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Determine all positive integers n for which there exist positive integers a, b, and c satisfying

2a" + 3b" = 4Ac".

For which real polynomials p is there a real polynomial q such that

p(p(z)) — = = (p(x) — )°q(x)

for all real x?

Let S be the set of bijections
T:{1,2,3} x{1,2,...,2024} — {1,2,...,6072}

such that T'(1,7) < T(2,j) < T(3,7) forall j € {1,2,...,2024} and T'(i,5) < T(i,j + 1) forall i €
{1,2,3} and j € {1,2,...,2023}. Do there exist a and cin {1,2,3} and b and d in {1, 2, ...,2024} such
that the fraction of elements 7" in S for which T'(a,b) < T'(c, d) is at least 1/3 and at most 2/3?

Find all primes p > 5 for which there exists an integer ¢ and an integer r satisfying 1 < r < p — 1 with
the following property: the sequence 1, a, a2, ..., aP~> can be rearranged to form a sequence by, b1, ba, ..., bp—5
such that b, — b,,_; — ris divisibleby pfor1 < n < p— 5.

Consider a circle €2 with radius 9 and center at the origin (0, 0), and a disk A with radius 1 and center at (r, 0),
where 0 < r < 8. Two points P and () are chosen independently and uniformly at random on ). Which
value(s) of r minimize the probability that the chord P(Q) intersects A?

Let co, c1, ¢, . . . be the sequence defined so that
1-3z—V1—14z+ 922 &
4 - Z cpz”
k=0

for sufficiently small . For a positive integer n, let A be the n-by-n matrix with 7,j-entry ¢;; ;1 for 7 and j
in {1,...,n}. Find the determinant of A.
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Let n and k be positive integers. The square in the ith row and jth column of an n-by-n grid contains the
number ¢ + j — k. For which n and k is it possible to select n squares from the grid, no two in the same row
or column, such that the numbers contained in the selected squares are exactly 1,2, ..., n?

Two convex quadrilaterals are called partners if they have
three vertices in common and they can be labeled ABC D
and ABCFE so that E is the reflection of D across the per-
pendicular bisector of the diagonal AC. Is there an infinite
sequence of convex quadrilaterals such that each quadrilat-
eral is a partner of its successor and no two elements of the

sequence are congruent?

Let r;, be the nth smallest positive solution to tan z = z, where the argument of tangent is in radians. Prove

that
1

0<7’n+1—7’n—ﬂ'<m

forn > 1.

Let n be a positive integer. Set a, o = 1. For k > 0, choose an integer m,, ;. uniformly at random from the set
{1,...,n}, and let
angk+ 1, ifmy > ang;
Un f+1 = § Onk, it my = an s

angk — 1, ifmy <apg.

Let E(n) be the expected value of ay, ,. Determine lim E(n)/n.
n—oo

Let k£ and m be positive integers. For a positive integer n, let f(n) be the number of integer sequences
Tlyeoes ThyYly--- Ym, 2 satisfyingl < z; <--- <z <z<nandl1 <y; <+ < yp < 2 < n. Show
that f(n) can be expressed as a polynomial in n with nonnegative coefficients.

For a real number a, let F,(z) = 3, -, n%"z"" for 0 < z < 1. Find a real number ¢ such that

lim Fy(z)e /072 =0 foralla < ¢, and

r—1—

lim Fy(z)e /07 =00 foralla > c.
r—1—
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A1l. Determine all positive integers n for which there exist positive integers a, b, and c
satisfying
2a" + 3b" = 4c".

Answer: n =1 only. For n = 1, the equation is satisfied by (a,b,c) = (1,2, 2).

Solution 1: Consider n > 1. If d is the greatest common divisor of a, b, ¢, so a = dx, b = dy,
¢ = dz, then x,y, z satisfy the same equation and we can assume that the greatest common
divisor is 1. We see that 2 | 3b™, so 2 | b. Letting b = 2b;, the equation becomes

2™ + 3 - 2"B7 = 4c™.
Since n > 2, we have that 4 | 2a™, so 2 | ™ and 2 | a. Setting a = 2a;, we get that
2"(2al 4 3b7) = 4c"

and 2772 | ¢". Since we assumed the greatest common divisor of a,b,c is 1, we must have
that 2 1 ¢. Thus, we must have n = 2.
Then
2a? 4 3b* = 4¢2,

and so a® +c? = 3a? 4 3b? — 3¢? is divisible by 3. Considering all possible cases for remainders
of a and ¢ by division by 3, we see that a® has remainder 0 or 1, and ¢? has remainder 0 or
1. Thus, both a? and ¢ must have remainder 0, so 3 | @ and 3 | c. Writing a = 3az, ¢ = 3¢z
we have b? = 3(4c3 — 2a3), so 3 | b, contradicting the assumption that a,b,c have common
divisor 1.

Solution 2: To prove that there are no solutions for n > 2, assume to the contrary that
there is such a solution. Let d be the greatest common divisor of a, b, and ¢, and let x = a/d,
y=">b/d, and z = ¢/d. Then 22"+ 3y™ = 42", and the greatest common divisor of z, y, and z
is 1. In particular, at least one of x, y, and z is odd. Since 3y™ = 4z"™ — 22" is even, y is even.
Then since n > 2, it follows that 22" = 42" — 3y™ is a multiple of 4, so z is even too, whence
zis odd. If n > 3, we then have the contradiction that 2x™ 4 3y™ is a multiple of 8, but 42" is
not. If n = 2, we can write 2(x/2)? + 3(y/2)? = 22. It follows that /2 is odd. Since all odd
squares are congruent to 1 modulo 8, we have 2(x/2)? = 22 — 3(y/2)? =1 -3 =6 (mod 8),
which is impossible.



A2. For which real polynomials p is there a real polynomial ¢ such that

p(p()) — z = (p(z) — z)*q(x)

for all real x?
Answer: Only p(x) = £z + ¢ for ¢ a constant.

Solution 1: Let f(z) = p(x) — x and let d denote its degree. Then the desired property is
equivalent to f(x + f(x)) + f(x) = [f(z)]?q(x). By the Taylor series expansion of f at z,

@) @)
L2 @R+ 2 f@)

Thus, the factorization exists if and only if 2f(z) + f'(z)f(z) = [f(2)]*r(x) for some poly-
nomial 7, which in turn is equivalent to f(z) =0 or 2 + f/(x) = f(z)r(x). The factorization
holds when d = 0, hence when p(z) = z +¢. If d > 0, then 2 + f'(x) has degree d — 1, a
contradiction, unless 2 + f’(z) = 0, which is equivalent to p(x) = —x + c.

fla+ f(@) = f(@)+ f(2)f(z) +

Solution 2: Let r(z) = p(x) — x, then p(x) = x 4+ r(x) and the equation becomes

r(r(z) +a) +r(z) = r(z)*q(z)

Let r(z) = cpz™ 4 - - - + c12 + ¢o be its expansion in monomials. Then

k = . (k i k—i
r(r(z) +z) = cr(r(x) +2)" = E Cr g (Z>x (r(z))
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q1 96)
=r(z)*qu(z) +r(x)r’ (z) + 7(2).

Thus, the original equation is equivalent to

r(@)’q(z) + r(2)r' () + 2r(z) = r*(2)q(2).

Thus, either r(z) is identically 0 (so p(z) = z) or

r'(z) +2 =r(z)(q(x) - qi(2)).

If the degree of r(z) is not 0, then deg(r’'(z) 4+ 2) = deg(r(z)) — 1 < deg(r(z)(q(z) — q1(x)),
unless g(x) — q1(z) = 0. Thus, either deg(r(z)) = 0, so p(x) = x + ¢, or q(z) = q1(z) and
r(z) ==2,s0 r(x) = =2z + ¢, so p(x) = —x +c.

Plugging the two possibilities in the original equation we see the following. For p(x) =
x + ¢, we have 2c = c2q(x), so all real values for ¢ give a solution with a constant polynomial
q(z). For p(z) = —z + ¢ we have —(—x + ¢) + ¢ — x = (=22 + ¢)?q(x), so q(x) = 0 gives a
solution for all c.

The solutions are thus p(x) = —x + ¢ for any real ¢ or p(x) = = + ¢ for any real c.



A3. Let S be the set of bijections
T:{1,2,3} x {1,2,...,2024} — {1,2,...,6072}

such that T'(1,7) < T(2,j) < T(3,5) for all j € {1,2,...,2024} and T'(i,j) < T'(i,5 + 1) for
all i € {1,2,3} and j € {1,2,...,2023}. Do there exist a and c in {1,2,3} and b and d in
{1,2,...,2024} such that the fraction of elements T in S for which T'(a,b) < T'(c,d) is at
least 1/3 and at most 2/37

Answer: Yes.

Solution 1: We consider the more general situation where the set of bijections S is T :
{1,....m} x{1,2,...,n} = {1,2,..., mn} satisfying the given inequalities, where

m,n > 2

In the problem we have m = 3,n = 2024. To simplify the notation, we switch to the
probabilistic formulation: we are choosing elements T uniformly at random from S and
considering the probability that T'(a,b) < T'(c,d), which is equal to the proportion of such
bijections 7. By symmetry, if m and n are exchanged, then Pr[T'(a,b) < T(c,d)] becomes
Pr(T(b,a) < T(d,c)].

Consider Pr[T'(2,1) < T(1,2)]. If Pr[T(2,1) < T(1,2)] € [3, 3], then let (a,b) = (2,1)
and (c,d) = (1,2), and we are done. If not, then without loss of generality we can assume
Pr(T(2,1) < T(1,2)] < £ (if instead Pr[T(2,1) < T(1,2)] > 2, then we can exchange m and
n to get Pr[T(1,2) < T(2,1)] > 2, in which case Pr[T'(2,1) < T(1,2)] = 1 — Pr[T(1,2) <
T(2,1)] < 1). Our goal now is to show that Pr[T(2,1) < T(1, )] € [3, 2] for some j > 2.

Let S; ={T € S:T(2,1) =i} and let ¢; = |S;|/|5], i.e. the probability that the bijection
T has T(2,1) = i. If T(2,1) = i, we must have T(1,j) = j < T(2,1) for j < i—1 and
T(1,7)>i=T(2,1) for j >i. SoT(2,1) <T(1,7) is equivalent to j > T'(2,1), and summing
over all possibilities for the value T'(2,1) = 2,...,j we have

Pri7(2,1)<T1,5)]=¢+qg¢g+ g

In particular, g» = Pr[T(2,1) < T(1,2)] < 3. Note also that gz + - + g1 = 1 since these
are the only possibilities for T'(2,1).

Claim. We have that g2 > q3 > -+ > qp+t1-

Proof. We see that there is an injection ¢ : S;1+1 — S;, given by ¢(T)(1,7) = i+1, ¢(T)(2,1) =
i, and ¢(T')(r,s) = T(r,s) for all other (r,s). O

Finally, let k = max{j : g2 +--- +¢; < %}, which exists by the above bounds. Further,
since gn+1 < @@ < %, we have ga + -+ ¢qn = 1 — gn+1 > %, so k < n. By maximality
we must have that % < g+ -+ + qry1, and since g1 < @2 < %, we must also have
G2+ app1 = (g2 +ak) +qe1 < g+3 = 3. Then (a,b) = (1,k+1) and (¢,d) = (2,1)
are the desired pairs.

Solution 2: The answer is yes, in particular for a = 2, b = 2024, ¢ = 3, d = 2023. Think of
the domain of T as a grid with 3 rows and 2024 columns, with rows and columns numbered
as for a matrix. The greatest value of T', namely 6072 must be in the bottom row and the



rightmost column, so 7'(3,2024) = 6072. Similarly, the value 6071 can only be immediately
above or immediately to the left of (3,2024), so either T'(2,2024) = 6071 or T'(3,2023) = 6071.
Thus, the number ny of T' for which 7°(2,2024) < T'(3,2023) is the number of 7" for which
T(3,2023) = 6071, and the number ng of T for which 7'(2,2024) > T'(3,2023) is the number
of T for which T'(2,2024) = 6071. To prove that ni/(ny + ng) is between 1/3 and 2/3, it
suffices to prove that ni/ng is between 1/2 and 2.

For integers k > £ > m > 0, let Dy ¢, = ({1} x{1,2,...,k})U({2} x{1,2,...,€})U({3} x
{1,2,...,m}). Notice that D2024,2024,2024 is the domain of T" in the problem statement. More
generally, think of Dy, ., as a left-justified grid with & elements in the first row, £ elements in
the second row, and m elements in the third row. Let N(k, ¢, m) be the number of bijections
T : Dpgm — {1,2,...,k + € +m} for which T(i,j) < T(i + 1,7) and T(i,j) < T(i,j + 1)
whenever both sides of the inequality are defined. Notice that N(2024,2024,2024) is the
number of elements in S, and so is N (2024, 2024, 2023), since 7'(3,2024) is determined by the
conditions on T'. Furthermore, n; = N (2024, 2024, 2022) and ny = N (2024, 2023, 2023).

The bulk of the remainder of the solution is to derive a formula for N(k,¢,m). The
greatest value of T', namely k£ + £ + m, must occur at the right end of a row and only if this
row extends beyond the bottom row, so either T'(1,k) = k+ ¢+ m or T'(2,¢) = k+ ¢+ m or
T3,m)=k+{+m. If k> ¢ >m >0, then all three cases are possible, and if k¥ = ¢ then
the largest element cannot be at (1, k) etc. Each case can be reduced to a domain with one
fewer element, resulting in the identity

Nk, t,m) = N(k — 1,,m) + N(k,£ — 1,m) + N(k, £,m — 1), (%)

where we assume that the term is 0 if the arguments are not in weakly decreasing order.
Furthermore, considering the conventional values N(0,0,0) = 1 and N(k,¢,m) =0 if k, £ or
¢ < m as “boundary conditions”, (*) recursively determines N (k,¢,m) for all k > ¢ >m >0
with £+ ¢+ m > 0.

We will express N(k, ¢, m) as a linear combination of trinomial coefficients, which satisfy
a similar recursion. Let
(pP+g+r)

plg!r!
for nonnegative integers p, ¢, r, and extend F' to the integers by defining F'(p,q,7) =0if p < 0
org<Qorr<0.

F(p,q,r) =

Lemma' FOT (p7 q, T) ;é (O’ 07 O);
F<p7Q7r) = F(p_ 17q77n) +F(p7q_ 17T) +F(p,q,7"— 1)
Proof. For nonnegative p, q,r with p + ¢ +r > 0, the desired equality is equivalent to

p+qg+r—1)! p+qg+r—1!  (p+qg+r—1)

(p+q+7r—1)
plglr! b plglr! a plglr!

plg'r!

(p+qg+r)=
If p<0org<0orr <0, then the desired equality is equivalent to 0 = 0. O
Claim. Fork>¢>m>0ork+1=4>m>00rk>¢+1=m>00rk>{>m+1=0,

N(k,t,m) = F(k,t,m)+ F(k+2,0—1,m—1)+ F(k+ 1,0+ 1,m — 2)
—Fk+1,0—1,m)— F(k,{+1,m—1)— F(k+2,0,m —2).



Proof. The claimed expression for N(k, ¢, m) satisfies the recursion (*) for k > ¢ > m > 0
and k+ £+ m > 0 as an immediate consequence of the Lemma, since k + ¢ + m > 0 ensures
that none of the triples on which F' is being evaluated are (0,0,0). It remains to verify the
“boundary conditions”.

If k+1=4¢2>m > 0, then substituting £ = k+1 into the claimed expression and using the
fact that F'(p,q,r) = F(q,p,r) makes all the terms cancel out, yielding the required boundary
value 0 in this case. Similarly, if £ > ¢+ 1 = m > 0, then substituting m = £ 4 1 and using
the fact that F'(p,q,7) = F(p,r,q) makes all the terms cancel out. If k > ¢ > m+1 =0,
then all terms in the claimed expression are 0. Finally, if K = £ = m = 0, first term is 1 and
all other terms are 0, yielding the required value 1 in this case. O

For k> ¢ > m > 0, it follows that

(k+2)!1(£ + 1)!m!
(k+£+m)!

Nk, t,m)=(k+2)(k+1)({+1)+ L+ 1)lm+ (k+2)m(m—1)

—(k+2)+ 1)l —(k+2)(k+1)m—(L+1)m(m—1)
=k+1-0(k+2)+1)—(k+L+2)m+m(m—1))
=k+1-0O(f+1—m)(k+2—m).

Then for k& > 2,

Nk kk—2) _  (k+2W(-1! 13-4 (k-1
Nk k—1,k—1) (k+2k+D)(k-2) 2-1-3 " (k+1)

This fraction is between 1/2 and 2 for all £ > 2. In particular, with & = 2024, we get that
n1/ngy is between 1/2 and 2, which completes the solution.

Remark. This problem is a special case of the 1/3-2/3 conjecture (https://en.wikipedia.
org/wiki/1/3-2/3_conjecture). Solution 1 is based on an argument in [S. H. Chan, I.
Pak, G. Panova, “Sorting Probability for Large Young Diagrams”, Discrete Analysis 24
(2021), https://doi.org/10.19086/da.30071]. The final formula derived in Solution 2
for N(k,¢,m) is a special case of the “hook length formula”, written in the following form:

https://en.wikipedia.org/wiki/Hook_length_formula#Related_formulas



A4. Find all primes p > 5 for which there exists an integer a and an integer r satisfying
1 < r < p—1 with the following property: the sequence 1, a,a?, ...,a?~® can be rearranged to
form a sequence bg, by, by, ..., b,—5 such that b, — b,—1 — r is divisible by p for 1 <n <p —5.

Answer: Only p=7.

Solution: For p =7, a = 3 yields the sequence 1, 3,9, which can be reordered as 1,9, 3.

For p > 11, we work modulo p. Suppose 1,a,a?,...,aP~> can be rearranged with differ-
ences between consecutive terms congruent to r # 0 (mod p). If two of these terms were the
same modulo p, then jr =0 (mod p) where j is the distance between their indices in the arith-
metic progression. Since j < p, we must have j = 0, and so the terms are all distinct modulo
p. Because p—5 > (p—1)/2, we conclude that a has multiplicative order p— 1 modulo p, and
s0 0,1,a,a?,...,aP~? are distinct modulo p. Therefore, 1, a,a?,...,a?”® must be congruent
to a “segment” of the “cyclic” modulo-p arithmetic progression 0,r,2r,...,(p — 1)r,0,....
Then 0,aP~%, a?~3, a?~2 must be congruent to the remaining segment that completes the cy-
cle. Since a?~! = 1 (mod p), these four terms are congruent to 0,c,c?, 3, where c is the
residue class of a?~2? modulo p. Because none of ¢, ¢?, ¢® are —1 times another, 0 must be an
end of the arithmetic progression, which we may assume is the beginning. Furthermore, if
we multiply by ¢4, we obtain another arithmetic progression using the same rearrangement
of the terms 0,¢73,¢72, ¢! as for 0,¢,c?,¢3. Thus, with either d = ¢ or d = ¢!, we need
only consider the three orderings of 0, d, d?, d® that begin with 0 and where d precedes d>.

The progression is 0,d,d?, d>. Then d?> = 2d (mod p) and d® = 3d (mod p), so d = 2
(mod p) and 8 =6 (mod p), a contradiction.

The progression is 0,d,d®,d?. Then d® = 2d (mod p) and d? = 3d (mod p). Thus, d = 3
(mod p) and 27 =6 (mod p), a contradiction.

The progression is 0, d?, d,d®. Then d = 2d*> (mod p) and d® = 3d? (mod p). Thus, d = 3
(mod p) and 3 = 18 (mod p), a contradiction.



A5. Consider a circle Q with radius 9 and center at the origin (0,0), and a disk A with
radius 1 and center at (r,0), where 0 < r < 8. Two points P and @ are chosen independently
and uniformly at random on Q. Which value(s) of  minimize the probability that the chord
PQ intersects A?

Answer: r = 0. More generally, if the larger circle has radius p > 1, then the minimum
probability for 0 < r < p — 1 occurs at (and only at) r = 0.

Solution 1: Consider more generally the case that A has center (rcos#,rsiné). The prob-
ability p(r) that PQ intersects A is independent of #, so we can compute p(r) by considering
0 to be a random variable chosen uniformly on [—7, 7], independently of P and Q.

Next, let O be the origin, and let II be the set of lines through O. Let L be the line in II
that bisects angle PO(Q). As the angle ray O@ makes with ray OP increases from 0 to 2, the
angle L makes with OP increases half as fast from 0 to 7 (this sweeps through all the lines in
IT). Thus, L is uniformly distributed on II for each fixed P. Since P is uniformly distributed
on {2, the ordered pair (P, L) is uniformly distributed on © x II. Since P and L determine
Q (specifically, @ is the reflection of P through L), we can compute p(r) with respect to the
independent uniform random variables P, L, and 6 (instead of with respect to P, @, and 0).

Because of the uniform distribution of 6, the probability that PQ intersects A is indepen-
dent of L. Thus, we can fix L to be vertical and compute p(r) with respect to P and 6; then
PQ is the horizontal line through P. By left-right symmetry, we can compute p(r) using the
uniform distribution for P on the half of Q to the right of L. Thus, let P = (pcosp, psiny)
where ¢ is uniformly distributed on [—7/2,7/2]. For fixed 6, the probability that PQ in-
tersects A is then the probability that psin ¢ lies between rsinf — 1 and rsin € + 1, which

is
1 < . <rsin9—i—1> . <rsin9—1>)
— | arcsin | ———— | —arcsin | —— | ).
m p p
1 4 i 1 inf —1
p(r) = — / arcsin rsmfF1y arcsin rsinf -1 do.
2m? ), p P

It follows that

Thus,

'(r) = 1/7r sinf ! — L do
b 212 J o p \V/1—(rsinf@+1)2/p2 /1 — (rsinf —1)2/p>

1 T 1 1
= 2/ sin 6 - — _ do
2me ) & V2= (rsinf+1)2  \/p2 — (rsinf — 1)2

The integrand is positive when 0 < 7 < p — 1 and sinf > 0, because then (rsinf — 1)? <
(rsinf + 1)2 < p?. Notice that the integrand is also an even function of 6, since it is the
product of two odd functions. Thus, p'(r) > 0 for 0 < r < p — 1, and therefore p(r) is
minimized at r = 0 only.

Solution 2: Let P = (pcos#, psinf), where 0 is uniformly distributed on [0,27). Let B be
a point on A for which PB is tangent to A, and let C = (r,0) be the center of A. Then
PBC is a right triangle, and since length BC = 1, we have

BC 1 1

sin/BCP = — = = .
PC \[(pcos® —r)2+ (psin®)2  /p2+ 12— 2prcosf

7



Let A be the arc between the two tangent rays from P to A. For fixed P, the conditional
probability that PQ intersects A is the probability that @ lies in A, which is the angle
measure « of A divided by 27. Notice that « is twice the angle between the tangent rays
from P to A, and hence oo = 4/BCP. Thus, the conditional probability that PQ intersects
A is (2/)arcsin(1/+/p2? + 12 — 2prcos ). It follows that the overall probability p(r) that
PQ intersects A is given by

1 (2 1
p(r) = — — arcsin do
2 Jo m Vp? 412 —2prcosf

2 (7 . 1
== arcsin do.
™™ Jo Vp? + 12 —2prcosf

Notice that p(0) = (2/7) arcsin(1/p).
Since arcsin is a convex function on the interval [0, 1], Jensen’s inequality implies that

2 1 (7 1
p(r) > — arcsin / o | .
T m™Jo \/p?+1r2—2prcosf

The proof that p(r) > p(0) for 0 < r < p — 1 will be complete after we prove the following
claim for such r:

1 (7 1 1
— dag > —.
m™Jo \/p?+12—2prcosf p
This claim turns out to be true for 0 < r < p, in fact. Let x = r/p € (0,1); multiplying the
inequality above by pm yields the equivalent claimed inequality

4 1
do > .
/0 V1+ 22 —2xcosf

Let t = (v/1+ 22 — 2xcosf — 1)/x, so that 1+ 22 — 2z cos@ = (1 + zt)?, and notice that
t goes from —1 to 1 as 6 goes from 0 to w. To change variables from 6 to ¢ in the integral
above, we compute 2z sin 0 df = 2x(1 + «t)dt, and

2x
=VQ2r+1+22— (14 2t)2)(2z — 1 — 22 + (1 + 21)2)
=VA+z+O+at)A+z—Q+2t)A+at+(1—2z)1+xt—(1-2))
=V/2+z+at)z(1— )2 -z +at)x(l+t) =21 — 2/ (2 + t) — 22.

1422 — (1 +2t)2)?
2xsin0:2x\/m:2x\/1_( R

Thus,

/7r 1 de—/l 1 2(1 + xt) J
0 V1+22—2xcosd S ltat V1—12/(2 + 2t)2 — 22

[w=7a
— dt.
1 VI =12/ (2 + )2 — 2



Let f.(t) = (2 + xt)? — 22, so that the integrand above can be written 2f,(t)~"/2/v/1 — t2.
Since the function y — /2 on the positive real numbers is convex,

Lo+ fo(=)7H2 <fm(t) + fm(—t))_m 4222 ]

2 2 ~3

for 0 <z <1and —1 <t < 1. Thus,

1/2 1 —1/2 _\—1/2 1
m 0 Vi 0 V122

as claimed.



AG6. Let ¢y, cq,co,... be the sequence defined so that

1-32—+vV1—- 14z + 922 &
4 —chx

k=0

for sufficiently small z. For a positive integer n, let A be the n-by-n matrix with i, j-entry
Ciyj—1 for i and j in {1,...,n}. Find the determinant of A.

Answer: 10("*—)/2

Solution 1: More generally, let

F(w)zl—ax—\/(;ﬁ—aw — 4px chx

We show that the determinant of the n x n matrix defined as in the problem statement is
(B(e+ B))"*~™/2. When o = 3,3 = 2, we get the problem statement.
By the quadratic formula, F(z) is a root of

BF(x)* + (ax — 1)F(z) + = = 0.

From its definition, observe that ¢y = F(0) = 0. Examining the coefficient of 2" in the
functional equation, we find

17 If n = 17
— a’+’67 H‘n:: 2,
“n = n—2
(@+28)cn-1+ B> ckCnt, if n > 2.
k=2

(We use the convention that a sum with strictly decreasing limits of summation is 0.)
Thus, the 1-by-1 matrix has determinant 1 and the 2-by-2 matrix has determinant

(a+28)(a+pB)-1—(a+B)* =Bla+p).

We proceed by induction; assume the claim for some n > 2 and consider the (n+1)-by-(n+1)
matrix.
From row n + 1, subtract a + 28 times row n and Bcy,41—p times row k for rows k =

2,...,n— 1. The entry in row n + 1, column j is now
n—1 n—1
Cntj — (@4 2B)cntj1 = B Cni1-kCirh-1 = Cntj — (@ +28)cntj1 — B Y ChCnyjk
k=2 k=2
n+j—2
=/ Z CkCntj—k = chm 1C14j—k-
Next, reduce rows n,n — 1,...,3 similarly. Finally, subtract a + § times row 1 from row 2,

so the entry in the jth column of row 2 is now

j—1
B E CkCl4j—k-
k=1

10



At this point, column j of rows 2 through n + 1 is the column vector

CkCl4+j—k Ck
j—1 Ck+1C14-j—k j—1 Ck+1
B : =f Z Clyj—k :
=L Cpgn—oCiyj k=1 Chn—2
L Ck4+n—1C1+j—k | | Ck+n—1 |

Therefore, the entire first column is now the standard basis vector e;. The determinant of
the reduced matrix (which is the same as the determinant of the original matrix) is then the
determinant of its lower right n-by-n submatrix. Pull the factor 8" out of the determinant
of the submatrix. Noting that, for j > 3,

SR
j—2 Ck+1
ch+j—k :
k=1 Ck+n—2
L Cktn—1 ]
is in the span of the columns 2,...,j5 — 1 of this submatrix, we may reduce its columns

from left to right, yielding co = (a + () times the original n-by-n matrix. Therefore, the
determinant for (n + 1)-by-(n + 1) matrix is " (a + )" times that for the n-by-n matrix,
completing the induction.

11



Remark. Letting A,, denote the n-by-n matrix, the row and column reductions above can
be summarized as follows:

1
—(a+p) 1
0 —(a+28) 1 0
0 —,BCQ —(Oé + 25) 1
0 —Bcn—2 —Ben-3 ... —Pea —(a+2p) 1
i 0 —Ben—1 —fen—2 ... —Pc3 —pez —(a+28) 1
1 0 0 0 i
1 —ec3/ca —cyfca ... —cpfca  —cpy1/ca
1 —cgfca ... —cp_1fca —cn/co
: An+1 ’ O
1 —c3/co
L 1 -
c1 ‘ Co Cn+1
B 0
i Bla+ )4,
0

Solution 2: We will show that A = LDL' where [L; ;]
1’s on the diagonal and [Di,j]zj_:lo is a diagonal matrix with Dy = 10*. (Here we start the
indexing at 0.) Then det A = det(L)?det(D) = 1 - 100+1++0=1 = 10(5).

Let F(x) = =32 14_14x+9m2 = x + 522 + O(23). We have that (4F(z) + 3z — 1)? =
1 — 14z + 922, so

?j_:lo is a lower triangular matrix with

2F(z)? + (3z — 1)F(2) + = = 0.

Let f(u) := F(u)/u = 1+ 5u+ O(u?) and g(u) := Z8=" = 4 + O(u?), and define L;

5u
for i,7 =0,1,... as the coefficients of the expansion of
Uu,v) = Z L julv’ = S flu) (1 +vg(u) +v3g(u)® +--).
§,j>0 7 1 —vg(u)

We see that L; j = 0 for ¢ < j and L;; = 1. Consider B = LDL! where Dy = dk for k>0
and all other entries of D are zero. Then the entries of B are

B;; = Z Ly Dy g Lj k-
k>0

12



(Only a finite number of terms in the sum above are nonzero, because L is lower triangular.)
Denote by [2¥]H(z) the coefficient of 2* in the expansion of H(z). Set

b(u,v) = Z Bz-,juivj = Z[wktk] Z Li7ruiwrerj,svjt8

1,720 k>0 %,5,r,8>0

= S [k, dw)(o,t) = Fu)f(0) St Y dwrg(u) (o)
k>0 k>0 r,s>0

S g g — TI)

= 1007(0) S d'o0)"s00)" = e

The lower-triangular property L; ; = 0 for ¢ < j implies that B; ; depends only on values
of L; ., Dy x, and L;, with & <7 and k < j. Thus, the equation B = LDL! holds also for the

finite matrices [Bz',j]?,j_:loy [Lz‘,j]zj_:lo; and [D”]f]_:lo The following claim proves the desired

decomposition for A, and finishes the solution.
Claim. For d = 10, we have A;41,j+1 = B; ;.

Proof. Define A; ; = c;yj—1 forall4,j =1,2,..., and let

a(u,v) = E Ajyy jru't’) = g Citjr1u'v’

4,520 ,7>0
_ u""i’l _ ,U’f‘+1 F w) — F v
=S et ) = S e _ Pl - Flv)
u—v u—v
r20 r>0

since ¢g = 0.
Next, consider
_ Fu) - Fv) f(u)f(v)
alu, v) = b, v) = wu—v  1—10g(u)g(v)
_ Fu)(1 = 10g(u)g(v)) — uf(u)f(v) — F(v)(1 - 10g(u)g(v)) + vf(u)f(v))
(u—v)(1 —10g(u)g(v)) ‘

We have that F(u) = %, and so the first half of the numerator above is

Fu)(1 = 10g(u)g(v)) — uf(u)f(v) = F(u)(1 = 10g(u)g(v) — f(v))

_ (Fu) —w) (F(u) —u)(F(v) —v) F(v)
~sr s (2 )
— (F(u)—U) Uy — U v v (u uwF(v) — 2uv — 5uF' (v
= 3 (u) 1 3u)(Buo) OW0 ~ 2F(F (W) +20F (u) £ 2ul (v) = 2uv = 5uF (v))
(F(u) —u) B D E( .
(@F () + 3u)(5an) W0 ~ 2 (WF(0) +20F (u) = 3uF (v))

_ (F(uw) —u)(F(v) = v)(=2F(u) — 3u)
(2F (u) + 3u)(buv)
_(Fw) —u)(F(v) —v)

Suv

The second half of the numerator is the negative of the first half, with v and v interchanged,
so performing the same manipulations on the second half verifies that it cancels with the first
half. Thus, a(u,v) = b(u,v) and the claim is proved. O

13



Remark. This problem was inspired by the determinants of Hankel matrices used to count
tilings of the Aztec diamond (https://en.wikipedia.org/wiki/Aztec_diamond).
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2024 Session B

B1. Let n and k be positive integers. The ith row and jth column of an n-by-n grid of
squares contains the number ¢ 4+ j — k. For which n and k is it possible to select n squares
from the grid, no two in the same row or column, such that the numbers contained in the
selected squares are exactly 1,2,...,n?

Answer: It is possible if and only if n = 2k — 1.

Solution: Suppose that it is possible to select such squares, and let their coordinates be
(i,w(i)), where w: {1,...,n} — {1,...,n} is a bijection. We must have that the sum of the
entries in those squaresis 1 +2+---+n = (”;1) On the other hand, the sum is equal to

i+ w(i) — k) = it S w(@) | —kn =2 i| —kn=2 n+1>—kn,
e —n = (s Zo ) s (5) on-2('
Thus, we must have kn = (";rl), so k= (n+1)/2, and n = 2k — 1 has to be odd.

To exhibit a possible construction for these values, let w(i) = k+i—1fori=1,...,k and
w(i) =i—kfori=k+1,...,n,so that w(l),w(2),...,w(n) =k,k+1,...,n,1,....k— 1.
The value in the square (i,w(7)) is 2¢ — 1 for i = 1,...,k (the odd numbers 1,3,...,n), and
2(i — k) for i = k+1,...,n (the even numbers 2,4,...,n —1).



B2. Two convex quadrilaterals are called partners if they
have three vertices in common and they can be labeled
ABCD and ABCE so that E is the reflection of D across
the perpendicular bisector of the diagonal AC. Is there
an infinite sequence of convex quadrilaterals such that
each quadrilateral is a partner of its successor and no
two elements of the sequence are congruent?

Answer: No.

Solution 1: Let Qq,Q1,...,Qs be a sequence of convex quadrilaterals such that @, and
Qn+1 are partners for 0 < n < 5. We will prove that Qg and Qg are congruent, unless ,,—1
and @Qn41 are congruent for some 1 <n < 5.

In the notation of the problem statement, we’ll say that ABC'D and ABCE are partners
with respect to diagonal AC. A quadrilateral can have two different partners with respect to
the same diagonal, but these partners are congruent to each other, because one partner is the
reflection of the other about the perpendicular bisector of the diagonal. Thus for 1 <n <5,
either @,_1 and @Q,41 are congruent or they are partners of @), with respect to different
diagonals of (),,. Hereafter, we assume that the latter is true for all 1 < n < 5.

Label the vertices of Q),, as W, X,,Y,,Z,, in such a way that the three vertices in common
between @, and @,+1 are assigned the same letters. Without loss of generality, we can
assume for 0 < n < 5 that @, and @11 are partners with respect to W, Y, if n is even and
with respect to X,,Z, if n is odd. For each such @, this allows two possibilities for @,,+1 that
are congruent to each other, so without loss of generality we can assume that W,.1 = W,
and Z,11 = Zp.

Since Qo is convex, its diagonals intersect, and in particular they are not parallel, so
neither are their perpendicular bisectors. Let P be the intersection of their perpendicular
bisectors, and let P be the origin of a polar coordinate system. Then Wy and Y are equidis-
tant from P, and so are X and Zy. Let the coordinates of these vertices be Wy = (r, «),
Xo = (s,8), Yo =(r,7), Zo = (5,9). -

To form @1, we reflect Xy across the perpendicular bisector of WYy to get X;. The
angle that the bisector makes with respect to P is O‘Tﬂ, reflecting Xy to Xy then gives an
angular coordinate for X, as 2(0%7 — ) + B. Since P is on this perpendicular bisector, it is
equidistant from Xy and X, so we have X; = (s,a + v — ), while Y1 = Yy = (r,7). Notice
also that X7, and Z; = Zj are equidistant from P, so P is on the perpendicular bisector of
diagonal X;Z;. Continuing in this manner, keeping in mind that W,, = Wy and Z,, = Zg, we
calculate

In particular, Qy and Qg are congruent (though they would not necessarily coincide with
each other if we had chosen partners so that W,, or Z,, changed at some step).



Solution 2: We say that an ordered quintuple (w,z,y, z,0) “represents” a convex quadri-
lateral ABCD if w = AB, z = BC, y = CD and z = DA, and 60 is the sum of the interior
angles at B and D. (By relabeling its vertices, a quadrilateral can be represented by more
than one quintuple.) We claim that two convex quadrilaterals that can be represented by the
same quintuple must be congruent. Before we prove this claim, we explain why it solves the
problem.

For partners ABCD and ABCE, the interior angles at D and E are the same, and CD =
AFE and DA = EC. Thus, if (w, z,y, z, 0) represents ABC'D using the labeling of the previous
paragraph, then (w,z,z,y,0) represents ABCE. Furthermore, if (w,x,y, z,0) represents
ABCD using a different labeling, then ABCFE can be represented by some permutation of
w, z,y, z followed by 6. (Notice that # might be the sum of the interior angles at A and C' in
this representation, but since the sum of all four interior angles of a quadrilateral is always
27, the value of 0 is the same for ABC'D and ABCE in this case too.) By induction, for
an infinite sequence of convex quadrilaterals in which each is a partner of its successor, if
(w, z,y, z,0) represents the first member of the sequence, then each member of the sequence
can be represented by a quintuple that is some permutation of w, z,y, z followed by . Since
there are only a finite number of such permutations, two members of the sequence can be
represented by the same quintuple.

To prove the claim, we again use the labeling of the first paragraph. Let ¢ be the interior
angle at B; then the interior angle at D is 8§ — ¢. By the law of cosines, both of the following
expressions equal AC?:

w? 4 2% — 2wz cos ¢ = y* + 2% — 2yz cos( — ¢).

Since ABCD is convex, both ¢ and 6 — ¢ lie between 0 and m, so the left side of the equation
above is a strictly increasing function of ¢, and the right side is a strictly decreasing function
of ¢. Thus, there can be only one value of ¢ that achieves equality. The values of w, z, vy, 2,0, ¢
determine triangles ABC and C DA up to congruence, and therefore they determine ABCD
up to congruence.

Solution 3: We prove that the number of noncongruent quadrilaterals in such a sequence
of convex quadrilaterals cannot exceed 12.

Observe that AACD = ACAE. Thus, two convex partners have the same set of four
side-lengths, the same area, and the same sums for the two pairs of opposite angles.

In quadrilateral ABCD, let p = ZAand 0 = LA+ ZC, w = AB, x = BC, y = CD,
z = DA. The areas of the sequence of quadrilaterals all equal

. 1 . Wz — TYCoST zysino
§wzsmp+ §xys1n(a—p) = ————sinp+

5 oS p.

Since the area is positive, the coefficients of sin p and cos p cannot both be zero. By convexity,
0 < p < m, sosinp > 0. Thus, for the derivative of the area with respect to p to be 0, we
must have )
Tysino

cotp=————
Wz — TYCOS T
which holds for as most one of the possible values of p. Then for given w,x,y, z, o, the area
takes on any particular value for at most two values of p. Knowing p determines BD; hence

determines ZABD, /ADB, /CBD, and ZCDB; hence determines ZABC and ZADC.



More generally, after a sequence of convex partnerships, there is always an angle adjacent
to the side of length w that is one of the opposite pair of angles that sum to o. Let the
side lengths be, in order, w, s1, s2, s3, where s1, 2, s3 is a permutation of z,y, z, and ¢ is the
sum of the angle p between w and s3 and the angle between s; and s3. As in the previous
paragraph, the values of w, s1, s2, s3, 0, p determine the quadrilateral up to congruence, and for
given w, $1, S2, S3, 0, there are at most two values of p that make the area of the quadrilateral
equal to the area of ABCD. This yields at most 3! - 2 = 12 noncongruent quadrilaterals.

Remark. Solution 3 yields twice as many possibilities as Solution 1 because, in fact, there
is only one possible value of p for given w,z,y, z,0. This follows from an argument similar
to the last paragraph of Solution 2, requiring that angles p and o — p yield the same value
for the length of diagonal BD.



B3. Let r, be the nth smallest positive solution to tan z = x, where the argument of tangent

is in radians. Prove that 1

o0<r — Ty T < 55—
n+1 n (n2—|—n)7r

for n > 1.

d
Solution: Set d,, = 7,41 — rp, — 7. Because — (tanx — x) = sec?z — 1 > 0 where the

derivative exists, with equality only at integer multiples of m, for each period of tanx the
function tan(z) — x is increasing and has a unique root. Thus, nm < r, < (n + 1/2)7 and
d, < m/2. Since tan(r, — nmw) = tanr, = r, < rpy1; = tanr,41 = tan(r,4; — (n 4+ 1)), we
have r, — nm < rp41 — (n 4+ 1)7, and hence d,, = rp41 — (n + 1) — (r,, — nw) > 0. Then
0 < d, < 7/2, and in particular d,, < tand,. By the formula for the tangent of a difference,
we have

tan(ry41) — tan(ry, + m)
dn < tan(dn) = tan(rni = (mn +m)) = 1 + tan(ry41) tan(ry, + m)

Tl — T THdy
14+ rp4p1mn 14+ rpp1rn

Isolating d,,, we find

dy < —— < T
" e (R Dmeonm (24 n)w




B4. Let n be a positive integer. Set a,o = 1. For k > 0, choose an integer m,, ;, uniformly
at random from the set {1,...,n}, and let

ank + 1, if Mpk > Qnk;
Ank+1 = 4 Onk; if My k= ang;
ang — 1, i myr <apg.

Let E(n) be the expected value of ay, . Determine lim E(n)/n.

n—oo

1—e2

A :
nswer 5

Solution 1: Let p, x(j) denote the probability that a,; = j and let E(n,k) denote the
expected value of a,, ;. When a,, ; = j, the expected value of a, 141 — an is

-9 1 ) — 1 1—-29
1 nd g L iml_ntl-2
n n

n n
Therefore,
“n41-2j , n+1 2
E(n,k+1) = E(n,k 2 ki) = E(n,k — 2 E(n,k
(n,k+1) = E(n, )Jr;:1 - pnk(j) = E(n, k) + ~ B(n, k)
1 —2
_ P M Bk,
n n

Iterating from E(n,0) = 1, we find

E(n,n) <n—2>n+n+1§<n—2>k: <n2)"+n+1'1(n712)n.

n

Observing that

we conclude

n—oo n n—oo n 2

Solution 2: Let Ej(d) be the expected value of a,, ,, given that a, j = d. Note that F,(d) =
d. We seek E(n) = Ep(1). We have the recursion

n—d

d—1 1
Ey(d) = TElH-l(d -1)+ EEk:-i-l(d) +

E d+1).
n k+1(+)

We can prove two lemmas by (downward) induction on k:
Lemma 1: For k < n, Ex(d+ 1) — Ex(d) is independent of d for d < n — 1.



Proof: This is true for k = n. Now suppose it is true for k + 1; let ¢x11 = Epp1(d+ 1) —
E)11(d). Then subtracting two terms of the recursion gives

n—d—1 n—d—1
Ep(d+1) — Ex(d) = TEkH(d +2) - TEk—i-l(d +1)
d—1 d—1
—F d)——F d—1
+ o k+1(d) n k1 ( )
n—d—1 d—1
ZTCkH‘F Ck+1

= < - n) Ck+15
which is independent of d.

Corollary 1: For k <n, Ep(d+1) — Ex(d) = (1 — %)nik

Proof: This follows directly from the relationship between ¢ and c¢iy1 from the above
proof.

Lemma 2: For k <n, Ex(d)+ Ex(n+1—d)=n+1.

Proof: This is true for k = n. Now suppose it is true for £ + 1. Then

n—d

Erea(d+1)

d—1 1
Eix(d)+ Ex(n+1—-d) = TEkH(d -1+ EEk_i_l(d) +
n—d

n

1 d—1

d—1 1 —d
=t )+ —(n+ 1)+ 2
n n

(n+1)
=n-+1,

by the inductive hypothesis (and pairing the first/sixth, second /fifth, and third /fourth terms
of the expansion).

n 1
Corollary 2: Y Ex(d) = M
d=1 2
Proof: 2% Ei(d) = > Ex(d)+ > Ex(n+1—d) =n(n+1), so the result follows.
d=1 d=1 d=1

The rest of the proof is algebra. We have

d=1

So we get

The limit of this expression is % — ﬁ



B5. Let k and m be positive integers. For a positive integer n, let f(n) be the number
of integer sequences xi,..., Tk, Y1,---,Ym,2 satisfying 1 < z; < -+ < 2 < z < n and
1<y < <ym <z <n. Show that f(n) can be expressed as a polynomial in n with
nonnegative coefficients.

Solution 1: For a given z, the number of sequences is the number of ways to put k£ balls
in z (labeled) boxes, i.e. (k+,‘z—1), and m balls in z boxes. Summing over z, the number of

sequences is
n n—1 ,. .
k+z—1\/m+z-—1 1+ k\/t+m
et =3 () () -2 () )

z=1 i=0

We may assume k > m and proceed by induction on m, beginning with m = 0. First, by
the hockey-stick identity,

pk,o(n):jZé(H];k) _ <7];+rlf> _ (n+k)(8€1li)_!1)...n7

the latter expression showing this is a polynomial in n of degree k£ + 1 and the coefficients
are nonnegative.
Next, we find a recursion, again using the hockey-stick identity,

£ () ()-S50

i=0 =0 7=0

_”Zl (j+m> "Zl <z—|—k> = (j~l—m> <(n+k> - <j+l<:>>

- m L k 4 m k+1 k+1
]:0 1=) ]:O

SGDEE) SO -0)

This shows, by induction on m, that p,,(n) is a polynomial in n. From

z'+k‘—|—1_m—|—1 i+m+1 k—m
E+1  k+1 m+1 E+1°

for kK > m, we deduce

b k+1/i4k\ fi+m
prem(n) = > = (1

= k+1 m

:m+1’§z’+m+1 i+ k\ (i+m +k—m§ i+ k\ (i+m
k+1i:0 m+1 k m k+1 — k m
m+1 k—m

e pk,m—i—l(n) + pk‘,m(n)-

kE+1 k+1



Substituting for pjy1m,m(n) in (1) yields the weighted average

(n)_ﬁ n+k\ (n+m +m7+1 (n)
Pk m+1 _k+m+2 k‘+1 m+1 k+m+2pk,m ’

completing the induction.

Solution 2: Without loss of generality, assume that k¥ < m. For a given value of z, there
are <Z+£71) sequences T1i,T9,...,T, that meet the condition, because the corresponding

sequences x1+1,zo+1,..., 2, +k are in one-to-one correspondence with subsets of k elements
in {2,3,...,2z+ k}. Similarly, there are (z+2_1) possibilities for y1, ..., %Y. Thus,

f(n)zzz:(z—kl;—l) (z+$—1> :@gﬁ(erj)zﬁ(erj).

Here and below, an empty product (for example, the second product above if k¥ = m) should
be interpreted as the number 1.

In the summation above, each term is a degree k+m polynomial in z. Thus, f(n) can be
expressed as a linear combination of sums of the form 1¢ + 2¢ + - .. 4+ n’, where £ goes from
0 to k + m. For each ¢, this sum can be expressed as a degree £ + 1 polynomial in n (with
rational coefficients), which is a well-known fact. Thus, f(n) can be expressed as a degree
k 4+ m + 1 polynomial p(n). It remains to show that the coefficients of this polynomial are
nonnegative.

For all real ¢, we have the identity

k m

Kiml(p(t+1) —p(t)) = [J¢+9)* ] (t+4),

i=1 i=k+1

since both sides are polynomials, and the identity is true for all positive integers t. Applying

the identity for ¢ = 0 yields p(0) = 0. Then, applying the identity for z = —1,-2,...,—m
yields 0 = p(0) = p(—1) = --- = p(—m) (we call this equation Property I). Also, differenti-
ating the identity and substituting x = —1, —2,...,—k yields p/(0) = p/'(—1) = --- = p/(—k)

(we call this equation Property II).

We claim that Properties I and II, and the fact that p has degree less than k + m + 2,
uniquely determine p up to a multiplicative constant. Indeed, if polynomials p and ¢ with
degree less than k+m+2 both satisfy Properties I and II, then so does each linear combination
ap + bg. Choose a and b such that ap’(0) 4+ bg'(0) = 0. Then ap + bg has double roots at
0,—1,...,—k and single roots at —k — 1,..., —m, for a total of k + m + 2 roots. Since the
degree of ap + bq is less than its number of roots, it must be identically zero.

Next, we will construct a polynomial of degree less than k& + m + 2 with Properties I and
II that is not identically zero, and conclude that p is a constant multiple of it. The approach

is similar to Lagrange interpolation. For j =0,1,... k, let
k . m .
. (t+14)? t+i
)=+ [T 00 T S5
=0 (= +1) i=k+1 I
17



Notice that ¢; has degree k 4+ m + 1, and that 0 = ¢;(0) = ¢;(—1) = --- = ¢;(—m). Notice
also that by the product rule,

i t—l—z K k

b0 =115 155w aIesno
z:; S 0
1#£] 7]

for some polynomial 7;. Thus, ¢j(—i) = 0 for i =0,1,...,k and i # j, while ¢;(—j) = 1. It
follows that qo+¢q1+- - - +q has Properties I and II, and hence that p = c(qo+q1+- - -+qi) for
some real number ¢. Notice that ¢ > 0 because the t**1 coefficient of p must be positive.
Each ¢; is a polynomial with nonnegative coefficients; thus, so is p.

Remark: This problem was inspired by Corollary 3.4 in [Luis Ferroni, “On the Ehrhart
Polynomial of Minimal Matroids”, Discrete & Computational Geometry 68 (2022), 255-273,
https://doi.org/10.1007/s00454-021-00313-4].
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B6. For a real number a, let Fy(z) =, 5, n®2z"* for 0 < z < 1. Find a real number ¢
such that

lim F,(z)e /0= =0 forall a < ¢, and

r—1—

lim F,(z)e /07 = oo forall a > c.
T—1—

Answer: ¢ = —1/2.

Solution: Recall that Inz < z — 1 for all positive z, and thus also In(1/x) < 1/x —1 =
(1 —x)/z. For 0 < z < 1, it follows that
1 1 T 1 1

1
= > S S > 1=
Inz ~—xz-—1 1—x 11—z ~— In(1/x) Inz

Thus, for 0 < x < 1,
el/(ln:c)

(&

el/(lnx) > 6—1/(1—2:) >

Thus, replacing e 1/(1-2) with /(%) does not affect whether the limit in question is 0, or
whether it is oo.
Let z = —1/(Inz), so that # = e~ /%, Then

o0 2 o (n—z)2
n
Fa(x)el/(lnx) _ § :na€*2+2”*7 _ 2 :naef P
n=1 n=1

Notice that z — oo as x — 1~. For z > 4, so that /2 < z/2, consider the portion of the sum
for which z — \/z < n < z + /2, which is equivalent to (n — 2)?/z < 1. There are at least
242 — (2 —+/2) — 1 =2y/2 — 1 terms in this portion, and since z/2 < n < 2z, we obtain
the bound n® > 2712122 Thus,

(n—2)*
F,(z)et/(0e) > Z ne” =z > (2y/z —1)27 19z,

z—/2<n<z+/z

If a > —1/2, this lower bound approaches oo as z — 00, s0 F,(x)e!/"®) — o0 as x — 17,
For a < —1/2, write F,(z)e!/("®) = §)(2) 4 Sy(z) where

(n—2) (n—2)

Si(z) = Z n%e z ; Sa(z) = Zn“ei z

1<n<z/2 n>z/2

Since both sums are nonnegative, it suffices to show that each has an upper bound that
approaches 0 as z — 00

We bound Si(z) above by the number of terms in the sum (which is as most z/2) times
an upper bound on each term. Since a < 0, we have n® < 1, and since (n — 2)%/z > 2z/4 for
n < z/2, we have S1(z) < (2/2)e~*/%. Thus, S;(z) — 0 as z — oc.

Since a < 0, in S2(z) we can bound n® above by (z/2)*. We write Sa(2) = so+s1+s2+- - -
where s, includes the terms in So(z) for which k < (n — 2)?/z < k + 1. Then each term in

11



sk is at most (2/2)% %, and since z — \/(k+ 1)z < n < 2+ /(k + 1)z, there are at most
2+ (k+1)z—(z—+/(k+1)z) + 1 =2Vk + 1\/z + 1 terms in s;. Thus,

Sa(z) < i@vk +1vz 4 1)(2/2)% ",

k=0

Since Zkzo Vk 4+ 1e7* < oo, this upper bound approaches 0 as z — oo if a < —1/2. There-
fore, F(x)e?/("®) — 0 as # — 1=, completing the proof.

Remark. This problem was inspired by Proposition 3.2 in [K. Bringmann, C. Jennings-
Shaffer, K. Mahlburg , “On a Tauberian theorem of Ingham and Euler-Maclaurin summa-

tion”, The Ramanujan Journal 61 (2023), 55-86, https://doi.org/10.1007/s11139-020-00377-5].
A similar argument shows that the limit in this problem exists for a = —1/2, and is equal to

\/T/e. An outline of the proof, using the notation of the solution above, follows. First, by
multiple applications of L’Hépital’s rule,

— _ _ )2
lim 11 —  lim 1+ (Inz)/(1 —x) —  lim 1/(z(1=2))+ (Inz)/(1 — x)
z—1-\ lnz 1-=x 1 Inx a—1- 1/x
o 1l—z4+zhnz . Inzx . 1/ 1
=—lm ———=—lim ———— =— lim — =——.
T—1— (1 - 1’)2 1~ —2(1 — IL') z—1— 2 2
1/2.

Thus, the limit of the exponential of the expression above is e~
Next, make the change of variables u = (n — 2)/y/z and n = z 4+ \/zu to write

o0

Fil/z(x)el/(lna:) _ Z (Z + \/Eu)fl/Q efu2.

n=1

This is a Riemann sum, using intervals of length 1/4/z, for

/ Vz (z + \/Eu)*l/2 e du.
(1-2)/Vz

Notice that for fixed u, the integrand approaches e~%" as z — oo. The remainder of the
proof is to justify that the integral approaches f_oooo e~ du = /7, and that the limit of the

Riemann sums is the limit of the integrals.
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