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ABSTRACT

Optimal stopping involves determining the ideal moment to take an action that maximizes
expected rewards. In finance, this concept helps answer questions like:

• When should an investor exercise an American option?
• What’s the optimal time to sell an asset?
• How to value flexibility in investment decisions?

THEORETICAL BACKGROUND

Value Equation
Given an asset whose price is determined by a discrete-time stochastic process (St)

T
t=0

we define the following stochastic process, which tracks the value of our asset at each
discrete time step t ∈ [0, T ].

The value V (0, s) of an asset with payoff Φ(s) is:

Vn := sup
τ∈[n,T ]

EQ [
e−rτΦ(Sτ ) | Sn

]
where:
• τ : Exercise time (stopping decision)
• Q: Risk-neutral probability measure
• St: Underlying asset price at time t

• r: Risk-free interest rate

We can equivalently define this value process recursively using the Dynamic Programming
Equation as follows.

How Does an Investor Formulate the Mathematical Model?

Definition. (Dynamic Programming Equation, [3]) The option value satisfies:

VN = e−rTΦ(SN )

Vn = max {E[Vn+1 | Fn],Φ(Sn)} , 0 ≤ n < N

This recursive relationship allows backward computation of optimal decisions, comparing
immediate exercise value (Φ(Sn)) with expected continuation value.
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DISCRETE MODELS & SOLUTIONS
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Binomial Tree Model [4]

Least-Squares Monte Carlo (LSM) model leverages Monte Carlo simulation to generate
multiple paths of the underlying asset price St.
Valuing American Options: It estimates the optimal exercise strategy by regressing
discounted future cash flows on a set of basis functions of current state variables.

The LSM model proceeds in two main steps:

1. Path Simulation:
The underlying asset price paths are generated using the Geometric Brownian Motion
(GBM) model [2]. The price at time t is given by:

St = St−1 exp

((
r − 1

2
σ2
)
∆t + σ

√
∆t Z

)
where r is the risk-free rate, σ is the volatility, ∆t is the time step, and Z is a standard
normal random variable. This generates M paths of the asset price over N time steps.

2. Backward Induction:
Starting from the final time T , the algorithm works backward to determine the optimal
exercise strategy at each time step. At expiration t = T , set V (i)

T = max(K − S
(i)
T , 0).

For t = T − 1, . . . , 1: We first identify in-the-money paths It = {i : S(i)
t < K}; Then We

fit regression models (can use different degrees). Specifically, we regress discounted
future values on basis functions, here’s an example of linear regression:

e−r∆tV
(i)
t+1 =

L∑
k=1

βkϕk(S
(i)
t ) + ϵ(i), i ∈ It

Then we compute continuation values Ĉ
(i)
t =

∑L
k=1 β̂kϕk(S

(i)
t ) and update option val-

ues:

V
(i)
t =

max(K − S
(i)
t , Ĉ

(i)
t ) i ∈ It

e−r∆tV
(i)
t+1 otherwise

This gives the initial option value:

V0 =
1

M

M∑
i=1

e−rτiV
(i)
τi

where τi denotes the optimal exercise time for path i.

Continuous Models

Get to know Brownian Motion

Definition. (Brownian Motion, [5]) A continuous-time stochastic process Wt satisfies
the following properties:
1. Continuity: t 7→ Wt(ω) are continuous almost surely.
2. Independent Increments: For s < t, Wt −Ws ∼ N (0, t− s) and independent of Fs.
3. Initial Condition: W0 = 0.

Brownian motion is often termed the ”random walk” in continuous time. Its erratic path
behavior makes it a natural model for stock price fluctuations.

Black-Scholes Model
Under the risk-neutral measure Q, the stock price St follows:

dSt = rSt dt + σSt dWt,

where r is the risk-free rate and σ is volatility. The closed-form solution is:

St = S0 exp

((
r − σ2

2

)
t + σWt

)
.

Feynman-Kac and Free-Boundary Problems

Feynman-Kac links PDEs with expectations over stochastic processes. If Xt is a diffusion and V (T, x) =
Φ(x), then

V (t, x) = EQ
[
e−r(T−t)Φ(XT ) | Xt = x

]
,

solves the PDE:
∂V

∂t
+ LV − rV = 0.

In American option pricing, this yields a free-boundary problem with an unknown exercise threshold b,
where: {

LV − rV = 0 for x < b

V (x) = Φ(x), V ′(b−) = Φ′(b+) (smooth fit)

RESULTS

S σ T Finite Difference American Linear Regr. Binomial Regr. Deg. 3 Hermite Regr.
36 0.2 1 4.478 4.408 4.463 4.464
36 0.2 2 4.84 4.74 4.816 4.827
36 0.4 1 7.101 6.99 7.052 7.059
36 0.4 2 8.508 8.35 8.455 8.482
38 0.2 1 3.25 3.175 3.226 3.231
38 0.2 2 3.745 3.65 3.728 3.74
38 0.4 1 6.148 6.036 6.091 6.092
38 0.4 2 7.767 7.518 7.635 7.629
40 0.2 1 2.314 2.253 2.291 2.293
40 0.2 2 2.885 2.812 2.859 2.882
40 0.4 1 5.312 5.217 5.264 5.265
40 0.4 2 6.92 6.793 6.877 6.901
42 0.2 1 1.617 1.578 1.594 1.595
42 0.2 2 2.212 2.148 2.191 2.201
42 0.4 1 4.582 4.494 4.523 4.529
42 0.4 2 6.248 6.128 6.208 6.219
44 0.2 1 1.11 1.069 1.088 1.107
44 0.2 2 1.69 1.647 1.671 1.686
44 0.4 1 3.948 3.856 3.901 3.89
44 0.4 2 5.647 5.525 5.601 5.614

Generated using 100,000 paths, 50 exercise points per time step, and risk-free interest rate of 6%.Finite Difference values from [1].
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