
The 85th William Lowell Putnam Mathematical Competition
2024

Problems for 

Session Amaa.org/putnam



The 85th William Lowell Putnam Mathematical Competition
2024

Problems for 

Session Bmaa.org/putnam



2024 Session A

A1. Determine all positive integers n for which there exist positive integers a, b, and c
satisfying

2an + 3bn = 4cn.

Answer: n = 1 only. For n = 1, the equation is satisfied by (a, b, c) = (1, 2, 2).

Solution 1: Consider n > 1. If d is the greatest common divisor of a, b, c, so a = dx, b = dy,
c = dz, then x, y, z satisfy the same equation and we can assume that the greatest common
divisor is 1. We see that 2 | 3bn, so 2 | b. Letting b = 2b1, the equation becomes

2an + 3 · 2nbn1 = 4cn.

Since n ≥ 2, we have that 4 | 2an, so 2 | an and 2 | a. Setting a = 2a1, we get that

2n(2an1 + 3bn1 ) = 4cn

and 2n−2 | cn. Since we assumed the greatest common divisor of a, b, c is 1, we must have
that 2 ∤ c. Thus, we must have n = 2.

Then
2a2 + 3b2 = 4c2,

and so a2+c2 = 3a2+3b2−3c2 is divisible by 3. Considering all possible cases for remainders
of a and c by division by 3, we see that a2 has remainder 0 or 1, and c2 has remainder 0 or
1. Thus, both a2 and c2 must have remainder 0, so 3 | a and 3 | c. Writing a = 3a2, c = 3c2
we have b2 = 3(4c22 − 2a22), so 3 | b, contradicting the assumption that a, b, c have common
divisor 1.

Solution 2: To prove that there are no solutions for n ≥ 2, assume to the contrary that
there is such a solution. Let d be the greatest common divisor of a, b, and c, and let x = a/d,
y = b/d, and z = c/d. Then 2xn+3yn = 4zn, and the greatest common divisor of x, y, and z
is 1. In particular, at least one of x, y, and z is odd. Since 3yn = 4zn−2xn is even, y is even.
Then since n ≥ 2, it follows that 2xn = 4zn − 3yn is a multiple of 4, so x is even too, whence
z is odd. If n ≥ 3, we then have the contradiction that 2xn+3yn is a multiple of 8, but 4zn is
not. If n = 2, we can write 2(x/2)2 + 3(y/2)2 = z2. It follows that y/2 is odd. Since all odd
squares are congruent to 1 modulo 8, we have 2(x/2)2 ≡ z2 − 3(y/2)2 ≡ 1− 3 ≡ 6 (mod 8),
which is impossible.
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A2. For which real polynomials p is there a real polynomial q such that

p(p(x))− x = (p(x)− x)2q(x)

for all real x?

Answer: Only p(x) = ±x+ c for c a constant.

Solution 1: Let f(x) = p(x) − x and let d denote its degree. Then the desired property is
equivalent to f(x+ f(x)) + f(x) = [f(x)]2q(x). By the Taylor series expansion of f at x,

f(x+ f(x)) = f(x) + f ′(x)f(x) +
f ′′(x)

2
[f(x)]2 + · · ·+ f (d)(x)

d!
[f(x)]d.

Thus, the factorization exists if and only if 2f(x) + f ′(x)f(x) = [f(x)]2r(x) for some poly-
nomial r, which in turn is equivalent to f(x) = 0 or 2 + f ′(x) = f(x)r(x). The factorization
holds when d = 0, hence when p(x) = x + c. If d > 0, then 2 + f ′(x) has degree d − 1, a
contradiction, unless 2 + f ′(x) = 0, which is equivalent to p(x) = −x+ c.

Solution 2: Let r(x) = p(x)− x, then p(x) = x+ r(x) and the equation becomes

r(r(x) + x) + r(x) = r(x)2q(x)

Let r(x) = cnx
n + · · ·+ c1x+ c0 be its expansion in monomials. Then

r(r(x) + x) =
n∑

k=0

ck(r(x) + x)k =
n∑

k=0

ck

k∑
i=0

(
k

i

)
xi(r(x))k−i

= r(x)2


n∑

k=2

ck

k−2∑
i=0

(
k

i

)
xir(x)k−i−2

︸ ︷︷ ︸
q1(x)

+ r(x)

(
n∑

k=1

ckkx
k−1

)
+

n∑
k=0

ckx
k

= r(x)2q1(x) + r(x)r′(x) + r(x).

Thus, the original equation is equivalent to

r(x)2q1(x) + r(x)r′(x) + 2r(x) = r2(x)q(x).

Thus, either r(x) is identically 0 (so p(x) = x) or

r′(x) + 2 = r(x)(q(x)− q1(x)).

If the degree of r(x) is not 0, then deg(r′(x) + 2) = deg(r(x))− 1 < deg(r(x)(q(x)− q1(x)),
unless q(x) − q1(x) = 0. Thus, either deg(r(x)) = 0, so p(x) = x + c, or q(x) = q1(x) and
r′(x) = −2, so r(x) = −2x+ c, so p(x) = −x+ c.

Plugging the two possibilities in the original equation we see the following. For p(x) =
x+ c, we have 2c = c2q(x), so all real values for c give a solution with a constant polynomial
q(x). For p(x) = −x + c we have −(−x + c) + c − x = (−2x + c)2q(x), so q(x) = 0 gives a
solution for all c.

The solutions are thus p(x) = −x+ c for any real c or p(x) = x+ c for any real c.
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A3. Let S be the set of bijections

T : {1, 2, 3} × {1, 2, . . . , 2024} → {1, 2, . . . , 6072}

such that T (1, j) < T (2, j) < T (3, j) for all j ∈ {1, 2, . . . , 2024} and T (i, j) < T (i, j + 1) for
all i ∈ {1, 2, 3} and j ∈ {1, 2, . . . , 2023}. Do there exist a and c in {1, 2, 3} and b and d in
{1, 2, . . . , 2024} such that the fraction of elements T in S for which T (a, b) < T (c, d) is at
least 1/3 and at most 2/3?

Answer: Yes.

Solution 1: We consider the more general situation where the set of bijections S is T :
{1, . . . ,m} × {1, 2, . . . , n} → {1, 2, . . . ,mn} satisfying the given inequalities, where

m,n ≥ 2

. In the problem we have m = 3, n = 2024. To simplify the notation, we switch to the
probabilistic formulation: we are choosing elements T uniformly at random from S and
considering the probability that T (a, b) < T (c, d), which is equal to the proportion of such
bijections T . By symmetry, if m and n are exchanged, then Pr[T (a, b) < T (c, d)] becomes
Pr[T (b, a) < T (d, c)].

Consider Pr[T (2, 1) < T (1, 2)]. If Pr[T (2, 1) < T (1, 2)] ∈ [13 ,
2
3 ], then let (a, b) = (2, 1)

and (c, d) = (1, 2), and we are done. If not, then without loss of generality we can assume
Pr[T (2, 1) < T (1, 2)] < 1

3 (if instead Pr[T (2, 1) < T (1, 2)] > 2
3 , then we can exchange m and

n to get Pr[T (1, 2) < T (2, 1)] > 2
3 , in which case Pr[T (2, 1) < T (1, 2)] = 1 − Pr[T (1, 2) <

T (2, 1)] < 1
3). Our goal now is to show that Pr[T (2, 1) < T (1, j)] ∈ [13 ,

2
3 ] for some j > 2.

Let Si = {T ∈ S : T (2, 1) = i} and let qi = |Si|/|S|, i.e. the probability that the bijection
T has T (2, 1) = i. If T (2, 1) = i, we must have T (1, j) = j < T (2, 1) for j ≤ i − 1 and
T (1, j) > i = T (2, 1) for j ≥ i. So T (2, 1) < T (1, j) is equivalent to j ≥ T (2, 1), and summing
over all possibilities for the value T (2, 1) = 2, . . . , j we have

Pr[T (2, 1) < T (1, j)] = q2 + q3 + · · · qj .

In particular, q2 = Pr[T (2, 1) < T (1, 2)] < 1
3 . Note also that q2 + · · ·+ qn+1 = 1 since these

are the only possibilities for T (2, 1).

Claim. We have that q2 ≥ q3 ≥ · · · ≥ qn+1.

Proof. We see that there is an injection ϕ : Si+1 → Si, given by ϕ(T )(1, i) = i+1, ϕ(T )(2, 1) =
i, and ϕ(T )(r, s) = T (r, s) for all other (r, s).

Finally, let k = max{j : q2 + · · · + qj < 1
3}, which exists by the above bounds. Further,

since qn+1 ≤ q2 < 1
3 , we have q2 + · · · + qn = 1 − qn+1 > 2

3 , so k < n. By maximality
we must have that 1

3 ≤ q2 + · · · + qk+1, and since qk+1 ≤ q2 < 1
3 , we must also have

q2+ · · ·+ qk+1 = (q2+ · · ·+ qk)+ qk+1 <
1
3 +

1
3 = 2

3 . Then (a, b) = (1, k+1) and (c, d) = (2, 1)
are the desired pairs.

Solution 2: The answer is yes, in particular for a = 2, b = 2024, c = 3, d = 2023. Think of
the domain of T as a grid with 3 rows and 2024 columns, with rows and columns numbered
as for a matrix. The greatest value of T , namely 6072 must be in the bottom row and the
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rightmost column, so T (3, 2024) = 6072. Similarly, the value 6071 can only be immediately
above or immediately to the left of (3, 2024), so either T (2, 2024) = 6071 or T (3, 2023) = 6071.
Thus, the number n1 of T for which T (2, 2024) < T (3, 2023) is the number of T for which
T (3, 2023) = 6071, and the number n2 of T for which T (2, 2024) > T (3, 2023) is the number
of T for which T (2, 2024) = 6071. To prove that n1/(n1 + n2) is between 1/3 and 2/3, it
suffices to prove that n1/n2 is between 1/2 and 2.

For integers k ≥ ℓ ≥ m ≥ 0, let Dk,ℓ,m = ({1}×{1, 2, . . . , k})∪({2}×{1, 2, . . . , ℓ})∪({3}×
{1, 2, . . . ,m}). Notice that D2024,2024,2024 is the domain of T in the problem statement. More
generally, think of Dk,ℓ,m as a left-justified grid with k elements in the first row, ℓ elements in
the second row, and m elements in the third row. Let N(k, ℓ,m) be the number of bijections
T : Dk,ℓ,m → {1, 2, . . . , k + ℓ + m} for which T (i, j) < T (i + 1, j) and T (i, j) < T (i, j + 1)
whenever both sides of the inequality are defined. Notice that N(2024, 2024, 2024) is the
number of elements in S, and so is N(2024, 2024, 2023), since T (3, 2024) is determined by the
conditions on T . Furthermore, n1 = N(2024, 2024, 2022) and n2 = N(2024, 2023, 2023).

The bulk of the remainder of the solution is to derive a formula for N(k, ℓ,m). The
greatest value of T , namely k + ℓ+m, must occur at the right end of a row and only if this
row extends beyond the bottom row, so either T (1, k) = k + ℓ+m or T (2, ℓ) = k + ℓ+m or
T (3,m) = k + ℓ +m. If k > ℓ > m > 0, then all three cases are possible, and if k = ℓ then
the largest element cannot be at (1, k) etc. Each case can be reduced to a domain with one
fewer element, resulting in the identity

N(k, ℓ,m) = N(k − 1, ℓ,m) +N(k, ℓ− 1,m) +N(k, ℓ,m− 1), (*)

where we assume that the term is 0 if the arguments are not in weakly decreasing order.
Furthermore, considering the conventional values N(0, 0, 0) = 1 and N(k, ℓ,m) = 0 if k, ℓ or
ℓ < m as “boundary conditions”, (*) recursively determines N(k, ℓ,m) for all k ≥ ℓ ≥ m ≥ 0
with k + ℓ+m > 0.

We will express N(k, ℓ,m) as a linear combination of trinomial coefficients, which satisfy
a similar recursion. Let

F (p, q, r) =
(p+ q + r)!

p!q!r!

for nonnegative integers p, q, r, and extend F to the integers by defining F (p, q, r) = 0 if p < 0
or q < 0 or r < 0.

Lemma. For (p, q, r) ̸= (0, 0, 0),

F (p, q, r) = F (p− 1, q, r) + F (p, q − 1, r) + F (p, q, r − 1).

Proof. For nonnegative p, q, r with p+ q + r > 0, the desired equality is equivalent to

(p+ q + r − 1)!

p!q!r!
(p+ q + r) =

(p+ q + r − 1)!

p!q!r!
p+

(p+ q + r − 1)!

p!q!r!
q +

(p+ q + r − 1)!

p!q!r!
r.

If p < 0 or q < 0 or r < 0, then the desired equality is equivalent to 0 = 0.

Claim. For k ≥ ℓ ≥ m ≥ 0 or k+1 = ℓ ≥ m ≥ 0 or k ≥ ℓ+1 = m ≥ 0 or k ≥ ℓ ≥ m+1 = 0,

N(k, ℓ,m) = F (k, ℓ,m) + F (k + 2, ℓ− 1,m− 1) + F (k + 1, ℓ+ 1,m− 2)

− F (k + 1, ℓ− 1,m)− F (k, ℓ+ 1,m− 1)− F (k + 2, ℓ,m− 2).
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Proof. The claimed expression for N(k, ℓ,m) satisfies the recursion (*) for k ≥ ℓ ≥ m ≥ 0
and k + ℓ+m > 0 as an immediate consequence of the Lemma, since k + ℓ+m > 0 ensures
that none of the triples on which F is being evaluated are (0, 0, 0). It remains to verify the
“boundary conditions”.

If k+1 = ℓ ≥ m ≥ 0, then substituting ℓ = k+1 into the claimed expression and using the
fact that F (p, q, r) = F (q, p, r) makes all the terms cancel out, yielding the required boundary
value 0 in this case. Similarly, if k ≥ ℓ+ 1 = m ≥ 0, then substituting m = ℓ+ 1 and using
the fact that F (p, q, r) = F (p, r, q) makes all the terms cancel out. If k ≥ ℓ ≥ m + 1 = 0,
then all terms in the claimed expression are 0. Finally, if k = ℓ = m = 0, first term is 1 and
all other terms are 0, yielding the required value 1 in this case.

For k ≥ ℓ ≥ m ≥ 0, it follows that

(k + 2)!(ℓ+ 1)!m!

(k + ℓ+m)!
N(k, ℓ,m) = (k + 2)(k + 1)(ℓ+ 1) + (ℓ+ 1)ℓm+ (k + 2)m(m− 1)

− (k + 2)(ℓ+ 1)ℓ− (k + 2)(k + 1)m− (ℓ+ 1)m(m− 1)

= (k + 1− ℓ) ((k + 2)(ℓ+ 1)− (k + ℓ+ 2)m+m(m− 1))

= (k + 1− ℓ)(ℓ+ 1−m)(k + 2−m).

Then for k ≥ 2,

N(k, k, k − 2)

N(k, k − 1, k − 1)
=

(k + 2)!k!(k − 1)!

(k + 2)!(k + 1)!(k − 2)!
· 1 · 3 · 4
2 · 1 · 3

= 2
(k − 1)

(k + 1)
.

This fraction is between 1/2 and 2 for all k ≥ 2. In particular, with k = 2024, we get that
n1/n2 is between 1/2 and 2, which completes the solution.

Remark. This problem is a special case of the 1/3–2/3 conjecture (https://en.wikipedia.
org/wiki/1/3-2/3_conjecture). Solution 1 is based on an argument in [S. H. Chan, I.
Pak, G. Panova, “Sorting Probability for Large Young Diagrams”, Discrete Analysis 24
(2021), https://doi.org/10.19086/da.30071]. The final formula derived in Solution 2
for N(k, ℓ,m) is a special case of the “hook length formula”, written in the following form:

https://en.wikipedia.org/wiki/Hook_length_formula#Related_formulas
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A4. Find all primes p > 5 for which there exists an integer a and an integer r satisfying
1 ≤ r ≤ p− 1 with the following property: the sequence 1, a, a2, ..., ap−5 can be rearranged to
form a sequence b0, b1, b2, ..., bp−5 such that bn − bn−1 − r is divisible by p for 1 ≤ n ≤ p− 5.

Answer: Only p = 7.

Solution: For p = 7, a = 3 yields the sequence 1, 3, 9, which can be reordered as 1, 9, 3.
For p ≥ 11, we work modulo p. Suppose 1, a, a2, . . . , ap−5 can be rearranged with differ-

ences between consecutive terms congruent to r ̸≡ 0 (mod p). If two of these terms were the
same modulo p, then jr ≡ 0 (mod p) where j is the distance between their indices in the arith-
metic progression. Since j < p, we must have j = 0, and so the terms are all distinct modulo
p. Because p−5 > (p−1)/2, we conclude that a has multiplicative order p−1 modulo p, and
so 0, 1, a, a2, . . . , ap−2 are distinct modulo p. Therefore, 1, a, a2, . . . , ap−5 must be congruent
to a “segment” of the “cyclic” modulo-p arithmetic progression 0, r, 2r, . . . , (p − 1)r, 0, . . ..
Then 0, ap−4, ap−3, ap−2 must be congruent to the remaining segment that completes the cy-
cle. Since ap−1 ≡ 1 (mod p), these four terms are congruent to 0, c, c2, c3, where c is the
residue class of ap−2 modulo p. Because none of c, c2, c3 are −1 times another, 0 must be an
end of the arithmetic progression, which we may assume is the beginning. Furthermore, if
we multiply by c−4, we obtain another arithmetic progression using the same rearrangement
of the terms 0, c−3, c−2, c−1 as for 0, c, c2, c3. Thus, with either d = c or d = c−1, we need
only consider the three orderings of 0, d, d2, d3 that begin with 0 and where d precedes d3.

The progression is 0, d, d2, d3. Then d2 ≡ 2d (mod p) and d3 ≡ 3d (mod p), so d ≡ 2
(mod p) and 8 ≡ 6 (mod p), a contradiction.

The progression is 0, d, d3, d2. Then d3 ≡ 2d (mod p) and d2 ≡ 3d (mod p). Thus, d ≡ 3
(mod p) and 27 ≡ 6 (mod p), a contradiction.

The progression is 0, d2, d, d3. Then d ≡ 2d2 (mod p) and d3 ≡ 3d2 (mod p). Thus, d ≡ 3
(mod p) and 3 ≡ 18 (mod p), a contradiction.
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A5. Consider a circle Ω with radius 9 and center at the origin (0, 0), and a disk ∆ with
radius 1 and center at (r, 0), where 0 ≤ r ≤ 8. Two points P and Q are chosen independently
and uniformly at random on Ω. Which value(s) of r minimize the probability that the chord
PQ intersects ∆?

Answer: r = 0. More generally, if the larger circle has radius ρ > 1, then the minimum
probability for 0 ≤ r ≤ ρ− 1 occurs at (and only at) r = 0.

Solution 1: Consider more generally the case that ∆ has center (r cos θ, r sin θ). The prob-
ability p(r) that PQ intersects ∆ is independent of θ, so we can compute p(r) by considering
θ to be a random variable chosen uniformly on [−π, π], independently of P and Q.

Next, let O be the origin, and let Π be the set of lines through O. Let L be the line in Π

that bisects angle POQ. As the angle ray
−−→
OQ makes with ray

−−→
OP increases from 0 to 2π, the

angle L makes with
−−→
OP increases half as fast from 0 to π (this sweeps through all the lines in

Π). Thus, L is uniformly distributed on Π for each fixed P . Since P is uniformly distributed
on Ω, the ordered pair (P,L) is uniformly distributed on Ω × Π. Since P and L determine
Q (specifically, Q is the reflection of P through L), we can compute p(r) with respect to the
independent uniform random variables P , L, and θ (instead of with respect to P , Q, and θ).

Because of the uniform distribution of θ, the probability that PQ intersects ∆ is indepen-
dent of L. Thus, we can fix L to be vertical and compute p(r) with respect to P and θ; then
PQ is the horizontal line through P . By left-right symmetry, we can compute p(r) using the
uniform distribution for P on the half of Ω to the right of L. Thus, let P = (ρ cosφ, ρ sinφ)
where φ is uniformly distributed on [−π/2, π/2]. For fixed θ, the probability that PQ in-
tersects ∆ is then the probability that ρ sinφ lies between r sin θ − 1 and r sin θ + 1, which
is

1

π

(
arcsin

(
r sin θ + 1

ρ

)
− arcsin

(
r sin θ − 1

ρ

))
.

Thus,

p(r) =
1

2π2

∫ π

−π

(
arcsin

(
r sin θ + 1

ρ

)
− arcsin

(
r sin θ − 1

ρ

))
dθ.

It follows that

p′(r) =
1

2π2

∫ π

−π

sin θ

ρ

(
1√

1− (r sin θ + 1)2/ρ2
− 1√

1− (r sin θ − 1)2/ρ2

)
dθ

=
1

2π2

∫ π

−π
sin θ

(
1√

ρ2 − (r sin θ + 1)2
− 1√

ρ2 − (r sin θ − 1)2

)
dθ.

The integrand is positive when 0 < r < ρ − 1 and sin θ > 0, because then (r sin θ − 1)2 <
(r sin θ + 1)2 < ρ2. Notice that the integrand is also an even function of θ, since it is the
product of two odd functions. Thus, p′(r) > 0 for 0 < r < ρ − 1, and therefore p(r) is
minimized at r = 0 only.

Solution 2: Let P = (ρ cos θ, ρ sin θ), where θ is uniformly distributed on [0, 2π). Let B be
a point on ∆ for which PB is tangent to ∆, and let C = (r, 0) be the center of ∆. Then
PBC is a right triangle, and since length BC = 1, we have

sin∠BCP =
BC

PC
=

1√
(ρ cos θ − r)2 + (ρ sin θ)2

=
1√

ρ2 + r2 − 2ρr cos θ
.
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Let A be the arc between the two tangent rays from P to ∆. For fixed P , the conditional
probability that PQ intersects ∆ is the probability that Q lies in A, which is the angle
measure α of A divided by 2π. Notice that α is twice the angle between the tangent rays
from P to ∆, and hence α = 4∠BCP . Thus, the conditional probability that PQ intersects
∆ is (2/π) arcsin(1/

√
ρ2 + r2 − 2ρr cos θ). It follows that the overall probability p(r) that

PQ intersects ∆ is given by

p(r) =
1

2π

∫ 2π

0

2

π
arcsin

(
1√

ρ2 + r2 − 2ρr cos θ

)
dθ

=
2

π2

∫ π

0
arcsin

(
1√

ρ2 + r2 − 2ρr cos θ

)
dθ.

Notice that p(0) = (2/π) arcsin(1/ρ).
Since arcsin is a convex function on the interval [0, 1], Jensen’s inequality implies that

p(r) ≥ 2

π
arcsin

(
1

π

∫ π

0

1√
ρ2 + r2 − 2ρr cos θ

dθ

)
.

The proof that p(r) > p(0) for 0 < r ≤ ρ − 1 will be complete after we prove the following
claim for such r:

1

π

∫ π

0

1√
ρ2 + r2 − 2ρr cos θ

dθ >
1

ρ
.

This claim turns out to be true for 0 < r < ρ, in fact. Let x = r/ρ ∈ (0, 1); multiplying the
inequality above by ρπ yields the equivalent claimed inequality∫ π

0

1√
1 + x2 − 2x cos θ

dθ > π.

Let t = (
√
1 + x2 − 2x cos θ − 1)/x, so that 1 + x2 − 2x cos θ = (1 + xt)2, and notice that

t goes from −1 to 1 as θ goes from 0 to π. To change variables from θ to t in the integral
above, we compute 2x sin θ dθ = 2x(1 + xt)dt, and

2x sin θ = 2x
√

1− cos2 θ = 2x

√
1−

(
1 + x2 − (1 + xt)2

2x

)2

=
√

(2x+ 1 + x2 − (1 + xt)2)(2x− 1− x2 + (1 + xt)2)

=
√
(1 + x+ (1 + xt))(1 + x− (1 + xt))(1 + xt+ (1− x))(1 + xt− (1− x))

=
√

(2 + x+ xt)x(1− t)(2− x+ xt)x(1 + t) = x
√

1− t2
√
(2 + xt)2 − x2.

Thus, ∫ π

0

1√
1 + x2 − 2x cos θ

dθ =

∫ 1

−1

1

1 + xt
· 2(1 + xt)√

1− t2
√
(2 + xt)2 − x2

dt

=

∫ 1

−1

2√
1− t2

√
(2 + xt)2 − x2

dt.
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Let fx(t) = (2 + xt)2 − x2, so that the integrand above can be written 2fx(t)
−1/2/

√
1− t2.

Since the function y 7→ y−1/2 on the positive real numbers is convex,

fx(t)
−1/2 + fx(−t)−1/2

2
≥
(
fx(t) + fx(−t)

2

)−1/2

= (4 + x2t2 − x2)−1/2 >
1

2

for 0 < x < 1 and −1 < t < 1. Thus,∫ 1

−1

2fx(t)
−1/2

√
1− t2

dt =

∫ 1

0

2(fx(t)
−1/2 + fx(−t)−1/2)√

1− t2
dt >

∫ 1

0

2√
1− t2

dt = π

as claimed.
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A6. Let c0, c1, c2, . . . be the sequence defined so that

1− 3x−
√
1− 14x+ 9x2

4
=

∞∑
k=0

ckx
k

for sufficiently small x. For a positive integer n, let A be the n-by-n matrix with i, j-entry
ci+j−1 for i and j in {1, . . . , n}. Find the determinant of A.

Answer: 10(n
2−n)/2.

Solution 1: More generally, let

F (x) =
1− αx−

√
(1− αx)2 − 4βx

2β
=

∞∑
k=0

ckx
k.

We show that the determinant of the n × n matrix defined as in the problem statement is
(β(α+ β))(n

2−n)/2. When α = 3, β = 2, we get the problem statement.
By the quadratic formula, F (x) is a root of

βF (x)2 + (αx− 1)F (x) + x = 0.

From its definition, observe that c0 = F (0) = 0. Examining the coefficient of xn in the
functional equation, we find

cn =


1, if n = 1,

α+ β, if n = 2,

(α+ 2β)cn−1 + β
n−2∑
k=2

ckcn−k, if n > 2.

(We use the convention that a sum with strictly decreasing limits of summation is 0.)
Thus, the 1-by-1 matrix has determinant 1 and the 2-by-2 matrix has determinant

(α+ 2β)(α+ β) · 1− (α+ β)2 = β(α+ β).

We proceed by induction; assume the claim for some n ≥ 2 and consider the (n+1)-by-(n+1)
matrix.

From row n + 1, subtract α + 2β times row n and βcn+1−k times row k for rows k =
2, . . . , n− 1. The entry in row n+ 1, column j is now

cn+j − (α+ 2β)cn+j−1 − β

n−1∑
k=2

cn+1−kcj+k−1 = cn+j − (α+ 2β)cn+j−1 − β

n−1∑
k=2

ckcn+j−k

= β

n+j−2∑
k=n

ckcn+j−k = β

j−1∑
k=1

ck+n−1c1+j−k.

Next, reduce rows n, n − 1, . . . , 3 similarly. Finally, subtract α + β times row 1 from row 2,
so the entry in the jth column of row 2 is now

β

j−1∑
k=1

ckc1+j−k.
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At this point, column j of rows 2 through n+ 1 is the column vector

β

j−1∑
k=1


ckc1+j−k

ck+1c1+j−k
...

ck+n−2c1+j−k

ck+n−1c1+j−k

 = β

j−1∑
k=1

c1+j−k


ck
ck+1
...

ck+n−2

ck+n−1

 .

Therefore, the entire first column is now the standard basis vector e1. The determinant of
the reduced matrix (which is the same as the determinant of the original matrix) is then the
determinant of its lower right n-by-n submatrix. Pull the factor βn out of the determinant
of the submatrix. Noting that, for j ≥ 3,

j−2∑
k=1

c1+j−k


ck
ck+1
...

ck+n−2

ck+n−1


is in the span of the columns 2, . . . , j − 1 of this submatrix, we may reduce its columns
from left to right, yielding c2 = (α + β) times the original n-by-n matrix. Therefore, the
determinant for (n + 1)-by-(n + 1) matrix is βn(α + β)n times that for the n-by-n matrix,
completing the induction.
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Remark. Letting An denote the n-by-n matrix, the row and column reductions above can
be summarized as follows:

1
−(α+ β) 1

0 −(α+ 2β) 1 0
0 −βc2 −(α+ 2β) 1

. . .

0 −βcn−2 −βcn−3 . . . −βc2 −(α+ 2β) 1
0 −βcn−1 −βcn−2 . . . −βc3 −βc2 −(α+ 2β) 1



·An+1 ·



1 0 0 0
1 −c3/c2 −c4/c2 . . . −cn/c2 −cn+1/c2

1 −c3/c2 . . . −cn−1/c2 −cn/c2
. . .

0
1 −c3/c2

1



=


c1 c2 . . . cn+1

0
... β(α+ β)An

0

 .

Solution 2: We will show that A = LDLt where [Li,j ]
n−1
i,j=0 is a lower triangular matrix with

1’s on the diagonal and [Di,j ]
n−1
i,j=0 is a diagonal matrix with Dk,k = 10k. (Here we start the

indexing at 0.) Then detA = det(L)2 det(D) = 1 · 100+1+···+(n−1) = 10(
n
2).

Let F (x) = 1−3x−
√
1−14x+9x2

4 = x + 5x2 + O(x3). We have that (4F (x) + 3x − 1)2 =
1− 14x+ 9x2, so

2F (x)2 + (3x− 1)F (x) + x = 0.

Let f(u) := F (u)/u = 1 + 5u + O(u2) and g(u) := F (u)−u
5u = u + O(u2), and define Li,j

for i, j = 0, 1, . . . as the coefficients of the expansion of

ℓ(u, v) =
∑
i,j≥0

Li,ju
ivj =

f(u)

1− vg(u)
= f(u)

(
1 + vg(u) + v2g(u)2 + · · ·

)
.

We see that Li,j = 0 for i < j and Li,i = 1. Consider B = LDLt where Dk,k = dk for k ≥ 0
and all other entries of D are zero. Then the entries of B are

Bi,j =
∑
k≥0

Li,kDk,kLj,k.
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(Only a finite number of terms in the sum above are nonzero, because L is lower triangular.)
Denote by [zk]H(z) the coefficient of zk in the expansion of H(z). Set

b(u, v) =
∑
i,j≥0

Bi,ju
ivj =

∑
k≥0

[wktk]
∑

i,j,r,s≥0

Li,ru
iwrdrLj,sv

jts

=
∑
k≥0

[wktk]ℓ(u, dw)ℓ(v, t) = f(u)f(v)
∑
k≥0

[wktk]
∑
r,s≥0

drwrg(u)rtsg(v)s

= f(u)f(v)
∑
k≥0

dkg(u)kg(v)k =
f(u)f(v)

1− dg(u)g(v)
.

The lower-triangular property Li,j = 0 for i < j implies that Bi,j depends only on values
of Li,k, Dk,k, and Lj,k with k ≤ i and k ≤ j. Thus, the equation B = LDLt holds also for the
finite matrices [Bi,j ]

n−1
i,j=0, [Li,j ]

n−1
i,j=0, and [Di,j ]

n−1
i,j=0. The following claim proves the desired

decomposition for A, and finishes the solution.

Claim. For d = 10, we have Ai+1,j+1 = Bi,j.

Proof. Define Ai,j = ci+j−1 for all i, j = 1, 2, . . ., and let

a(u, v) =
∑
i,j≥0

Ai+1,j+1u
ivj =

∑
i,j≥0

ci+j+1u
ivj

=
∑
r≥0

cr+1(u
r + ur−1v + · · ·+ vr) =

∑
r≥0

cr+1
ur+1 − vr+1

u− v
=

F (u)− F (v)

u− v
,

since c0 = 0.
Next, consider

a(u, v)− b(u, v) =
F (u)− F (v)

u− v
− f(u)f(v)

1− 10g(u)g(v)

=
F (u)(1− 10g(u)g(v))− uf(u)f(v)− F (v)(1− 10g(u)g(v)) + vf(u)f(v))

(u− v)(1− 10g(u)g(v))
.

We have that F (u) = F (u)−u
2F (u)+3u , and so the first half of the numerator above is

F (u)(1− 10g(u)g(v))− uf(u)f(v) = F (u)(1− 10g(u)g(v)− f(v))

=
(F (u)− u)

2F (u) + 3u

(
1− 2

(F (u)− u)(F (v)− v)

5uv
− F (v)

v

)
=

(F (u)− u)

(2F (u) + 3u)(5uv)
(5uv − 2F (u)F (v) + 2vF (u) + 2uF (v)− 2uv − 5uF (v))

=
(F (u)− u)

(2F (u) + 3u)(5uv)
(3uv − 2F (u)F (v) + 2vF (u)− 3uF (v))

=
(F (u)− u)(F (v)− v)(−2F (u)− 3u)

(2F (u) + 3u)(5uv)

= −(F (u)− u)(F (v)− v)

5uv
.

The second half of the numerator is the negative of the first half, with u and v interchanged,
so performing the same manipulations on the second half verifies that it cancels with the first
half. Thus, a(u, v) = b(u, v) and the claim is proved.
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Remark. This problem was inspired by the determinants of Hankel matrices used to count
tilings of the Aztec diamond (https://en.wikipedia.org/wiki/Aztec_diamond).
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2024 Session B

B1. Let n and k be positive integers. The ith row and jth column of an n-by-n grid of
squares contains the number i + j − k. For which n and k is it possible to select n squares
from the grid, no two in the same row or column, such that the numbers contained in the
selected squares are exactly 1, 2, . . . , n?

Answer: It is possible if and only if n = 2k − 1.

Solution: Suppose that it is possible to select such squares, and let their coordinates be
(i, w(i)), where w : {1, . . . , n} → {1, . . . , n} is a bijection. We must have that the sum of the
entries in those squares is 1 + 2 + · · ·+ n =

(
n+1
2

)
. On the other hand, the sum is equal to

n∑
i=1

(i+ w(i)− k) =

(
n∑

i=1

i+

n∑
i=1

w(i)

)
− kn = 2

(
n∑

i=1

i

)
− kn = 2

(
n+ 1

2

)
− kn,

Thus, we must have kn =
(
n+1
2

)
, so k = (n+ 1)/2, and n = 2k − 1 has to be odd.

To exhibit a possible construction for these values, let w(i) = k+ i−1 for i = 1, . . . , k and
w(i) = i− k for i = k + 1, . . . , n, so that w(1), w(2), . . . , w(n) = k, k + 1, . . . , n, 1, . . . , k − 1.
The value in the square (i, w(i)) is 2i− 1 for i = 1, . . . , k (the odd numbers 1, 3, . . . , n), and
2(i− k) for i = k + 1, . . . , n (the even numbers 2, 4, . . . , n− 1).
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B2. Two convex quadrilaterals are called partners if they
have three vertices in common and they can be labeled
ABCD and ABCE so that E is the reflection ofD across
the perpendicular bisector of the diagonal AC. Is there
an infinite sequence of convex quadrilaterals such that
each quadrilateral is a partner of its successor and no
two elements of the sequence are congruent?

A

B

C
D

E

Answer: No.

Solution 1: Let Q0, Q1, . . . , Q6 be a sequence of convex quadrilaterals such that Qn and
Qn+1 are partners for 0 ≤ n ≤ 5. We will prove that Q0 and Q6 are congruent, unless Qn−1

and Qn+1 are congruent for some 1 ≤ n ≤ 5.
In the notation of the problem statement, we’ll say that ABCD and ABCE are partners

with respect to diagonal AC. A quadrilateral can have two different partners with respect to
the same diagonal, but these partners are congruent to each other, because one partner is the
reflection of the other about the perpendicular bisector of the diagonal. Thus for 1 ≤ n ≤ 5,
either Qn−1 and Qn+1 are congruent or they are partners of Qn with respect to different
diagonals of Qn. Hereafter, we assume that the latter is true for all 1 ≤ n ≤ 5.

Label the vertices of Qn as WnXnYnZn in such a way that the three vertices in common
between Qn and Qn+1 are assigned the same letters. Without loss of generality, we can
assume for 0 ≤ n ≤ 5 that Qn and Qn+1 are partners with respect to WnYn if n is even and
with respect to XnZn if n is odd. For each such Qn, this allows two possibilities for Qn+1 that
are congruent to each other, so without loss of generality we can assume that Wn+1 = Wn

and Zn+1 = Zn.
Since Q0 is convex, its diagonals intersect, and in particular they are not parallel, so

neither are their perpendicular bisectors. Let P be the intersection of their perpendicular
bisectors, and let P be the origin of a polar coordinate system. Then W0 and Y0 are equidis-
tant from P , and so are X0 and Z0. Let the coordinates of these vertices be W0 = (r, α),
X0 = (s, β), Y0 = (r, γ), Z0 = (s, δ).

To form Q1, we reflect X0 across the perpendicular bisector of W0Y0 to get X1. The
angle that the bisector makes with respect to P is α+γ

2 , reflecting X0 to X1 then gives an
angular coordinate for X1 as 2(α+γ

2 − β) + β. Since P is on this perpendicular bisector, it is
equidistant from X0 and X1, so we have X1 = (s, α+ γ − β), while Y1 = Y0 = (r, γ). Notice
also that X1 and Z1 = Z0 are equidistant from P , so P is on the perpendicular bisector of
diagonal X1Z1. Continuing in this manner, keeping in mind that Wn = W0 and Zn = Z0, we
calculate

X2 = (s, α+ γ − β), Y2 = (r, α+ δ − β);

X3 = (s, α+ δ − γ), Y3 = (r, α+ δ − β);

X4 = (s, α+ δ − γ), Y4 = (r, β + δ − γ);

X5 = (s, β), Y5 = (r, β + δ − γ);

X6 = (s, β), Y6 = (r, γ).

In particular, Q0 and Q6 are congruent (though they would not necessarily coincide with
each other if we had chosen partners so that Wn or Zn changed at some step).
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Solution 2: We say that an ordered quintuple (w, x, y, z, θ) “represents” a convex quadri-
lateral ABCD if w = AB, x = BC, y = CD and z = DA, and θ is the sum of the interior
angles at B and D. (By relabeling its vertices, a quadrilateral can be represented by more
than one quintuple.) We claim that two convex quadrilaterals that can be represented by the
same quintuple must be congruent. Before we prove this claim, we explain why it solves the
problem.

For partners ABCD and ABCE, the interior angles at D and E are the same, and CD =
AE andDA = EC. Thus, if (w, x, y, z, θ) represents ABCD using the labeling of the previous
paragraph, then (w, x, z, y, θ) represents ABCE. Furthermore, if (w, x, y, z, θ) represents
ABCD using a different labeling, then ABCE can be represented by some permutation of
w, x, y, z followed by θ. (Notice that θ might be the sum of the interior angles at A and C in
this representation, but since the sum of all four interior angles of a quadrilateral is always
2π, the value of θ is the same for ABCD and ABCE in this case too.) By induction, for
an infinite sequence of convex quadrilaterals in which each is a partner of its successor, if
(w, x, y, z, θ) represents the first member of the sequence, then each member of the sequence
can be represented by a quintuple that is some permutation of w, x, y, z followed by θ. Since
there are only a finite number of such permutations, two members of the sequence can be
represented by the same quintuple.

To prove the claim, we again use the labeling of the first paragraph. Let ϕ be the interior
angle at B; then the interior angle at D is θ−ϕ. By the law of cosines, both of the following
expressions equal AC2:

w2 + x2 − 2wx cosϕ = y2 + z2 − 2yz cos(θ − ϕ).

Since ABCD is convex, both ϕ and θ−ϕ lie between 0 and π, so the left side of the equation
above is a strictly increasing function of ϕ, and the right side is a strictly decreasing function
of ϕ. Thus, there can be only one value of ϕ that achieves equality. The values of w, x, y, z, θ, ϕ
determine triangles ABC and CDA up to congruence, and therefore they determine ABCD
up to congruence.

Solution 3: We prove that the number of noncongruent quadrilaterals in such a sequence
of convex quadrilaterals cannot exceed 12.

Observe that △ACD ∼= △CAE. Thus, two convex partners have the same set of four
side-lengths, the same area, and the same sums for the two pairs of opposite angles.

In quadrilateral ABCD, let ρ = ∠A and σ = ∠A + ∠C, w = AB, x = BC, y = CD,
z = DA. The areas of the sequence of quadrilaterals all equal

1

2
wz sin ρ+

1

2
xy sin(σ − ρ) =

wz − xy cosσ

2
sin ρ+

xy sinσ

2
cos ρ.

Since the area is positive, the coefficients of sin ρ and cos ρ cannot both be zero. By convexity,
0 < ρ < π, so sin ρ > 0. Thus, for the derivative of the area with respect to ρ to be 0, we
must have

cot ρ =
xy sinσ

wz − xy cosσ
,

which holds for as most one of the possible values of ρ. Then for given w, x, y, z, σ, the area
takes on any particular value for at most two values of ρ. Knowing ρ determines BD; hence
determines ∠ABD, ∠ADB, ∠CBD, and ∠CDB; hence determines ∠ABC and ∠ADC.

3



More generally, after a sequence of convex partnerships, there is always an angle adjacent
to the side of length w that is one of the opposite pair of angles that sum to σ. Let the
side lengths be, in order, w, s1, s2, s3, where s1, s2, s3 is a permutation of x, y, z, and σ is the
sum of the angle ρ between w and s3 and the angle between s1 and s2. As in the previous
paragraph, the values of w, s1, s2, s3, σ, ρ determine the quadrilateral up to congruence, and for
given w, s1, s2, s3, σ, there are at most two values of ρ that make the area of the quadrilateral
equal to the area of ABCD. This yields at most 3! · 2 = 12 noncongruent quadrilaterals.

Remark. Solution 3 yields twice as many possibilities as Solution 1 because, in fact, there
is only one possible value of ρ for given w, x, y, z, σ. This follows from an argument similar
to the last paragraph of Solution 2, requiring that angles ρ and σ − ρ yield the same value
for the length of diagonal BD.
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B3. Let rn be the nth smallest positive solution to tanx = x, where the argument of tangent
is in radians. Prove that

0 < rn+1 − rn − π <
1

(n2 + n)π

for n ≥ 1.

Solution: Set dn = rn+1 − rn − π. Because
d

dx
(tanx − x) = sec2 x − 1 ≥ 0 where the

derivative exists, with equality only at integer multiples of π, for each period of tanx the
function tan(x) − x is increasing and has a unique root. Thus, nπ < rn < (n + 1/2)π and
dn < π/2. Since tan(rn − nπ) = tan rn = rn < rn+1 = tan rn+1 = tan(rn+1 − (n + 1)π), we
have rn − nπ < rn+1 − (n + 1)π, and hence dn = rn+1 − (n + 1)π − (rn − nπ) > 0. Then
0 < dn < π/2, and in particular dn < tan dn. By the formula for the tangent of a difference,
we have

dn < tan(dn) = tan(rn+1 − (rn + π)) =
tan(rn+1)− tan(rn + π)

1 + tan(rn+1) tan(rn + π)

=
rn+1 − rn
1 + rn+1rn

=
π + dn

1 + rn+1rn

Isolating dn, we find

dn <
π

rn+1rn
<

π

(n+ 1)π · nπ
=

1

(n2 + n)π
.
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B4. Let n be a positive integer. Set an,0 = 1. For k ≥ 0, choose an integer mn,k uniformly
at random from the set {1, . . . , n}, and let

an,k+1 =


an,k + 1, if mn,k > an,k;

an,k, if mn,k = an,k;

an,k − 1, if mn,k < an,k.

Let E(n) be the expected value of an,n. Determine lim
n→∞

E(n)/n.

Answer:
1− e−2

2
.

Solution 1: Let pn,k(j) denote the probability that an,k = j and let E(n, k) denote the
expected value of an,k. When an,k = j, the expected value of an,k+1 − an,k is

1 · n− j

n
+ 0 · 1

n
− j − 1

n
=

n+ 1− 2j

n
.

Therefore,

E(n, k + 1) = E(n, k) +
n∑

j=1

n+ 1− 2j

n
pn,k(j) = E(n, k) +

n+ 1

n
− 2

n
E(n, k)

=
n+ 1

n
+

n− 2

n
E(n, k).

Iterating from E(n, 0) = 1, we find

E(n, n) =

(
n− 2

n

)n

+
n+ 1

n

n−1∑
k=0

(
n− 2

n

)k

=

(
n− 2

n

)n

+
n+ 1

n
·
1−

(
n− 2

n

)n

2/n
.

Observing that

lim
n→∞

(
n− 2

n

)n

= e−2,

we conclude

lim
n→∞

E(n)

n
= lim

n→∞

E(n, n)

n
=

1− e−2

2
.

Solution 2: Let Ek(d) be the expected value of an,n given that an,k = d. Note that En(d) =
d. We seek E(n) = E0(1). We have the recursion

Ek(d) =
d− 1

n
Ek+1(d− 1) +

1

n
Ek+1(d) +

n− d

n
Ek+1(d+ 1).

We can prove two lemmas by (downward) induction on k:
Lemma 1: For k ≤ n, Ek(d+ 1)− Ek(d) is independent of d for d ≤ n− 1.
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Proof: This is true for k = n. Now suppose it is true for k + 1; let ck+1 = Ek+1(d+ 1)−
Ek+1(d). Then subtracting two terms of the recursion gives

Ek(d+ 1)− Ek(d) =
n− d− 1

n
Ek+1(d+ 2)− n− d− 1

n
Ek+1(d+ 1)

+
d− 1

n
Ek+1(d)−

d− 1

n
Ek+1(d− 1)

=
n− d− 1

n
ck+1 +

d− 1

n
ck+1

=

(
1− 2

n

)
ck+1,

which is independent of d.

Corollary 1: For k ≤ n, Ek(d+ 1)− Ek(d) =
(
1− 2

n

)n−k
.

Proof: This follows directly from the relationship between ck and ck+1 from the above
proof.

Lemma 2: For k ≤ n, Ek(d) + Ek(n+ 1− d) = n+ 1.
Proof: This is true for k = n. Now suppose it is true for k + 1. Then

Ek(d) + Ek(n+ 1− d) =
d− 1

n
Ek+1(d− 1) +

1

n
Ek+1(d) +

n− d

n
Ek+1(d+ 1)

+
n− d

n
Ek+1(n− d) +

1

n
Ek+1(n+ 1− d) +

d− 1

n
Ek+1(n+ 2− d)

=
d− 1

n
(n+ 1) +

1

n
(n+ 1) +

n− d

n
(n+ 1)

= n+ 1,

by the inductive hypothesis (and pairing the first/sixth, second/fifth, and third/fourth terms
of the expansion).

Corollary 2:
n∑

d=1

Ek(d) =
n(n+ 1)

2
.

Proof: 2
n∑

d=1

Ek(d) =
n∑

d=1

Ek(d) +
n∑

d=1

Ek(n+ 1− d) = n(n+ 1), so the result follows.

The rest of the proof is algebra. We have

n(n+ 1)

2
=

n∑
d=1

E0(d) =
n∑

d=1

(
E0(1) +

(
1− 2

n

)n

(d− 1)

)
= nE0(1) +

(
1− 2

n

)n n(n− 1)

2
,

so we get
E(n)

n
=

E0(1)

n
=

n+ 1

2n
− n− 1

2n

(
1− 2

n

)n

.

The limit of this expression is 1
2 − 1

2e2
.
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B5. Let k and m be positive integers. For a positive integer n, let f(n) be the number
of integer sequences x1, . . . , xk, y1, . . . , ym, z satisfying 1 ≤ x1 ≤ · · · ≤ xk ≤ z ≤ n and
1 ≤ y1 ≤ · · · ≤ ym ≤ z ≤ n. Show that f(n) can be expressed as a polynomial in n with
nonnegative coefficients.

Solution 1: For a given z, the number of sequences is the number of ways to put k balls
in z (labeled) boxes, i.e.

(
k+z−1

k

)
, and m balls in z boxes. Summing over z, the number of

sequences is

pk,m(n) =
n∑

z=1

(
k + z − 1

k

)(
m+ z − 1

m

)
=

n−1∑
i=0

(
i+ k

k

)(
i+m

m

)
.

We may assume k ≥ m and proceed by induction on m, beginning with m = 0. First, by
the hockey-stick identity,

pk,0(n) =

n−1∑
i=0

(
i+ k

k

)
=

(
n+ k

k + 1

)
=

(n+ k)(n+ k − 1) · · ·n
(k + 1)!

,

the latter expression showing this is a polynomial in n of degree k + 1 and the coefficients
are nonnegative.

Next, we find a recursion, again using the hockey-stick identity,

pk,m+1(n) =

n−1∑
i=0

(
i+ k

k

)(
i+m+ 1

m+ 1

)
=

n−1∑
i=0

(
i+ k

k

) i∑
j=0

(
j +m

m

)

=
n−1∑
j=0

(
j +m

m

) n−1∑
i=j

(
i+ k

k

)
=

n−1∑
j=0

(
j +m

m

)((
n+ k

k + 1

)
−
(
j + k

k + 1

))

=

(
n+ k

k + 1

)(
n+m

m+ 1

)
−

n−1∑
j=0

(
j +m

m

)((
j + k + 1

k + 1

)
−
(
j + k

k

))

=

(
n+ k

k + 1

)(
n+m

m+ 1

)
− pk+1,m(n) + pk,m(n). (1)

This shows, by induction on m, that pk,m(n) is a polynomial in n. From

i+ k + 1

k + 1
=

m+ 1

k + 1
· i+m+ 1

m+ 1
+

k −m

k + 1
,

for k ≥ m, we deduce

pk+1,m(n) =

n−1∑
i=0

i+ k + 1

k + 1

(
i+ k

k

)(
i+m

m

)

=
m+ 1

k + 1

n−1∑
i=0

i+m+ 1

m+ 1

(
i+ k

k

)(
i+m

m

)
+

k −m

k + 1

n−1∑
i=0

(
i+ k

k

)(
i+m

m

)
=

m+ 1

k + 1
pk,m+1(n) +

k −m

k + 1
pk,m(n).
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Substituting for pk+1,m(n) in (1) yields the weighted average

pk,m+1(n) =
k + 1

k +m+ 2

(
n+ k

k + 1

)(
n+m

m+ 1

)
+

m+ 1

k +m+ 2
pk,m(n),

completing the induction.

Solution 2: Without loss of generality, assume that k ≤ m. For a given value of z, there

are
(
z+k−1

k

)
sequences x1, x2, . . . , xk that meet the condition, because the corresponding

sequences x1+1, x2+1, . . . , xk+k are in one-to-one correspondence with subsets of k elements
in {2, 3, . . . , z + k}. Similarly, there are

(
z+m−1

m

)
possibilities for y1, . . . , ym. Thus,

f(n) =

n∑
z=1

(
z + k − 1

k

)(
z +m− 1

m

)
=

1

k!m!

n∑
z=1

k−1∏
j=0

(z + j)2
m−1∏
j=k

(z + j).

Here and below, an empty product (for example, the second product above if k = m) should
be interpreted as the number 1.

In the summation above, each term is a degree k+m polynomial in z. Thus, f(n) can be
expressed as a linear combination of sums of the form 1ℓ + 2ℓ + · · · + nℓ, where ℓ goes from
0 to k +m. For each ℓ, this sum can be expressed as a degree ℓ + 1 polynomial in n (with
rational coefficients), which is a well-known fact. Thus, f(n) can be expressed as a degree
k +m + 1 polynomial p(n). It remains to show that the coefficients of this polynomial are
nonnegative.

For all real t, we have the identity

k!m!(p(t+ 1)− p(t)) =
k∏

i=1

(t+ i)2
m∏

i=k+1

(t+ i),

since both sides are polynomials, and the identity is true for all positive integers t. Applying
the identity for t = 0 yields p(0) = 0. Then, applying the identity for x = −1,−2, . . . ,−m
yields 0 = p(0) = p(−1) = · · · = p(−m) (we call this equation Property I). Also, differenti-
ating the identity and substituting x = −1,−2, . . . ,−k yields p′(0) = p′(−1) = · · · = p′(−k)
(we call this equation Property II).

We claim that Properties I and II, and the fact that p has degree less than k + m + 2,
uniquely determine p up to a multiplicative constant. Indeed, if polynomials p and q with
degree less than k+m+2 both satisfy Properties I and II, then so does each linear combination
ap + bq. Choose a and b such that ap′(0) + bq′(0) = 0. Then ap + bq has double roots at
0,−1, . . . ,−k and single roots at −k − 1, . . . ,−m, for a total of k +m + 2 roots. Since the
degree of ap+ bq is less than its number of roots, it must be identically zero.

Next, we will construct a polynomial of degree less than k+m+ 2 with Properties I and
II that is not identically zero, and conclude that p is a constant multiple of it. The approach
is similar to Lagrange interpolation. For j = 0, 1, . . . , k, let

qj(t) = (t+ j)

k∏
i=0
i̸=j

(t+ i)2

(−j + i)2

m∏
i=k+1

t+ i

−j + i
.
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Notice that qj has degree k +m + 1, and that 0 = qj(0) = qj(−1) = · · · = qj(−m). Notice
also that by the product rule,

q′j(t) =

k∏
i=0
i ̸=j

(t+ i)2

(−j + i)2

m∏
i=k+1

t+ i

−j + i
+ (t+ j)

k∏
i=0
i̸=j

(t+ i)rj(t)

for some polynomial rj . Thus, q′j(−i) = 0 for i = 0, 1, . . . , k and i ̸= j, while q′j(−j) = 1. It
follows that q0+q1+· · ·+qk has Properties I and II, and hence that p = c(q0+q1+· · ·+qk) for
some real number c. Notice that c > 0 because the tk+m+1 coefficient of p must be positive.
Each qj is a polynomial with nonnegative coefficients; thus, so is p.

Remark: This problem was inspired by Corollary 3.4 in [Luis Ferroni, “On the Ehrhart
Polynomial of Minimal Matroids”, Discrete & Computational Geometry 68 (2022), 255–273,
https://doi.org/10.1007/s00454-021-00313-4].
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B6. For a real number a, let Fa(x) =
∑

n≥1 n
ae2nxn

2
for 0 ≤ x < 1. Find a real number c

such that

lim
x→1−

Fa(x)e
−1/(1−x) = 0 for all a < c, and

lim
x→1−

Fa(x)e
−1/(1−x) = ∞ for all a > c.

Answer: c = −1/2.

Solution: Recall that lnx ≤ x − 1 for all positive x, and thus also ln(1/x) ≤ 1/x − 1 =
(1− x)/x. For 0 < x < 1, it follows that

1

lnx
≥ 1

x− 1
= − 1

1− x
= − x

1− x
− 1 ≥ − 1

ln(1/x)
− 1 =

1

lnx
− 1.

Thus, for 0 < x < 1,

e1/(lnx) ≥ e−1/(1−x) ≥ e1/(lnx)

e
.

Thus, replacing e−1/(1−x) with e1/(lnx) does not affect whether the limit in question is 0, or
whether it is ∞.

Let z = −1/(lnx), so that x = e−1/z. Then

Fa(x)e
1/(lnx) =

∞∑
n=1

nae−z+2n−n2

z =
∞∑
n=1

nae−
(n−z)2

z .

Notice that z → ∞ as x → 1−. For z ≥ 4, so that
√
z ≤ z/2, consider the portion of the sum

for which z −
√
z ≤ n ≤ z +

√
z, which is equivalent to (n − z)2/z ≤ 1. There are at least

z +
√
z − (z −

√
z)− 1 = 2

√
z − 1 terms in this portion, and since z/2 ≤ n < 2z, we obtain

the bound na ≥ 2−|a|za. Thus,

Fa(x)e
1/(lnx) ≥

∑
z−

√
z≤n≤z+

√
z

nae−
(n−z)2

z ≥ (2
√
z − 1)2−|a|zae−1.

If a > −1/2, this lower bound approaches ∞ as z → ∞, so Fa(x)e
1/(lnx) → ∞ as x → 1−.

For a < −1/2, write Fa(x)e
1/(lnx) = S1(z) + S2(z) where

S1(z) =
∑

1≤n≤z/2

nae−
(n−z)2

z ; S2(z) =
∑

n>z/2

nae−
(n−z)2

z .

Since both sums are nonnegative, it suffices to show that each has an upper bound that
approaches 0 as z → ∞

We bound S1(z) above by the number of terms in the sum (which is as most z/2) times
an upper bound on each term. Since a < 0, we have na ≤ 1, and since (n− z)2/z ≥ z/4 for
n ≤ z/2, we have S1(z) ≤ (z/2)e−z/4. Thus, S1(z) → 0 as z → ∞.

Since a < 0, in S2(z) we can bound na above by (z/2)a. We write S2(z) = s0+s1+s2+· · ·
where sk includes the terms in S2(z) for which k ≤ (n − z)2/z ≤ k + 1. Then each term in
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sk is at most (z/2)ae−k, and since z −
√
(k + 1)z ≤ n ≤ z +

√
(k + 1)z, there are at most

z +
√
(k + 1)z − (z −

√
(k + 1)z) + 1 = 2

√
k + 1

√
z + 1 terms in sk. Thus,

S2(z) ≤
∞∑
k=0

(2
√
k + 1

√
z + 1)(z/2)ae−k.

Since
∑

k≥0

√
k + 1e−k < ∞, this upper bound approaches 0 as z → ∞ if a < −1/2. There-

fore, F (x)e1/(lnx) → 0 as x → 1−, completing the proof.

Remark. This problem was inspired by Proposition 3.2 in [K. Bringmann, C. Jennings-
Shaffer, K. Mahlburg , “On a Tauberian theorem of Ingham and Euler–Maclaurin summa-
tion”, The Ramanujan Journal 61 (2023), 55–86, https://doi.org/10.1007/s11139-020-00377-5].
A similar argument shows that the limit in this problem exists for a = −1/2, and is equal to√
π/e. An outline of the proof, using the notation of the solution above, follows. First, by

multiple applications of L’Hôpital’s rule,

lim
x→1−

(
− 1

lnx
− 1

1− x

)
= − lim

x→1−

1 + (lnx)/(1− x)

lnx
= − lim

x→1−

1/(x(1− x)) + (lnx)/(1− x)2

1/x

= − lim
x→1−

1− x+ x lnx

(1− x)2
= − lim

x→1−

lnx

−2(1− x)
= − lim

x→1−

1/x

2
= −1

2
.

Thus, the limit of the exponential of the expression above is e−1/2.
Next, make the change of variables u = (n− z)/

√
z and n = z +

√
zu to write

F−1/2(x)e
1/(lnx) =

∞∑
n=1

(
z +

√
zu
)−1/2

e−u2
.

This is a Riemann sum, using intervals of length 1/
√
z, for∫ ∞

(1−z)/
√
z

√
z
(
z +

√
zu
)−1/2

e−u2
du.

Notice that for fixed u, the integrand approaches e−u2
as z → ∞. The remainder of the

proof is to justify that the integral approaches
∫∞
−∞ e−u2

du =
√
π, and that the limit of the

Riemann sums is the limit of the integrals.
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