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ABSTRACT

Invariant theory explores polynomial functions that remain unchanged under a group ac-
tion. We focus on the fixed subrings of polynomial algebras under conjugation by the
general linear group GLn(C) and its projective quotient PGLn(C). Our goals are:
• Identify explicit generators and relations for small n.
• Connect combinatorial descriptions of weight semigroups to algebraic invariants.
• Demonstrate computational methods for verifying Hilbert bases.

OBJECTIVE: Provide a clear, visual guide to the construction and structure
ofC[PGLn]

PGLn for n = 1, 2, 3.

BACKGROUND

Invariant Theory and Matrix Groups

Invariant theory studies functions unchanged under group actions. In our case, the group
is the general linear group:
• GLn(C): all invertible n× n complex matrices[1].
• PGLn(C) = GLn(C)/C×: projective group modulo scalar matrices[2].

Invariant Rings:
The ring C[GLn] is the algebra of polynomial functions on GLn(C), and we define[3]:

C[GLn]GLn = {f ∈ C[GLn] | f (g−1xg) = f (x)}
These are ”class functions”, depending only on eigenvalues. Similarly for PGLn, we study
C[PGLn]PGLn.

C[PGLn]
PGLn ∼= C[Tn]Sn ∼= C[Vn]Sn,

where
Vn = {(x1, x2, . . . , xn) ∈ Zn | x1 + x2 + · · · + xn = 0}.

The symmetric group Sn acts on Vn by permuting the coordinates.
C-Algebra

Let V be an abelian group. The complex group algebra C[V ] is defined [4] as the C-vector
space with basis elements {tv | v ∈ V }. The multiplication on C[V ] is given by linear
extension of the rule

tv · tw = tv+w, ∀ v, w ∈ V.

Since V is abelian, the multiplication is commutative, and thus C[V ] is a commutative
C-algebra.

Example: The C-Algebra of Z and Zn

For C[Z]:

C[Z] is the group algebra of the group Z. Since every element of Z can be written as an
integer n, we denote the corresponding basis element by tn. With the multiplication rule

tn · tm = tn+m,

C[Z] becomes isomorphic to the ring of Laurent polynomials C[t, t−1].

For C[Zn]:

In a similar way, every element of Zn is an n-tuple (v1, v2, . . . , vn). We denote the corre-
sponding basis element by tv, which can also be written as

tv = tv11 t
v2
2 · · · tvnn .

The multiplication rule is
tv · tw = tv+w,

where the addition is done component-wise. Therefore,

C[Zn] ∼= C[t1, t
−1
1 , t2, t

−1
2 , . . . , tn, t

−1
n ].

‘

MAIN THEORY

Theorem 1. We have the following isomorphisms[3]:

C[ PGLn]
PGLn ∼= C[Tn]Sn ∼= C[Vn]

Sn,

where
Vn = {(x1, x2, . . . , xn) ∈ Zn | x1 + x2 + · · · + xn = 0}.

The symmetric group Sn acts on Vn by permuting the coordinates.

Theorem 2. Let λ = (x1, x2, . . . , xn) ∈ Zn be a weight for SLn(C) satisfying

x1 + x2 + · · · + xn = 0.

Then λ is dominant if and only if

x1 ≥ x2 ≥ · · · ≥ xn.

Cases n = 1 and n = 2

Case n = 1:
For n = 1, we have

V1 = {0},
so the torus is T 1 ∼= C×. Hence,

C[T 1]S1 ∼= C[t, t−1],

which is simply the full Laurent polynomial ring.

Case n = 2:
For n = 2, the weight space is

V2 = {(x,−x) | x ∈ Z}.

Each weight (x,−x) is assigned the basis element t(x,−x) in the group algebra C[V2]. In
particular, define

u = t(1,−1).

The symmetric group S2 acts on V2 by interchanging the two components. In order to
construct an S2-invariant, we consider

u + u−1.

Moreover, one can show (by induction, for example) that for any positive integer n

un + u−n

can be expressed as a polynomial in u + u−1 (e.g., u2 + u−2 = (u + u−1)2 − 2, etc.).
Thus, we obtain

C[V2]
S2 ∼= C[u + u−1].

Case n = 3

For n = 3, after an appropriate linear transformation, the semigroup of dominant weights
can be described by

D3 = {(m,n) ∈ Z2
≥0 | 2m ≥ n, 2n ≥ m}.

By observation, we conjecture that the minimal generators for D3 are

(1, 1), (2, 1), (1, 2).

Figure 1: Visualization of D3

We can use induction to show that every point (m,n) ∈ D3 can be expressed as a non-

negative integer combination of these generators. First, we construct our invariants by
enforcing the condition that the sum of the coordinates is zero. We set

(a, b, c) = (m,−n, n−m),

so that
a + b + c = 0.

Thus, the corresponding three sigma invariants are given by

σ(1,0,−1), σ(1,1,−2), σ(2,−1,−1).

Each invariant is defined as a sum over the S3-orbit of a basic generator. For example, we
define

σ(1,0,−1) = t(1,0,−1) + t(1,−1,0) + t(−1,1,0) + t(−1,0,1) + t(0,1,−1) + t(0,−1,1),

where t(x,y,z) denotes the basic generator corresponding to the weight (x, y, z). This con-
struction ensures that σ(1,0,−1) is invariant under the action of S3.
Similarly, σ(1,1,−2) and σ(2,−1,−1) are constructed in the analogous way (their sums involve
only three distinct terms since two coordinates coincide).
Using these definitions, one can derive the following relation:

σ3(1,0,−1) = 9 + 9 σ(1,0,−1) + 6σ(2,−1,−1) + 6σ(1,1,−2)

+ 3σ(1,0,−1) σ(2,−1,−1) + 3σ(1,0,−1) σ(1,1,−2)

+ σ(2,−1,−1) σ(1,1,−2)

This relation encapsulates the interplay between the sigma invariants constructed from
the basic generator t and serves as the final result in our derivation.
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