

# **Optimal Stopping Problems with Applications to Finance**

### ABSTRACT

Optimal stopping involves determining the ideal moment to take an action that maximizes expected rewards. In finance, this concept helps answer questions like:

- When should an investor exercise an American option?
- What's the optimal time to sell an asset?
- How to value flexibility in investment decisions?

### THEORETICAL BACKGROUND

#### Value Equation

Given an asset whose price is determined by a discrete-time stochastic process  $(S_t)_{t=0}^T$ we define the following stochastic process, which tracks the value of our asset at each discrete time step  $t \in [0, T]$ .

The value V(0, s) of an asset with payoff  $\Phi(s)$  is:

$$V_n := \sup_{\tau \in [n,T]} \mathbb{E}^{\mathbb{Q}} \left[ e^{-r\tau} \Phi(S_\tau) \mid S_n \right]$$

where:

- $\tau$ : Exercise time (stopping decision)
- Q: Risk-neutral probability measure
- $S_t$ : Underlying asset price at time t
- r: Risk-free interest rate

We can equivalently define this value process recursively using the Dynamic Programming Equation as follows.

### How Does an Investor Formulate the Mathematical Model?

**Definition.** (Dynamic Programming Equation, [3]) *The option value satisfies:* 

 $V_N = e^{-rT} \Phi(S_N)$  $V_n = \max \left\{ \mathbb{E}[V_{n+1} \mid \mathcal{F}_n], \Phi(S_n) \right\}, \quad 0 \le n < N$ 

This recursive relationship allows backward computation of optimal decisions, comparing immediate exercise value ( $\Phi(S_n)$ ) with expected continuation value.

#### REFERENCES

- [1] Eduardo S. Schwartz Francis A. Longstaff. Valuing american options by simulation: A simple least-squares approach. *The* Review of Financial Studies, 14(1), 2001.
- [2] Paul Glasserman. Monte Carlo Methods in Financial Engineering. Springer, 2003.
- [3] University of Michigan Department of Mathematics. Optimal stopping and american options. Math 474 Lecture 19.
- [4] Steven E. Shreve. Stochastic Calculus for Finance 1: The Binomial Asset Pricing Model. Springer, 2004.
- [5] Steven E. Shreve. Stochastic Calculus for Finance: Continuous-Time Models. Springer, 2004.

Thank you, Guillermo Alonso Alvarez and Yuqiong Wang, for supporting our research project.

### Carlos Rosales, Eren Buyukbozkirli, Sarah Semko, Sijia Wang, Xinran Du

### Mentors: Guillermo Alonso Alvarez, Yuqiong Wang

University of Michigan Laboratory of Geometry



| TIONS                                                                                 | Continuous Models<br>Get to know Brownian Motion                                                                                                                                                                                                                    |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |                                                                                                                    |                  |  |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------|--|
| 3                                                                                     |                                                                                                                                                                                                                                                                     |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |                                                                                                                    |                  |  |
| $\left( d \right)$                                                                    | <b>Definition.</b> (Brownian Motion, [5]) A continuous-time stochastic process $W_t$ satisfied the following properties:                                                                                                                                            |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |                                                                                                                    |                  |  |
|                                                                                       | 7. Continuity:                                                                                                                                                                                                                                                      | $t \mapsto W_t(\omega)$                                                                          | are continuo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{1}{1}$                                                                                   |                                                                                                                    | lopondont of $T$ |  |
|                                                                                       | 2. Independent<br>2. Initial Cond                                                                                                                                                                                                                                   | dition: W <sub>2</sub> –                                                                         | $115. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\iota$ , $vv_t - vv_s$                                                                         | $\sim \mathcal{N}\left(0, t-s ight)$ and mu                                                                        | ependent of "-   |  |
| $l^2$                                                                                 | J. Initial Conc                                                                                                                                                                                                                                                     | $mon. vv_0 =$                                                                                    | · 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                 |                                                                                                                    |                  |  |
|                                                                                       | Brownian motio<br>behavior makes                                                                                                                                                                                                                                    | n is often te<br>; it a natural                                                                  | rmed the "ra<br>model for st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ndom walk"<br>ock price flu                                                                     | ' in continuous time.<br>uctuations.                                                                               | Its erratic path |  |
|                                                                                       | Black-Schol                                                                                                                                                                                                                                                         | es Model                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |                                                                                                                    |                  |  |
|                                                                                       | Under the risk-neu                                                                                                                                                                                                                                                  | tral measure (                                                                                   | ), the stock prid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ce $S_t$ follows:                                                                               |                                                                                                                    |                  |  |
| nte Carlo simulation to generate                                                      |                                                                                                                                                                                                                                                                     |                                                                                                  | $dS_t =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $= rS_t  dt + \sigma S_t  d$                                                                    | $W_t,$                                                                                                             |                  |  |
| ne cane cinalation to generate                                                        | where $r$ is the risk-                                                                                                                                                                                                                                              | free rate and a                                                                                  | $\tau$ is volatility. The second states the second | he closed-form $(2)$                                                                            | n solution is:                                                                                                     |                  |  |
| ise strategy by regressing of current state variables.                                |                                                                                                                                                                                                                                                                     | . –                                                                                              | $S_t = S_0 \exp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $o\left(\left(r-\frac{\sigma^2}{2}\right)t-\right)$                                             | $+\sigma W_t \Big) .$                                                                                              |                  |  |
|                                                                                       | Feynman-Ka                                                                                                                                                                                                                                                          | ic and Fre                                                                                       | e-Bound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ary Probl                                                                                       | ems                                                                                                                |                  |  |
| ne Geometric Brownian Motion                                                          | Feynman-Kac links PDEs with expectations over stochastic processes. If $X_t$ is a diffusion and $V(T, x) = \Phi(x)$ , then<br>$V(t, x) = \mathbb{E}^{\mathbb{Q}\left[e^{-r(T-t)}\Phi(X_t) + X_t - x\right]}$                                                        |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |                                                                                                                    |                  |  |
|                                                                                       |                                                                                                                                                                                                                                                                     |                                                                                                  | $V\left(t,x ight)=\mathbb{E}^{\mathcal{L}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\left[e^{-r(1-t)}\Phi(X_T)\right]$                                                             | $\left[ X_t = x \right],$                                                                                          |                  |  |
| $\sqrt{\Delta t} Z \bigg)$                                                            | solves the PDE:                                                                                                                                                                                                                                                     |                                                                                                  | $\frac{\partial V}{\partial t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $+\mathcal{L}V - rV =$                                                                          | 0.                                                                                                                 |                  |  |
| time step, and $Z$ is a standard asset price over $N$ time steps.                     | In American option pricing, this yields a <b>free-boundary problem</b> with an unknown exercise threshold <i>b</i> , where:<br>$\begin{cases} \mathcal{L}V - rV = 0 & \text{for } x < b \\ V(x) = \Phi(x),  V'(b^-) = \Phi'(b^+) & \text{(smooth fit)} \end{cases}$ |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |                                                                                                                    |                  |  |
| T set $V^{(i)} - \max(K - S^{(i)} 0)$                                                 |                                                                                                                                                                                                                                                                     |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |                                                                                                                    |                  |  |
| $\mathcal{T}_{t} = \{i : S_{t}^{(i)} < K\}$ : Then We                                 |                                                                                                                                                                                                                                                                     | RESULIS                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |                                                                                                                    |                  |  |
| cifically, we regress discounted                                                      |                                                                                                                                                                                                                                                                     |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |                                                                                                                    |                  |  |
| inear regression: $i \in \mathcal{I}_t$<br>$\phi_k(S_t^{(i)})$ and update option val- | $\begin{array}{ c c c c c c c } S & \sigma & T & Finite D \\ 36 & 0.2 & 1 \\ 36 & 0.2 & 2 \\ 36 & 0.4 & 1 \\ 36 & 0.4 & 2 \\ 38 & 0.2 & 1 \\ 38 & 0.2 & 2 \\ 38 & 0.4 & 1 \\ 38 & 0.4 & 1 \\ 38 & 0.4 & 2 \\ 40 & 0.2 & 1 \\ \end{array}$                           | ifference America<br>4.478<br>4.84<br>7.101<br>8.508<br>3.25<br>3.745<br>6.148<br>7.767<br>2.314 | an Linear Regr.<br>4.408<br>4.74<br>6.99<br>8.35<br>3.175<br>3.65<br>6.036<br>7.518<br>2.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Binomial Regr.<br>4.463<br>4.816<br>7.052<br>8.455<br>3.226<br>3.728<br>6.091<br>7.635<br>2.291 | Deg. 3 Hermite Regr.<br>4.464<br>4.827<br>7.059<br>8.482<br>3.231<br>3.74<br>6.092<br>7.629<br>2.293               |                  |  |
| E $\mathcal{I}_t$<br>nerwise                                                          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                | 2.885<br>5.312<br>6.92<br>1.617<br>2.212<br>4.582<br>6.248<br>1.11<br>1.69<br>3.948<br>5.647     | $\begin{array}{c} 2.812\\ 5.217\\ 6.793\\ 1.578\\ 2.148\\ 4.494\\ 6.128\\ 1.069\\ 1.647\\ 3.856\\ 5.525\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.859<br>5.264<br>6.877<br>1.594<br>2.191<br>4.523<br>6.208<br>1.088<br>1.671<br>3.901<br>5.601 | $\begin{array}{c} 2.882\\ 5.265\\ 6.901\\ 1.595\\ 2.201\\ 4.529\\ 6.219\\ 1.107\\ 1.686\\ 3.89\\ 5.614\end{array}$ |                  |  |

Generated using 100,000 paths, 50 exercise points per time step, and risk-free interest rate of 6%. Finite Difference values from [1].

## LOG(M)