadian phases of their onsets and offsets.

The circadian phase, Φ, of an event of interest (e.g. sleep onset) is defined as follows:

Φ = Time of event (min) − Time of preceding circadian minimum (min)
1440 (min)

To compute the circadian phases associated with the data, we use the published

relationship between the dim light melatonin onset (DLMO) and the minimum of

the circadian rhythm which is based on core body temperature (CBT) measurements:

DLMO=CBTmin-7 (hours) [32, 19]. This calculation provides ranges of circadian

phases based on the data (Table 5.1). Note that all phases have been computed

using the mean values of DLMO times in Figure 5.1. The nap onset (offset) time was

computed by subtracting (adding) half of the mean nap duration from (to) the range

of nap midpoint times.

Napping Non-Napping
Sleep onset 0.7521± 0.0299 0.7375±0.0208
Wake onset 0.1736±0.0208 0.2063±0.0285
Nap onset 0.4604±0.032 x
Nap offset 0.5313±0.0319 x

Table 5.1: Ranges of circadian phases for sleep behaviors based on the data computed
using the relationship DLMO=CBTmin-7 to establish the time of the circadian mini-
mum.

An additional motivation for this work is to investigate how exposure to different
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Figure 5.1: Statistics regarding circadian and sleep measures in napping and non-
napping toddlers shown in Table 1 of [4].

external light schedules or photoperiods may influence sleep-wake behavior. Here,

we consider two forced light schedules which we refer to as the napping and the

non-napping light schedule.

The non-napping light schedule reflects a monophasic sleep pattern. In particular,

lights are on (1000 lux) during the wakefulness period, while lights are off (0 lux) at

bedtime. The napping schedule includes an additional period during which the lights

are dimmed (10 lux) to reflect a nap in the middle of the day. In Figure 5.2, we show

a graphical representation of the non-napping (top panel) and napping (bottom panel)

light schedules. The timing and duration of the different light intensities are based on

the sleep behavior data from Table 1 in [4] (Figure 5.1). Specifically, to compute the

onset and offset of the dim lights (10 lux) in the napping light schedule, we subtract

and add half of the mean nap duration from the mean nap midpoint, respectively.
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Figure 5.2: Graphical representation of the non-napping (top) and napping (bottom)
light schedules. The y-axis indicates the range of light intensity values (in lux) for each
schedule. Timings and durations of light are based on the sleep behavior measures in
Table 1 of [4] as labeled on the x-axis.

We have modified the circadian component of the SWFF model as follows:

1. The steady state response function equation for the firing rate of the neurons in

the Suprachiasmatic Nucleus (SCN) population is:

SCN∞(c) = SCNmax · 0.5 ·
(

1.21 + tanh
(

c − βSCN

αSCN

))
. (5.1)

2. The circadian drive c (the input of equation 5.1) is the output of the Forger et.

al limit cycle model [64] introduced in Chapter II. This allows us to incorporate

the effect of light exposure, since light intensity is the primary input to this

circadian oscillator model.

5.3 Results

For our analysis, we first identify the parameter sets that appropriately capture

the napping and non-napping behavior in early childhood described in [4]. The two

parameter sets employ the napping and non-napping light schedules for the biphasic
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and monophasic sleep-wake behavior, respectively, described in Section 5.2. We

then consider various ways in which model parameters can vary between their values

associated with the two behaviors and investigate the effect of the light schedules in

the transition from biphasic to monophasic sleep patterns.

Properties of the homeostatic sleep drive have been implicated to vary with devel-

opment [101, 87]. In particular, the time constants and asymptotes for homeostatic

sleep pressure have been estimated in adults and children [101]. Additionally, previous

mathematical analysis has established that scaling the time constants associated

with the rates of increase and dissipation of homeostatic sleep pressure can lead to

the transition from polyphasic to monophasic sleep (see Chapters III, IV and [14]).

For our model parameter sets, we constrain the values of sleep-homeostat associated

parameters (hmax, hmin, τhw, τhs) to experimental values estimated for children of

age 2 (nappers) and 5 (non-nappers) years old [101]. In addition, parameters that

determine the model’s response to the sleep homeostat, i.e. k1 and k2, were optimized

to capture napping and non-napping behavior. All other parameters were fixed.

5.3.1 Napping and non-napping parameter sets

For our SWFF model, we identified the parameter sets shown in Table 5.2 that

generate stable biphasic and monophasic sleep patterns that are comparable to the

experimental data in [4] regarding the timing of sleep and wake cycles in 2- and 5-year

olds (see Figure 5.1 and Table 5.1).

Specifically, the parameter values shown in black color for the parameters in bold

font in Table 5.2 with the napping light schedule generates a stable model solution of

a biphasic sleep pattern (Figure 5.3A,C,E). We will refer to this parameter set as the

“2-year old parameter set”. The SWFF model generates a nap during the dim light

period (gray bars in panels A,C,E of Figure 5.3) and a longer nighttime sleep during

the dark (lights off) period (black bars in panels A,C,E of Figure 5.3). In particular,
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the wake, nap and sleep onset phases are 0.1620, 0.4668 and 0.7378, respectively. The

nap offset phase is 0.542. The nighttime sleep duration is 611 minutes, while the nap

lasts 108 minutes. The early wake episode duration is 439 minutes, while the late

wake episode (after the nap) duration is 282 minutes. These values compare well with

the phases and durations calculated from the data in Table 5.1.

On the other hand, choosing the parameter set with values in blue color for the

parameters in bold font, and the non-napping light schedule generates a monophasic

sleep pattern that corresponds to 5-year old sleep, called the “5 year old parameter

set” (Figure 5.3B,D,F). The SWFF model generates a nighttime sleep during the dark

(lights off) period (black bars in panels B,D,F of Figure 5.3) and the system transitions

to wake during the lights on period (white background in panels B,D,F of Figure 5.3).

The wake and sleep onset phases are 0.2066 and 0.7368, respectively. The durations

of the corresponding wake and sleep episodes are 764 and 676 minutes, respectively.

These values of phases and durations are close to the means of the corresponding data

values shown in Table 5.1.

Wmax = 6 Hz τW = 23 αW = 0.5 βW = −0.34
Smax = 6 Hz τS = 10 αS = 0.175

SCNmax = 5.95 Hz τSCN = 0.5 αSCN = 0.25 βSCN = −0.05
gsw = 0.32 gscnw = 0.08 gws = 0.12 gscns = 0.1

hmax = 320 hmin = 8 τhw = 7.95 τhs = 2.15
413 20 14.4 hr 1.9 hr

k1 = −0.04 k2 = −0.0065 θW = 2 Hz
−0.0048

Table 5.2: Parameter sets that generate napping (2 year old) and non-napping (5 year
old) behavior in the SWFF model. Parameters that may vary across the two sets are
in bold and the 2- and 5-year old values are given in black and blue, respectively (if
distinct). For X = W, S, SCN , τX are the time constants of the neuronal firing rates
in minutes, and αX and βX are in units of effective synaptic input. Additionally, for
Y = W, S, gXY (where X ̸= Y ) has units of (effective synaptic input / Hz). Units for
hmax and hmin are percentage mean SWA. The parameters k1 and k2 are measured
in effective synaptic input and effective synaptic input/(% mean SWA), respectively.
The remaining units are included in the table.

119



A

C

B

D

E F

Figure 5.3: Time traces of the SWFF model for the 2-year and 5-year old parameter
sets. A,C,E: Time traces of the neuronal populations fW (blue), fS (red), fSCN

(green) (A), homeostatic sleep drive h (C) and circadian drive c (E) using the 2-year
old parameter set and the napping light schedule. The SWFF model generates a
sleep pattern involving a nap during the dim light period (gray bar) and a longer
nighttime sleep during the dark period (black bar). B,D,F: Time traces of the neuronal
populations fW (blue), fS (red), fSCN (green) (B), homeostatic sleep drive h (D)
and circadian drive c (F) using the 5-year old parameter set and the non-napping
light schedule. The SWFF model generates a monophasic sleep pattern involving a
nighttime sleep during the dark period (black bar).

5.3.2 Transitioning between the two parameter sets

As toddlers age, features of sleep homeostasis may vary [101]. This variation may

be distinct across individuals making the transition from biphasic to monophasic

sleep more or less challenging. Motivated by expected developmental changes, we

first study how transitioning from the 2-year old (napping) to the 5-year old (non-

napping) parameter sets (parameters in bold font in Table 5.2) affects the sleep

patterns generated by the SWFF model. We describe the evolution of hmax, hmin,
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τhw, τhs, and k2 between the 2- and the 5-year old parameter sets using quadratic or

sigmoid functions, since it is unknown how these parameters may actually vary (Figure

5.4). Moreover, we incorporate values for the homeostatic parameters in the range

estimated in 3-year old children [101]. In particular, for a homeostatic parameter

with values p2 and p5 in the 2- and the 5-year old parameter set, respectively, and p3

in the estimated range at the age of 3 years, we define F (λ; p2, p3, p5), so that when

λ = 0, we obtain the 2-year old, napping parameter set, and when λ = 1, we obtain

the 5-year old, non-napping parameter set. Moreover, at λ = 1/3, we obtain p3. This

is an arbitrary choice, but it allows us to associate the parameter λ with age, as we

ensure that at λ = 1/3 the homeostatic parameters will attain values corresponding

to 3-year old children.

For each homeostatic parameter, we choose p3 from representative values in their

3-year old range [101]. In particular, we choose three values corresponding to the

mean and mean ± one standard deviation, when these values do not exceed the 2-

and 5-year old parameter values. Otherwise, we choose values in the intersection of

the 3-year old data and the interval defined by the 2- and 5-year old parameter set, so

that we preserve the trend in which the homeostatic parameters vary.

To our knowledge, the way in which the sensitivity to the homeostatic sleep drive,

which is captured by the parameter k2 in our model, varies across development has not

been established. Therefore, we model k2 as a sigmoid function that increases from

its 2- to its 5-year old value with λ, namely k2(λ) = Ak2 tanh
(

λ

αk2

)
+ Bk2 (Figure

5.4D). The parameter αk2 modulates how fast k2 saturates to the value in the 5-year

old parameter set.

To quantify the sleep patterns produced as λ varies from 0 to 1, we use the rotation

number ρ = q
p
, where p is the number of sleeps that occur in q circadian days. The

algorithm and properties of this rotation number are described in detail in Chapter

III (and IV). The λ interval [0,1] is divided in subintervals of size 0.002. We, then,
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Figure 5.4: Evolution trajectories of homeostatic parameters, τhw, τhs, hmax, and the
sensitivity to the homeostatic sleep drive, k2 with respect to λ. The black dashed line
corresponds to λ = 1/3. A. Evolution of τhw as a function of λ. As λ increases τhw

increases from its 2-year old to its 5-year old value, while at λ = 1/3 it attains the
values 8.6 hr (red curve), 10.5 hr (blue curve) and 12.4 hr (green curve) in the 3-year
old range. B. Evolution of τhs as a function of λ. As λ increases τhs increases from
its 2-year old to its 5-year old value, while at λ = 1/3 it attains the values 2.13 hr in
the 3-year old range. C. Evolution of hmax as a function of λ. As λ increases hmax

increases from its 2-year old to its 5-year old value, while at λ = 1/3 it attains the
values 327 % SWA (red curve) and 358 % SWA (blue curve) in the 3-year old range.
D. Evolution of k2 as a function of λ. As λ increases k2 increases from its 2-year old
to its 5-year old value. Different values of αk2 dictate the rate at which k2 saturates
to its 5-year old value. Smaller values of αk2 correspond to a more rapid saturation.

compare the bifurcation diagrams for ρ produced under the napping and non-napping

light schedules to determine how they influence the changes in sleep patterning.
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Figure 5.5: Bifurcation diagrams of ρ demonstrating the evolution of the rotation
number as parameters are varied with respect to λ under different light schedules,
so that at λ = 1/3, τhw = 10.5 hr, τhs = 2.13 hr, and hmax − hmin = 358 % SWA,
all in the 3-year old range. The value of αk2 is 0.15. A. The bifurcation diagram of
ρ under the napping light schedule shows that the ρ = 1

2 solution loses stability for
λ = 0.33 and the ρ = 1 solution gains stability for λ = 0.342. During the transition
from biphasic to monophasic sleep, not many intermediate solutions are attained. B.
The bifurcation diagrams of ρ under the napping (blue) and non-napping (red) light
schedules for λ ∈ [0.3, 0.4]. Imposing the non-napping light schedule leads to a similar
transition from biphasic to monophasic sleep as λ increases. However, the value of λ
at which the ρ = 1

2 ceases to exist is smaller, namely 0.326. Additionally, the ρ = 1
solution also gains stability at a smaller value of λ, namely 0.34.

As shown in Figure 5.5A, increasing λ from 0 to 1 leads to the transition from

biphasic to monophasic sleep patterns. Specifically, the rotation number, ρ increases

from 1
2 (2 sleeps per day) to 1 (1 sleep per day), and attains the ρ = 2

3 solution in the

Farey sequence for λ ∈ (0.298, 0.366). The napping light schedule was applied during

this simulation. Therefore, changes in the features of the homeostatic sleep drive, h,

and the sensitivity of the model to it (k2) manifest a change in sleep-wake behavior,

although the light schedule promotes a napping behavior. At λ = 1
3 , corresponding

to the the 3-year old range of homeostatic parameters, the sleep pattern generated

alternates between days with a nap and days without a nap.
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Light schedules may influence the transition from biphasic to monophasic

sleep

A similar bifurcation diagram of the rotation number, ρ is obtained when simulating

the model using the non-napping light schedule for λ ∈ [0, 1] (Figure 5.5B). However,

the value of λ at which the ρ = 1
2 solution ceases to exist is slightly smaller, namely

0.292. Additionally, the ρ = 1 solution gains stability at a smaller value of λ, namely

0.364. This implies that imposing a different forced light schedule may slightly influence

the transition from biphasic to monophasic sleep. In particular, λ ∈ [0.292, 0.366]

corresponds to an interval, in which our sleep-wake model could converge to a different

stable solution, and thus, capture a different sleep pattern, depending on the light

schedule we choose to enforce. Our results indicate that the non-napping light schedule

promotes the transition to the monophasic regime, while a forced napping light schedule

maintains a pattern with an average number of two sleeps per day for longer, as λ

increases.

5.3.3 Homeostatic dynamics influence the transition from napping to

non-napping behavior

Interindividual differences play an important role in the changes observed in sleep

patterns with development. Mathematically, a different choice for the values of the

homeostatic parameter at λ = 1/3, denoting the 3-year old age mark, may generate a

different transition scenario. In this section, we consider the different τhw trajectories

(see Figure 5.4A), while we choose a single variation for the remaining parameters. In

particular, we let αk2 = 0.15 (blue trajectory in Figure 5.4D) and set hmax to follow

the blue curve in Figure 5.4C. Figure 5.6 shows the bifurcation diagrams of ρ under

these conditions for the different τhw evolution curves.
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Figure 5.6: Bifurcation diagrams of ρ demonstrating the evolution of the rotation
number for distinct τhw variations and comparison of the napping and non-napping
light schedules. We have αk2 = 0.15 dictating the variation of k2 (blue trajectory in
Figure 5.4D), while hmax follows the blue curve in Figure 5.4C. A. Bifurcation diagrams
of ρ demonstrating the evolution of the rotation number for distinct τhw variations. A
faster evolution to the 5-year old parameter of τhw promotes an earlier transition to
monophasic sleep (green) and produces more intermediate patterns. B. Comparison of
bifurcation diagrams of ρ for τhw(1/3) = 12.4 hr under the forced napping (light green)
and non-napping (dark green) light schedules. The bifurcation diagrams contain more
patterns between the ρ = 1 and ρ = 1/2 solutions, but the light schedules do not
influence this transition so that the patterns obtained are distinct. C. Comparison
of bifurcation diagrams of ρ for τhw(1/3) = 8.6 hr under the forced napping (light
red) and non-napping (dark red) light schedules. The bifurcation diagrams transition
almost immediately from the ρ = 1/2 to the ρ = 1/2 solution. However, there exists
an interval of λ values, namely λ ∈ [0.788, 0.8], in which distinct light schedules lead
to distinct sleep patterns.

As λ is increased from 0 to 1, the bifurcation diagrams of ρ exhibit an increase

from 1
2 to 1 under the napping light schedule (Figure 5.6A). When τhw evolves more

slowly to its 5-year old value (τhw(1/3) = 8.6 hr, red curve in Figure 5.4A), the loss
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of stability of the ρ = 1
2 solution occurs at λ = 0.798. However, the bifurcations are

shifted to smaller λ values when τhw varies more rapidly towards its 5-year old value.

Moreover, more patterns between biphasic and monophasic sleep are generated. This

representative example indicates that homeostatic dynamics may strongly affect the

transition process in sleep patterning. For example, an increase of τhw dictates a

slower build up of the homeostatic sleep drive. As a result, sleepiness is experienced

at a later phase, which in turn promotes the transition to consolidated sleep.

Light schedules compete with higher order patterns

When τhw(1/3) = 8.6 hr (τhw traces the red curve in Figure 5.4B), the non-napping

light schedule (dark red in Figure 5.6C) produces a similar increase of ρ as the napping

light schedule, but promotes the transition to consolidated sleep at a smaller value of

λ. However, when τhw(1/3) = 12.4 hr (τhw traces the green curve in Figure 5.4B) the

non-napping light schedule (dark green in Figure 5.6B) produces a similarly dense

bifurcation diagram of ρ as the napping light schedule. Interestingly, in this case, the

values of λ at which the ρ = 1
2 solution ceases to exist and the ρ = 1 solution gains

stability are the same as in the napping light schedule. This indicates that modifying

the light schedule to promote monophasic behavior does not have a significant influence

in this parameter regime. Further, this result suggests that the occurrence of these

complex higher order patterns suppress the ability of light to significantly influence

this transition process.

5.3.4 Sensitivity to the sleep homeostat influences the transition from

napping to non-napping behavior

Interindividual differences may manifest in an individual’s response to the evolution

of the homeostatic sleep drive. In this section, we analyze how the evolution of the

parameter k2, denoting how sensitive or how resistant to changes in sleep pressure
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one may be, affects the transition between biphasic and monophasic sleep, when the

manner in which the homeostatic sleep drive evolves is maintained. In particular, we

choose τhw and hmax to trace values on the blue trajectories in Figure 5.4 (panels A

and C, respectively) and allow αk2 to vary.
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Figure 5.7: Bifurcation diagrams of ρ demonstrating the evolution of the rotation
number for distinct k2 variations dictated by αk2 . A faster evolution to the 5-year old
value of k2 promotes an earlier transition to monophasic sleep (green). By contrast,
a slower evolution to the 5-year old value of k2 maintains biphasic sleep for a longer
interval of λ values (red, cyan, magenta).

Figure 5.7 shows that the parameter k2, controlling the sensitivity to the sleep

homeostat, has a strong effect on the transition from biphasic to monophasic sleep.

In particular, when k2 saturates faster (smaller αk2) to the value in the 5-year old

parameter set, it promotes an earlier transition to consolidated sleep. However, during

this transition more intermediate sleep patterns are obtained. Higher values of k2

generate patterns involving fewer naps, as the model is more resistant to changes in

the homeostatic sleep drive. As αk2 increases, and therefore, k2 increases more slowly

with λ, we observe a monotonic decrease in the λ-intervals bounding the transition

region between biphasic and monophasic sleep, as well as a reduction in the types

of intermediate patterns produced. In all the transition scenarios, the alternating

pattern with rotation number 2
3 is the most dominant.
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5.3.5 Varying αk2 and homeostatic parameters simultaneously

To illustrate the evolution of sleep patterns over a range of homeostatic parameters

and sensitivity, we constructed a two-parameter bifurcation diagram with respect to

λ and αk2 (Figure 5.8A). The dark blue, lilac and cyan areas in the figure indicate

parameter regions (or tongues) where the stable, phase-locked ρ = 1
2 (dark blue), 2

3

(lilac), and 1 (cyan) solutions exist, respectively, for τhw(1/3) = 10.5 hr (blue curve in

Figure 5.4A). For larger values of αk2 , the ρ = 1
2 and ρ = 1 entrainment regions abut

each other, indicating an abrupt transition from a biphasic to a monophasic sleep

pattern as λ is increased. As αk2 is decreased, the distance between these tongues

increases, as more intermediate sleep patterns are generated. The most prominent

interval corresponds to the alternating pattern with ρ = 2
3 .

The dark red, magenta and red lines indicate the boundaries of the ρ = 1
2 , 2

3 and

ρ = 1 solutions, respectively, for τhw(1/3) = 8.6 hr (red curve in Figure 5.4A). Similarly,

the dark green, yellow and light green lines indicate the boundaries of the ρ = 1
2 , 2

3 and

ρ = 1 solutions, respectively, when τhw(1/3) = 12.4 hr (green curve in Figure 5.4A). As

explained in the representative bifurcation diagrams above (Figure 5.5), the manner

in which the time constant associated with the build-up of the homeostatic sleep drive

evolves across development modulates these transition processes. In particular, if τhw

evolves more slowly to its 5-year old value (τhw(1/3) = 8.6 hr), the boundaries of these

tongues are shifted to larger λ values. However, these bifurcations are shifted to smaller

λ values when τhw varies more rapidly towards its 5-year old value (τhw(1/3) = 10.4

hr), and therefore, homeostatic dynamics promote consolidated sleep earlier.
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Figure 5.8: Two-parameter bifurcation diagrams with respect to λ and αk2 for (hmax −
hmin)(1/3) = 358% SWA (top) and (hmax − hmin)(1/3) = 327% (bottom). Colored
areas indicate parameter regions (or tongues) where the following stable, phase-locked
solutions exist (from left to right) for τhw(1/3) = 10.5 hr: ρ = 1

2 (dark blue), 2
3 (lilac),

1 (cyan). Dark red, magenta and red lines indicate the boundaries of the ρ = 1
2 , 2

3 and
ρ = 1 solutions, respectively, when τhw(1/3) = 8.6 hr. Dark green, yellow and light
green lines indicate the boundaries of the ρ = 1

2 , 2
3 and ρ = 1 solutions, respectively,

when τhw(1/3) = 12.4 hr.

We performed the same analysis and compiled the two-parameter bifurcation

diagram with respect to λ and αk2 when the difference of the asymptotes at λ = 1/3

is smaller, namely 327% SWA (Figure 5.8B). Similar trends are observed in this case.

That is, more intermediate solutions are produced when the sensitivity to the homeo-

static sleep drive, k2, increases more rapidly (αk2 is small). Furthermore, the evolution
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of the accumulation rate of the sleep homeostat promotes earlier (τhw(1/3) = 12.4 hr)

or later (τhw(1/3) = 8.6 hr) transitions to consolidated sleep as λ is increased. The two

bifurcation diagrams (Figure 5.8A, B) exhibit quantitative differences, suggesting that

the evolution of the distance between the upper and lower asymptotes characterizing

the homeostatic sleep drive may also influence the age at which transitions from

biphasic to monophasic sleep patterns occur.

5.4 Discussion

In this work, we employed a physiologically-based model to capture transitions in

sleep patterns during early childhood. We utilized our two-state sleep-wake model

and identified parameter sets that reflect the napping behavior of most 2 year old

children and the non-napping behavior of most 5 year old children. We incorporated

values of the homeostatic parameters estimated in experimental studies [101] for the

2- and the 5-year old parameter sets.

We showed that varying a small subset of model parameters can produce the

transition from biphasic to monophasic sleep patterns which is quantified by the

increase of the rotation number. During this transition, we let the homeostatic time

constants and difference of the homeostatic asymptotes vary differently while attaining

values estimated in 3-year old children. We also let the parameter k2, reflecting

the sensitivity to the homeostatic sleep drive, saturate faster or more slowly to its

5-year old value by modulating the parameter αk2 . Considering various relationships

regarding the variation of these parameters may account for interindividual differences

in the response to the developmental changes of the sleep homeostat, and therefore,

the transition process to consolidated monophasic sleep behavior.

We found that the homeostatic dynamics characterized by the time constants and

asymptotes influence the transition from biphasic to monophasic sleep. In particular,

if the sleep pressure accumulates more slowly (larger τhw values), it promotes the
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transition to consolidated monophasic sleep. Our results indicate that different

individuals may exhibit distinct transition processes, if the homeostatic sleep drive

properties evolve towards the 5-year old values more quickly.

Moreover, these transitions are additionally modulated by the sensitivity to the

homeostatic sleep drive. The interaction of the sleep homeostat values and the

parameter k2 may contribute to distinct transition behaviors. Specifically, transitions

may occur at distinct λ intervals, corresponding to different ages. A slower rise of the

parameter k2 (larger αk2) maintains biphasic sleep for higher λ values. The evolution

of k2 may also modulate the number and types of intermediate sleep patterns produced

during the transition from napping to non-napping behavior. A more abrupt rise of

the parameter k2 (smaller αk2) generates more patterns, namely a denser bifurcation

diagram of ρ, in most parameter regimes.

Sleep timing is influenced by the circadian rhythm [35, 51, 150], whose strongest

modulator is light exposure. In this study, we found that certain individuals may be

sensitive to light during their transition from biphasic to monophasic sleep. That

is, forcing a period of dim light in the middle of the day may contribute to the

persistence of napping sleep behavior, whereas eliminating that dim light period may

promote the transition to consolidated monophasic sleep. The effect of light schedules

is evident when the bifurcation diagrams obtained are sparse; namely, only a few

higher order sleep patterns are generated in the transition between biphasic and

monophasic sleep patterns. In contrast, when the model predicts a transition through

various intermediate patterns between the biphasic and monophasic regimes, enforcing

the napping or the non-napping light schedule does not significantly affect the sleep

pattern. Future work will consider light schedules with a range of durations, light

intensities and timing of the dim light period to investigate whether and how they

may affect the transition to monophasic sleep.

Our work emphasizes the need to further understand the manner in which pa-
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rameters associated with the sleep homeostat vary across development. Furthermore,

individual characteristics may lead to differences in these parameters, and therefore,

to a smoother or more challenging transition to consolidated sleep. Incorporating

additional data to inform the trend of how these parameters change with development

will provide a more robust classification of sleep patterns and association of our

bifurcation parameter with age. Future work will aim to create charts of percentile

curves that illustrate the distribution of sleep patterns in preschool children across

the transition from napping to non-napping behavior. We further aim to analyze the

effect of various light schedules and propose possible light interventions to promote

desired sleep behaviors.
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CHAPTER VI

Mapping Recovery of Sleep Deprivation

6.1 Introduction

Under typical adult human sleep-wake schedules, the circadian and homeostatic

processes work together to promote consolidated waking during the day and con-

solidated sleep during the night. However, when sleep schedules are disrupted, for

example due to sleep deprivation, these processes may compete and affect the timing

and duration of sleep episodes. For example, recovery sleep following sleep deprivation

may be shorter or longer than habitual sleep duration depending on the circadian

phase (time of day) of the onset of recovery sleep [167]. Furthermore, while nocturnal

sleep typically includes both REM and NREM sleep states, with cyclic alternation

between the two states over the course of the night, sleep deprivation may affect the

duration and timing of both NREM and REM sleep [133].

Mathematical models of sleep-wake regulation have been previously used to under-

stand and predict changes in sleep not only after sleep deprivation but also as a result

of other perturbations including shift work, travel across time zones, sleep disorders

such as narcolepsy, and pharmacological interventions [39, 130, 74, 17, 53]. While

the classic two-process model [26, 104] accounts for sleep deprivation by considering

interactions between the homeostatic sleep drive (Process S) and the circadian rhythm

(Process C) [39, 3], more recent physiologically-based models consider the effects
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of extended wakefulness on connections between neuronal populations that govern

sleep-wake dynamics [100, 134, 131, 126]. In previous work, Piltz et al. used the

three-state physiologically-based model described in Chapter II, to investigate the

variation of sleep deprivation responses in individuals with different habitual sleep

durations (e.g., long and short sleepers) [129]. In this chapter1, we apply circle maps

computed from the three-state sleep-wake network model to predict responses to

acute sleep deprivation and validate model results with both experimental data and

numerical simulations of the model [71] that incorporate behaviorally-appropriate

light schedules.

This chapter is organized as follows: in Section 6.2, we first review dynamics of the

three-state sleep-wake network model under baseline and sleep deprivation conditions,

and then summarize the numerical computation of the map representing the dynamics

of the model in Section 6.2.2. In addition, we decompose the map and use it to

compute the length of recovery sleep following sleep deprivation. In Section 6.3, we

present predictions obtained from the map for (i) the length and (NREM–REM)

composition of recovery sleep and (ii) the duration of recovery sleep from 0 to 24 hours

of sleep deprivation. Furthermore, we compare these predictions with experimental

data and numerical simulations of the full model. Finally, we discuss our findings and

their implications in Section 6.4.

6.2 Methods

6.2.1 Physiologically-based model for human sleep and wake dynamics

In this study, we consider the three-state sleep-wake regulatory network model

described in Section 2.2 incorporating the Forger et al. circadian model (Figure 6.1;

see Chapter II). To simulate sleep deprivation, we impose a wake-promoting input that
1This work was conducted jointly with Sofia Piltz and a manuscript on these results is published

in Communications in Nonlinear Science and Numerical Simulation.
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is excitatory to the wake population and inhibitory to the NREM sleep population.

Under regular conditions, we simulate a 14-hour:10-hour environmental light:dark

cycle with light intensity I = 5000:I = 0 lux. In simulations of sleep deprivation

(see Figures 6.2, 6.4, and 6.5), we mimic the light environment used in experimental

sleep deprivation studies (e.g., [3]). That is, if the model’s state is “awake” during the

environmental dark period, I = 300 lux to represent indoor light intensity for light

activity such as reading. By contrast, if the model is “asleep” during the environmental

light period, I = 100 lux to represent light penetrating the eyelids.

NREM
(GABA)

REM
(ACh)

SCN
(GABA)

W
(NE)

wake-promoting
input

Figure 6.1: Model schematic. The physiologically-based model [71] for human sleep
incorporates equations for the average firing rate of the neuronal populations promot-
ing states of Wake, NREM and REM sleep, and the SCN (boxes; NE, GABA, and
ACh indicate the primary neurotransmitters for each population), the homeostatic
sleep drive (h, orange triangle), and the circadian clock oscillator (c, green triangle).
Excitatory (inhibitory) effects of neurotransmitter-mediated projections among popu-
lations are indicated by arrows (circles). To simulate sleep deprivation, we impose a
wake-promoting input (black) that is excitatory to the wake population and inhibitory
to the NREM sleep population.

We use values of model parameters identified in previous work [129] (described in

Table 2.2) where Piltz et al. computed an ensemble of ∼ 20, 000 parameter sets that

were fit to replicate the baseline wake, REM and NREM sleep timing and durations

experimentally measured from humans exhibiting typical (and habitual) sleep behavior
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[20]. Results shown here were derived using a parameter set corresponding to median

values of the ensemble, with variability between the 25th and 75th percentile values of

the ensemble shown in Figures 6.3, 6.4 and 6.6.

Time traces of the activity of the neuronal populations (top), h (middle), and c

(bottom) for two example simulations of sleep deprivation where sleep onset occurs

8 and 20 hours past the usual sleep onset (indicated by a vertical dotted line) are

shown in Figure 6.2, panels A and C, respectively. Model trajectories evolve on a

Z-shaped surface (obtained by a fast-slow decomposition, see Chapter II) where the

top (blue) manifold indicates the stable steady “wake” state and the bottom (red)

manifold indicates an unstable steady state associated with the stable periodic solution

representing NREM–REM cycling during the “sleep” state (Figure 6.2B and D).

During simulations of sleep deprivation (purple and orange curves in Figure 6.2B

and D, respectively), the trajectory continues to evolve along the “wake” manifold,

close to the curve of saddle-node points instead of dropping to the “sleep” state as

occurs under typical sleep-wake conditions (black filled circles on blue trajectory in

Figure 6.2B and D). When sleep onset eventually occurs (leftmost purple and orange

filled circles in Figure 6.2B and D), the trajectories exhibit different paths on the

“sleep” manifold than the baseline (blue) trajectory reflecting differences in sleep

durations and timing. These perturbed trajectories obtain higher than baseline values

in h as h increases during the extended “wake” state of the model (Figure 6.2A and

C, middle panels) and have slightly varied c values due to differences in light exposure

(Figure 6.2A and C, bottom panels). Over the following few sleep-wake cycles, these

trajectories approach the baseline trajectory for the stable sleep-wake pattern (Figure

6.2B and D).

136



A B

0h SD

8h SD

�

0h SD

20h SD

 
!

�

"

"

C D

 
!

Figure 6.2: Example model simulations for sleep deprivation of 8 and 20 hours. A,C:
Time traces of population firing rates (top), homeostatic sleep drive h (middle) and
circadian drive c (bottom) for four days with sleep deprivation of 8h (A) and 20h
(C) from usual sleep onset occurring on the 2nd day (usual sleep onset indicated
with black arrows and vertical dotted line). Light intensity input to the circadian
clock oscillator varies with simulated model behavior (background colors in bottom
panels, see also Section 6.2). B,D: Surface of steady state solutions revealed by a
fast-slow decomposition of the model when h and c are taken as fixed parameters.
The top (blue) surface represents the stable wake state and the bottom (red) surface
represents the unstable solution surrounded by the stable periodic solution (e.g., see
blue trajectory) exhibiting NREM–REM cycles. Trajectories for the full model when
h and c are allowed to vary show how the steady state “wake” and “sleep” manifolds
influence solutions of the full model [blue trajectory shows the stable, baseline sleep
model solution while the purple (orange) trajectory is the model solution for 8 hours
(20 hours) of sleep deprivation B (D)]. We indicate sleep onsets on the trajectories
with filled circles.
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6.2.2 Circle maps and computing the length of sleep (wake) time

The dynamics of the sleep-wake model can be described by a circle map for

successive circadian phases of sleep onset. The map represents the relationship

between the sleep onset at a given circadian phase on the nth sleep cycle (consisting

of one sleep and one wake episode) and the successive sleep onset, occurring on the

n+1st sleep cycle (described in detail in Chapter II). In order to maintain a consistent

definition of circadian phase to compute the map, during the numerical simulations of

the model the light cycle is fixed to the environmental 14:10h L:D cycle (i.e., I = 500

(I = 0) lux during the light (L) (dark, D) period as in [25]). This fixed light schedule

used for computing the map contrasts with the behaviorally-gated light schedule used

to simulate sleep deprivation in the full model where we mimic the light exposure

schedules during the experimental conditions (see Section 6.2).

The one-dimensional map, Φss, gives the circadian phase for sleep onset on sleep

cycle n + 1, ϕn+1, as a function of the circadian phase of sleep onset on sleep cycle n,

ϕn (see Figure 6.3A):

ϕn+1 = Φss(ϕn) . (6.1)

The n + 1st sleep onset may occur during the same circadian cycle as the nth sleep

onset (day i in Figure 6.3) or during the following circadian cycle (day i + 1). In this

work, we decompose Φss into two maps (Figure 6.3C and D, respectively): (1) Φsw

which gives the circadian phase of wake onset as a function of the circadian phase of

the preceding sleep onset and (2) Φws which gives the circadian phase of sleep onset as

a function of the circadian phase of the preceding wake onset at sleep cycle n. Thus,

ϕn+1 = Φss(ϕn) = (Φws ◦ Φsw)(ϕn) = Φws[Φsw(ϕn)] . (6.2)

Decomposing the sleep onset-sleep onset map Φss into a composition of Φws and

Φsw allows us to determine the length of time asleep (awake) for a given sleep (wake)
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Figure 6.3: Circle maps representing the dynamics of the sleep-wake network model.
A,B: Map Φss gives the circadian phase of the n + 1st sleep onset (ϕn+1) on day
(circadian cycle) i (bottom panel) or i + 1 (top panel) as a function of the circadian
phase of the nth sleep onset on day (circadian cycle) i (ϕn). B: Cobwebbing of sleep
onset phases during simulations of 8h (purple) and 20h (orange) of sleep deprivation
as shown in Figure 6.2. C: Map Φsw gives the circadian phase of the next wake onset
[on day i (bottom) or i + 1 (top)] as a function of the circadian phase of the nth sleep
onset ϕn on day i. D: Map Φws gives the circadian phase of the next sleep onset [ϕn+1
on day i (bottom) or i + 1 (top)] as a function of the circadian phase of the wake
onset on day i. Phase 0/1 indicates the minimum of the circadian variable c. The
black dots are map point values computed from the model using the median values
of the parameter ensemble for typical adult sleep-wake behavior and the gray bands
indicate variability in the maps computed using parameter values at the 25th and
75th percentile of the ensemble (for more details, see [129]).

onset phase predicted by the map. Thus, if the phase of the next wake (sleep) onset

is above the y = x –line, the time spent asleep (awake) is (in hours)

∆S = 24(y − x) . (6.3)
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If a point is below the y = x –line, the time spent asleep (awake) is (in hours)

∆S = 24(1 − x) + y . (6.4)

In what follows, we show that these predictions for the duration of recovery sleep

obtained from the map are consistent with both experimental data associated with 8-

and 24-hours of sleep deprivation and our simulations of a range of sleep deprivations

from 0- to 24-hours in the full sleep-wake model which incorporates features of sleep

deprivation such as realistic patterns of light exposure and increases in homeostatic

sleep drive above typical values (see Figures 6.4 and 6.5).

6.3 Results

The one-dimensional sleep onset-to-sleep onset map Φss (Figure 6.3 A) represents

the dynamics of the three-state sleep-wake network model (see Section II). The stable

periodic solution is indicated by the fixed point of Φss (sleep onset near 0.83 ≈ at

11:58pm) corresponding to a typical human baseline sleep onset on the descending

phase of the circadian cycle. The map Φss also has an unstable fixed point (near

0.54 ≈ 4:58pm) with a slope slightly larger than 1. A distinctive feature of Φss is the

vertical discontinuity for initial sleep onsets occurring just past the circadian peak

(0.5 ≤ ϕn ≤ 0.6). This discontinuity reflects a large increase in the phase (time) of

succeeding sleep onsets for only small differences in the phase (time) of the initial sleep

onsets [and is due to a tangency of the trajectory with the saddle-node bifurcation

points of the steady state solution surface (Figure 6.2B and D)].

The map Φss also illustrates variations in the number of REM bouts per sleep

episode depending on the circadian phase of sleep onset, with cusps over the interval

0.6 ≤ ϕn ≤ 1 demarcating the regions of the map associated with different characteristic

numbers of REM bouts. For example, sleep onsets near the stable fixed point result
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in 4 REM bouts per sleep episode while sleep onsets at earlier and later phases (and

past the respective cusps) contain 5 and 3 REM bouts, respectively. The decomposed

maps Φsw and Φws lack fixed points but maintain features of Φss (Figure 6.3C, D),

such as the vertical discontinuity for wake onset phases in the interval (0.6, 0.8) in Φws

(Figure 6.3D) (which indicates that the discontinuity in Φss near ϕn = 0.5 is due to a

discontinuous change in wake episode duration). The map Φsw (Figure 6.3C) contains

cusps that demarcate regions of Φss associated with different numbers of REM bouts

within the sleep episode.

Above all, Φss can be used to approximate sleep-wake patterns of recovery sleep

following sleep deprivation. As a result of sleep deprivation, sleep onset occurs at

different circadian phases (times) and the evolution of model trajectories back to the

stable sleep-wake solution represents recovery sleep and can be tracked on Φss by the

usual cobwebbing technique. For example, recovery from 8 and 20 hours of sleep

deprivation are indicated with cobwebbing in Figure 6.3B where the asterisks show the

sleep onset phases computed from the sleep deprivation simulations shown in Figure

6.2.

Predictions for the length of recovery sleep computed from Φss (using Equations

(6.3)–(6.4), Figure 6.4) indicate that sleep episodes starting 0–19 hours after the usual

sleep onset time result in shorter total and REM sleep durations compared to the

baseline sleep. For longer periods of sleep deprivation, the map predicts a sharp

increase in the duration of recovery sleep. This pattern agrees with results observed

in human experimental data [167] and in simulations of the two-process model [39].

In addition, recovery sleep durations computed from Φss are consistent with durations

obtained from simulations of the full model (compare black dots with red crosses in

Figure 6.4) despite the inability of the map to account for the increases in homeostatic

sleep drive h accrued during the deprivation period or the altered light conditions

during extended wakefulness. Furthermore, both the map predictions and the sleep
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Figure 6.4: Predicted durations of recovery sleep following 0–24 hours of sleep depriva-
tion. Comparison of the total sleep time (TST, panel A) and REM sleep time (REMST,
panel B) predicted by the map Φsw for sleep onsets at circadian phases associated
with 0 to 24h of sleep deprivation (SD) (i.e., sleep onset occurs 0–24h after the usual
(baseline) sleep onset) (black dots and gray shading) and model simulations of 0 to 24h
of sleep deprivation (red crosses). The model simulations are computed with median
parameter values and the gray shading represents the 25th and 75th percentiles of the
parameter ensemble (for more details, see [129]). Experimentally-measured durations
of recovery TST and REMST for 0h, ≈ 8h and ≈ 20h of sleep deprivation have been
reported in [20] (blue markers including ± standard deviation for sleep onset phases
and durations).

deprivation simulations for total sleep time and REM sleep time are consistent with

experimental data for recovery following 8 and 20 hours of sleep deprivation [20] (see

blue dots and error bars in Figure 6.4). The durations of total sleep and REM sleep

during recovery show discrete jumps for increasing hours of sleep deprivation due to

changes in the number of REM bouts, with the shortest sleep episodes containing 3

REM bouts and the longest sleep episodes containing 6 REM bouts.

A comparison between the map and sleep deprivation simulations shows that for

the first recovery sleep episode (R1), the sleep durations predicted by Φss differ by less

than an hour (half an hour) for total (REM) sleep time from the model simulations

for most sleep deprivation hours (see blue triangles in Figure 6.5A and C). This

suggests that the circadian effects on the duration of total sleep and REM sleep during

recovery that are represented by the map dominate other factors contributing to the

length of recovery sleep in the model. For most sleep deprivation hours, the map
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predictions agree with the simulations by the fifth recovery episode (R5, see yellow

circles in Figure 6.5A and C). However, for sleep onsets that occur 15–16 hours past

the usual sleep onset (i.e., during the afternoon and near the vertical gap of the map),

the simulated solutions have not returned to the baseline sleep by the fifth recovery

episode. The discrepancy between the map and model simulations is also larger for

these (and nearby) sleep deprivation hours due to the large vertical gap in the map.

These long-lasting effects of sleep deprivations of 15–16 hours can be explained by the

unstable fixed point on the map as illustrated in a representative sleep deprivation

simulation where sleep onset phases remain in the region of the unstable fixed point

of the map for many iterations (see Figure 6.6A). Similarly, recovery sleep episodes

simulated with the full model exhibit an approximately 12-day transient (during which

sleep of about 4.3 hours with 4 REM bouts occurs in the afternoon and early evening)

before returning to the baseline (see Figure 6.6B).
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Figure 6.5: Differences between predictions based on the map and model simulations.
A,C: Difference in total sleep time (A) and REM sleep time (C) during the first
(R1, blue triangles), third (R3, red circles) and fifth (R5, yellow crosses) recovery
sleep episodes following 0 to 24h of sleep deprivation predicted by the map (TSTmap,
REMSTmap) and by model simulations of sleep deprivation (TSTsim, REMSTsim).
B,D: Difference between usual (baseline) TST (TSTBL, B) and (baseline) REMST
(REMBL, D) in the first (R1, blue triangles), third (R3, red circles) and fifth (R5,
yellow crosses) recovery sleep episodes following 0 to 24h of sleep deprivation predicted
by model simulations (TSTsim, REMSTsim). The x-axis indicates the sleep onset in
0–24h after the usual (baseline) sleep onset (SD). For panels A and C, the usual sleep
onset is considered as the sleep onset of the fixed point of the map Φss, while for
panels C and D, the usual sleep onset is that of the stable periodic solution in the
model simulations. We note that because of the differences in light schedules, there is
a (negligible) difference between the circadian phase of the fixed point and that of the
stable periodic solution.
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Figure 6.6: An example of long-lasting effects of acute sleep deprivation A: A model
simulation for approximately 15h of sleep deprivation (asterisks) generates an initial
sleep onset near the region of the unstable fixed point of the map (black dots and gray
shading). B: Similarly, simulation of the full model predicts a long transient (of about
12 days) before returning to the baseline sleep solution. During this transient, sleep
episodes are short (about 2.7 h less than baseline sleep) and desynchronized from
the circadian rhythm with sleep onsets occurring in the afternoon and early evening
(approximately 3:05 pm to 6:20 pm). Following the transient, sleep-wake behavior
re-entrains to the circadian rhythm, and the timing and duration of baseline sleep are
re-established.

6.4 Discussion

In this chapter, we applied a circle map describing the dynamics of an 8-dimensional,

physiologically-based, ordinary differential equation model for human sleep-wake

regulation to predict the effects of acute (i.e., one-time, less than 24-hour) sleep

deprivation. The map reproduces patterns in the durations of recovery sleep observed
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in both experimental data and simulations of sleep deprivation using the full model.

In addition, the accuracy of the predictions computed from the map suggests that the

circadian rhythm and its influences are stronger than the effect of the homeostatic

sleep drive on the duration of recovery sleep.

Although the map is a simplification of the sleep-wake regulation model, it helps to

explain sleep deprivation simulations in three principal ways. First, the map describes

the effects of circadian phase on the duration of recovery sleep and establishes a lower

bound for recovery sleep durations. This is because the map does not account for

additional aspects of sleep deprivation that would increase the duration of recovery

sleep (such as increased homeostatic sleep drive and prolonged light exposure during

sleep deprivation which are considered in the full sleep-wake model). Second, the map

predicts that the duration of sleep deprivation, and the resulting circadian phase of the

sleep onset, can affect the time course of recovery sleep over multiple days (which is

consistent with simulation results using the full model). In particular, sleep onsets at

circadian phases near the large, vertical discontinuity of the map (i.e., when ϕn = 0.5

near the peak of the circadian rhythm) result in a long recovery to baseline sleep.

Finally, cobwebbing on the map can be used to estimate and illustrate the evolution of

sleep-wake behavior during recovery from sleep deprivation and return to the baseline

sleep. Thus, the map provides a computationally-efficient tool for predicting features

of recovery sleep that follows sleep deprivation.

Both total sleep and REM sleep time are increasingly recognized as important for

cognitive performance and physical and mental health (e.g., [97, 158, 153, 73, 146]).

This awareness has led to the development of multiple mobile applications and

electronic monitoring systems that track sleep and promote healthy sleep habits (e.g.,

[160, 16]). Many of these programs rely on mathematical models to predict sleep

durations and responses to disrupted sleep schedules. We propose that one-dimensional

maps can provide a computationally-efficient means to predict the effects of acute
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sleep deprivation. A map, such as the one presented here, that predicts the timing and

duration of total and REM sleep during recovery sleep, may be leveraged to design

optimal recovery strategies for individuals exposed to acute sleep deprivation. Moreover,

these strategies may be designed to account for constraints such as limited recovery

sleep time or repeated sleep deprivations. Previously, map-based approaches have been

applied to represent entrainment of the circadian oscillator following perturbations

such as transmeridian travel [46, 47]. Thus, computationally-efficient representations

of sleep and circadian dynamics may be used to simulate a range of sleep perturbation

and recovery scenarios. However, inter-individual differences in baseline sleep may also

affect responses to sleep deprivation [156, 129] and jet lag [8]. Therefore, future work

is needed to identify the key parameters necessary for representing interindividual

variability in sleep-wake responses and, thereby, enable the derivation of maps that

provide real-time, personalized predictions for recovery sleep.
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CHAPTER VII

Conclusions and Future Work

In the chapters of this dissertation we used mathematical modeling to investigate

how sleep-wake dynamics are affected by different perturbations. Specifically, we

established a mathematical framework for characterizing the dynamics of sleep patterns

in physiologically-based models of human sleep-wake regulation. We employed circle

maps to analyze sleep-wake dynamics under variation of the circadian and homeostatic

sleep drives (Chapters III,IV) or perturbations due to sleep deprivation (Chapter VI).

Additionally, we conducted a detailed bifurcation analysis to describe changes in sleep

patterns mediated by developmental changes (Chapters III-V).

We showed that varying the time constants and asymptotes of the homeostatic sleep

drive produces a transition from polyphasic to monophasic sleep, a process observed

from infancy to preschool years. This transition process may be strongly modulated

by properties of the circadian drive waveform (Chapter III). In particular, steeper

temporal profiles of the SCN firing rate lead to a more abrupt transition between

certain sleep patterns (e.g. biphasic to monophasic). Light exposure influences the

circadian drive and may play an important role in promoting napping or non-napping

behavior (Chapter V). The transition from biphasic to monophasic sleep patterns

can be distinct depending on how properties of the sleep homeostat vary across

development (Chapter V).
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Mathematically, varying the properties of the circadian waveform and the sleep

homeostat simultaneously generates a rich set of bifurcation sequences illustrated

through the use of circle maps as described in detail in Chapter III. Furthermore,

we found that the ultradian dynamics due to NREM-REM alternation gives rise

to non-monotonic, noninvertible and nonsmooth maps. This structure disrupts the

period-adding trend of the average number of sleeps per day, and allows for more

complicated phenomena to occur influenced by the number of REM bouts involved in

a sleep-wake pattern (Chapter IV). The maps capture responses to sleep deprivation

(Chapters VI) or more generally, desynchrony between the sleep-wake network and

the circadian rhythm, and can be used to determine the reentrainment process.

Our work to date has provided insight on important mechanisms modulating

sleep patterns and created avenues for future work. Some future projects are briefly

discussed below.

7.1 Circadian modulation of the transition from polyphasic

to monophasic sleep in the three-state sleep-wake model

Our work in Chapter III established a dependence of the transition from polyphasic

to monophasic sleep mediated by the homeostatic sleep drive on the steepness of the

circadian waveform. We conducted our analysis using the two-state SWFF model.

Future work will perform a similar analysis in the three-state model to understand

the role of NREM-REM cycling in the sleep patterns generated under homeostatic

and circadian variation.
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7.2 Data-driven modeling of sleep in preschool children in

the three-state sleep-wake model

In Chapter V, we focused on the transition from napping to non-napping sleep

behavior in preschool children. We found parameter sets for the two-state SWFF

model that capture the timing, duration and type of patterns for 2-year and 5-year

old children based on experimental data. We aim to extend our results in the three-

state model and obtain parameter sets that capture the distribution of REM sleep in

preschool children and understand transitions to consolidated sleep due to homeostatic

variation.

7.3 Canards in models of sleep-wake regulation

Canards are a special type of solution trajectory of fast-slow dynamical systems

that remain close to a repelling region of the solution phase space for an extended

amount of time. Canards have been observed in models of single neurons, and act

to separate trajectories with distinct excitability behaviors. Numerical solutions in

our SWFF model when we impose a steeper circadian waveform (studied in Chapter

III) have exhibited canard-like behavior that could be a contributing factor to the

bifurcations occurring in the systems. Therefore, we wish to investigate whether

canards indeed emerge in the models described here, and understand the physiological

implications of such phenomena for sleep-wake regulation.
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APPENDIX A

The Structure of the Map as k and αSCN Vary

The first return circle maps we have presented are characterized by at least one

discontinuity. The discontinuity associated with the bifurcations leading to loss of

stability of (p, q) periodic solutions is the one caused by tangencies on the upper

saddle-node curve of the fast-slow surface. In this appendix we explain that in the

regime of rotation number ρ = q
p
, the pth return map has p discontinuities associated

with the appropriate discontinuity of the first return map. Let Π : [0, 1] → [0, 1]

represent the first return map that demonstrates a discontinuity because of a tangency

on a saddle-node curve. Then Π([0, 1]) = [0, 1] \ I, where I is some interval and the

backslash, \, indicates that I is excluded from the interval [0, 1]. According to our

results, the discontinuity occurs close to the peak of the circadian oscillator for k = 1

and starts shifting towards later phases as k decreases. The interval I that is excluded

from the range of the map is associated with the rising phase of the circadian oscillator.

As mentioned in [25], during the rising phase of c, and hence fSCN , the dynamics close

to the upper-saddle node curve strongly promote the consolidation of wake. This leads

to a horizontal gap in the map, where we force sleep onset by following the eigenvector

associated with the unstable manifold at those saddle-node points. This is extensively

analyzed in [25]. This horizontal gap overlaps in large part with the interval I.
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The discontinuity in terms of our discrete circle map can be described as follows:

Assume that the discontinuity of the map occurs between the points (x1, Π(x1)) and

(y1, Π(y1)). Then ∀ δ > 0, ∃ ϵ > 0 such that for |x − y| < δ for x, y around the

discontinuity, then
∣∣Π(x) − Π(y)

∣∣ > ϵ. In the regime close to the occurrence of a

bifurcation, there is one stable periodic orbit of period p and the map is increasing on

either side of the discontinuity.

If the first return map has a discontinuity between x1 and y1, with x1 < y1, then

by a “backwards” cobwebbing on the map we can find x2, y2, so that x1 = Π(x2)

and y1 = Π(y2). Since the map is continuous everywhere else and invertible, x2 and

y2 are sufficiently close. We can now repeat the same process, and find x3 and y3

sufficiently close, so that x2 = Π(x3) and y2 = Π(y3). Finally, when we do this p − 1

times the first return map contains two sequences {x2, ..., xp} and {y2, ..., yp} that

satisfy: xj−1 = Π(xj) and yj−1 = Π(yj) for j = 2, .., p, respectively. Therefore, the pth

iteration of the map, Πp, has p − 1 discontinuities, each across xj, yj, for j = 2, .., p.

The idea is that the map provides approximate initial conditions xj, yj on the same two

trajectories that will lead to the discontinuity x1, y1 after j iterations, for j = 2, .., p.

So, we are approximately looking at the same two trajectories when they crossed the

section at a “past” time that will eventually lead them to crossing the section again

at phases x1 and y1 after j − 1 more times.

Additionally, Πp has another discontinuity across x1 and y1 leading to p total

discontinuities. The discontinuity of the first return map persists in the pth iteration,

since it takes at least q circadian days for the trajectories across the discontinuity to

entrain, i.e to converge to the stable pth-order cycle of the map. In other words, if

one sleeps at a circadian phase corresponding to the infinite slope branch of the map,

it will take a few days to converge to the stable sleep pattern. Hence, Πp is divided

into p branches bordered by two pairs from elements of the sequences {x1, ..., xp} and

{y1, ..., yp}. Each branch is increasing and maps a subinterval of [0, 1] to an other
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interval in the range of Πp.

Since we compute the maps numerically, it is important to note that the values

we obtain from this process might not agree exactly with the computed data points

of the map. However, in any case we can predict where the discontinuities in the pth

return map will occur within some error and how many should exist coming from the

discontinuity of the first return map.

Recall that discontinuities due to a tangency at the saddle-node curves are charac-

terized by an infinite slope in the left branch of the map curve and a finite slope in

the right branch. Hence, in the appropriate regime of the k − αSCN parameter space

and with k decreasing, when we first enter the
{

ρ = q
p

}
-regime, the branches with

infinite slope intersect the diagonal Φn+p = Φn at a saddle-node bifurcation. As k

further decreases, the finite slope part of each branch approaches the diagonal which

leads to the loss of stability of the (p, q) periodic solution due to a border collision or

a saddle-node bifurcation. For higher values of k we observe border collisions, but for

lower values the finite parts start curving downwards introducing more saddle-node

bifurcations.

When k is sufficiently small, the map becomes continuous, so only saddle-node

bifurcations occur. The homeostatic sleep drive h is fast enough now that it can

counteract the wake-promoting effect of fSCN . In this transition the vertical gap

shrinks and interestingly the length of the horizontal gap also reduces accordingly. For

values of k and αSCN that the map is continuous, we see that the bifurcation diagram

of the rotation number, ρ, becomes more dense and continuous as well.
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APPENDIX B

Computation of the Bifurcation Diagram of the

Rotation Number ρ

The rotation number ρ = q
p

describes the number of circadian days over the

number of sleep episodes. To compute the rotation number numerically, we have

created an algorithm that detects the repeating pattern of sleep episodes from the

model trajectory.

The algorithm works as follows: For each value of k we simulate the model for

100 days to ensure that it has converged to its stable solution. Simultaneously, we

keep track of the sleep onsets and their corresponding preceding circadian minima,

i.e., the local minima of the variable c, using a detection of the event fW = 4 during

the decrease of the variable fW . This allows us to compute the circadian phase of

each sleep onset in the simulation.

Starting at the last sleep onset phase recorded, we check the preceding sleep onset

phases to detect the previous occurrence of the same phase. Since, all of our results are

obtained numerically, we allow for an error of 0.0003 for two phases to be considered

“equal”. If the length of the subsequence that involves the two “equal” phases and

all intermediate sleep onset phases is p + 1, then the number of sleep episodes in the

pattern is defined to be p (this avoids double counting the first/last phase).
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To determine the number of circadian days, q, we count the distinct number of

circadian minima that correspond to the sleep onset phases of the pattern.

For some values of k, this algorithm did not detect a stable repeating pattern. In

that case, we computed an average ρ as the total number of days divided by the total

number of sleep cycles in a simulation lasting 120 days.
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APPENDIX C

Circadian Hard Switch (CHS) Model

In the CHS model, model dynamics are smooth in the four subregions (Σ+ ∪ Γ+,

Σ+ ∪ Γ−, Σ− ∪ Γ+, Σ− ∪ Γ−) and dynamics on the boundaries Σ and Γ are defined by

Filippov’s convex method. Specifically, for X = {fW , fS, fSCN , h, c, θ} we represent

the model system as follows:

dX
dt

=



F11(X) X ∈ Σ+ ∩ Γ+

c̄o{F11, F12} X ∈ Γ+ ∩ Σ

F12(X) X ∈ Σ− ∩ Γ+

c̄o{F12, F21} X ∈ Σ− ∩ Γ

F21(X) X ∈ Σ− ∩ Γ−

c̄o{F21, F22} X ∈ Γ− ∩ Σ

F22(X) X ∈ Σ+ ∩ Γ−

c̄o{F22, F11} X ∈ Σ+ ∩ Γ

where c̄o{Fij, Fkl} = {Fij,kl = αFij + (1 − α)Fkl, α ∈ [0, 1]} is a convex combination

of the flows on either side of a switching boundary. The vector fields Fij(X) in the

different subregions are defined as follows:

171



• The following differential equations regarding the variables fW , fS, c, θ are true

for all Fij(X) in their corresponding subregions:

dfW

dt
=

Wmax · 0.5 ·
(

1 + tanh
(

gscnwfSCN − gswfS − βW

αW

))
− fW

τW

(C.1)

dfS

dt
=

Smax · 0.5 ·
(

1 + tanh
(−gscnsfSCN − gwsfW − (k2h + k1)

αS

))
− fS

τS

(C.2)
dc

dt
= −ω sin θ (C.3)

dθ

dt
= ω (C.4)

• In F11(X) and F22(X) fSCN , where c > 0, the differential equation of fSCN is:

dfSCN

dt
=

SCNmax · 0.5 ·
(

1 + tanh
(

1
0.7

))
− fSCN

τSCN

(C.5)

dh

dt
= hmax − h

τhw

(C.6)

On the other hand, in F12(X) and F21(X) the differential equation for fSCN is:

dfSCN

dt
=

SCNmax · 0.5 ·
(

1 − tanh
(

1
0.7

))
− fSCN

τSCN

(C.7)

• Similarly, in F11(X) and F12(X), h is increasing and its differential equation is:

dh

dt
= hmax − h

τhw

(C.8)

In F21(X) and F22(X), h is decreasing and its differential equation is:
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dh

dt
= hmin − h

τhs

(C.9)

Ruling out sliding motions

To check whether the model flow does not permit the occurrence of sliding motion on

the switching boundaries Σ or Γ, we need to determine whether trajectories will always

cross Σ or Γ transversally. To this end, let g(X) = fW − θW = 0 define the boundary

Γ and v(X) = c − βSCN = 0 define the boundary Σ. Then, ∇g =< 1, 0, 0, 0, 0, 0 >

and ∇v =< 0, 0, 0, 0, 1, 0 >. For each boundary subregion, the conditions verifying

that the flow directions on either side of a switching boundary Σ and Γ are in the

same direction are as follows:

• On Σ+ ∩ Γ:

(
∇g(X)T ·F22

)(
∇g(X)T · F11

)
=

Wmax · 0.5 ·
(

1 + tanh
(

gscnwfSCN − gswfS − βW

αW

))
− fW

τW

2

≥ 0.

• Similarly, on Σ− ∩ Γ:

(
∇g(X)T ·F12

)(
∇g(X)T · F21

)
=

Wmax · 0.5 ·
(

1 + tanh
(

gscnwfSCN − gswfS − βW

αW

))
− fW

τW

2

≥ 0

• On Σ ∩ Γ+:(
∇v(X)T · F1

)(
∇v(X)T · F2

)
= (−ω sin(θ))2 ≥ 0.

• Similarly, on Σ ∩ Γ−:(
∇v(X)T · F3

)(
∇v(X)T · F4

)
= (−ω sin(θ))2 ≥ 0.
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All four of these conditions are satisfied indicating that the boundaries cannot be

attracting (or repelling) from both sides. This is sufficient to ensure that trajectories

transversely cross each of the switching manifolds Σ and Γ [45]. Thus, the possibility of

sliding on Σ and Γ is eliminated, and the representation of the flow on these boundaries

as a convex combination of the flow on either side of the boundary is well-defined

with an arbitrary choice of α.
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APPENDIX D

Stable Solutions for k = 0.434 and k = 0.317 With

αSCN = 0.7

The model trajectories in Figure D.1 graze the upper saddle-node curve of the

Z-surface. The occurrence of these tangent intersections (or grazing bifurcations of

the flow) leads to loss of stability of the ρ = 2
3 (Figure D.1A) and ρ = 1

2 (Figure

D.1B) solutions. This is predicted in the corresponding third and second return maps

(Figure 3.2D, F), respectively, where border collision bifurcations of the stable fixed

points are observed.
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A B

Figure D.1: The stable periodic orbits for k = 0.434 and k = 0.317 plotted in
relation to the Z−shaped surface in the c − h − fW space for the default value of
αSCN = 0.7. A. The ρ = 2

3 solution loses stability when the periodic orbit makes a
tangent intersection with the upper saddle-node curve of the Z-shaped curve. This
periodic orbit corresponds to the three stable fixed points of the third return map
in Figure 3.2D in which a border collision is observed. B. The ρ = 1

2 solution loses
stability when the periodic orbit makes a tangent intersection with the upper saddle-
node curve of the Z-shaped curve. This periodic orbit corresponds to the two stable
fixed points of the second return map in Figure 3.2F in which a border collision is
observed.
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APPENDIX E

Higher Order Maps of the Three-state Model

E.1 Maps showing the loss of sleep episodes with 6 REM

bouts for χ in the ρ < 1 regime

Here, we show the deformation of the first return map illustrating how sleep episodes

with 6 REM bouts cease to exist for χ in the ρ = 1 regime. For 0.721 < χ < 0.7235, the

six-REM-branch still participates in stable solutions corresponding to sleep patterns

associated with ρ < 1. At χ = 0.7215 (Figure E.1A), it exists over a very narrow

interval of sleep onset phases but is visited in the stable solution, represented by a

higher order cycle on the first return map. The neighboring five-REM-branches on

either side of it approach each other and finally merge into a single five-REM-branch

as shown for χ = 0.7165 (Figure E.1B). Thus, the basin of attraction of the ρREM = 6

solution, and hence the corresponding map branch, is annihilated as χ decreases. This

is a consequence of the faster growth and decay rates of the homeostatic sleep drive

that affects the total sleep duration and hence the potential total number of REM

bouts generated during a sleep cycle.

The first return map continues to show an unstable fixed point on the five-REM-

branch for χ values where stable solutions have ρ < 1 (and thus the stable fixed points
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appear on higher order return maps). This unstable fixed point disappears in a border

collision at χ = 0.69.
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Figure E.1: Loss of the six REM branch in the first return map. A. The first return
map for χ = 0.7215 with cobwebbing of the stable solution. The pattern of the stable
solution with ρ < 1 exhibits a sleep episode involving 6 REM bouts. B. The first
return map for χ = 0.7165 with cobwebbing of the stable solution. The solution does
not involve sleep episodes with 6 REM bouts and that is predicted by the structure of
the map as the 6 REM map branch has vanished.

E.2 Maps showing solutions near the end of the ρ = 1
2 regime

as χ decreases

As χ decreases to the end of the ρ = 1
2 regime, a period doubling cascade from the

{2(2,3), 2(2,2)}∞ pattern occurs for χ ∈ [0.43, 0.431] (Figure E.2A). As an example, the

stable solution for χ = 0.43 appears on the second return map as a higher order cycle

alternating between the (2, 3) (blue) and (2, 2) (green) map branches. As χ decreases

further to χ = 0.41, a border collision at the unstable fixed points on each of the (2, 2)

(green) map branches designates the loss of stability of the ρ = 1
2 solution (Figure

E.2B).
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Figure E.2: Second return maps towards the end of the ρ = 1
2 solution as χ is decreased.

A. Second return map for χ = 0.43. B. Second return map for χ = 0.41. Dashed lines
show cobwebbing orbit of the stable solution.
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