RINGS OF INVARIANTS

SEAN COTNER

Let $\operatorname{GL}_n(\mathbb{C})$ be the group of $n \times n$ invertible matrices over the field \mathbb{C} of complex numbers, and let $\mathbb{C}[\operatorname{GL}_n]$ denote the \mathbb{C} -algebra of polynomial functions $\operatorname{GL}_n(\mathbb{C}) \to \mathbb{C}$; this is isomorphic to $\mathbb{C}[\{X_{ij}\}_{1 \leq i, j \leq n}][1/\operatorname{det}]$, where det is the determinant function (a polynomial!). There is a natural action of $\operatorname{GL}_n(\mathbb{C})$ on $\mathbb{C}[\operatorname{GL}_n]$ by $(g \cdot f)(x) = f(g^{-1}xg)$. It is natural to ask for the fixed points of this action, the so-called *class functions*; the set of these is denoted by $\mathbb{C}[\operatorname{GL}_n]^{\operatorname{GL}_n}$. (This superscript is generally used to mean that we are taking fixed points.) Because any class function f depends only on the conjugacy class of its input, a relatively short argument shows that it only depends on the *characteristic polynomial* of its input. Arguing along these lines, one shows that $\mathbb{C}[\operatorname{GL}_n]^{\operatorname{GL}_n}$ is isomorphic to the set of polynomial functions on the set X of possible characteristic polynomials. A characteristic polynomial is determined by its coefficients, which for an invertible matrix can be arbitrary (except for the constant term, which cannot be 0). A polynomial function on X just depends on these coefficients, so the ring of such functions is isomorphic to $\mathbb{C}[\{X_i\}_{1 \leq i \leq n-1}, X_0^{\pm 1}]$ (almost, but not quite, a polynomial ring). Whereas $\mathbb{C}[\operatorname{GL}_n]^{\operatorname{GL}_n}$ might look rather daunting, this shows that it is remarkably simple after all!

What happens if $\operatorname{GL}_n(\mathbf{C})$ is replaced by another group? Let $\operatorname{PGL}_n(\mathbf{C})$ be the quotient of $\operatorname{GL}_n(\mathbf{C})$ by the subgroup of scalar matrices. In other words, an element of $\operatorname{PGL}_n(\mathbf{C})$ is just an $n \times n$ complex matrix, considered up to \mathbf{C}^{\times} -scaling. We can ask the same question as the previous paragraph: how can one describe the \mathbf{C} -algebra $\mathbf{C}[\operatorname{PGL}_n]^{\operatorname{PGL}_n}$ of class functions? If n = 2, one can again use considerations with characteristic polynomials to compute that $\mathbf{C}[\operatorname{PGL}_2]^{\operatorname{PGL}_2} \cong \mathbf{C}[X]$ is a polynomial ring. However, if n = 3, it turns out that this is no longer the case! In fact, it is surprisingly difficult to describe $\mathbf{C}[\operatorname{PGL}_3]^{\operatorname{PGL}_3}$ in a way that elucidates many of its properties.

In this project, we aim to:

- Understand the description of $\mathbf{C}[\operatorname{GL}_n]^{\operatorname{GL}_n}$ given above, and ideally to understand the geometry of the inclusion $\mathbf{C}[\operatorname{GL}_n]^{\operatorname{GL}_n} \to \mathbf{C}[\operatorname{GL}_n]$.
- Compute $\mathbb{C}[\mathrm{PGL}_n]^{\mathrm{PGL}_n}$ for small n (at least n = 3 and 4), and try to understand its ring-theoretic properties.
- Compute various other algebraic quantities related to the inclusion $\mathbf{C}[\mathrm{PGL}_n]^{\mathrm{PGL}_n} \subset \mathbf{C}[\mathrm{PGL}_n]$.

Time permitting (and depending on the interests of the participants), we might try to understand related groups of matrices such as the projective symplectic groups PSp_{2n} .

Some experience in linear and abstract algebra is important to work on this project, but I believe that there are no other prerequisites.