

ABSTRACT

Invariant theory explores polynomial functions that remain unchanged under a group action. We focus on the fixed subrings of polynomial algebras under conjugation by the general linear group $GL_n(\mathbb{C})$ and its projective quotient $PGL_n(\mathbb{C})$. Our goals are: • Identify explicit generators and relations for small n.

- Connect combinatorial descriptions of weight semigroups to algebraic invariants.
- Demonstrate computational methods for verifying Hilbert bases.

OBJECTIVE: Provide a clear, visual guide to the construction and structure of $C[PGL_n]^{PGL_n}$ for n = 1, 2, 3.

BACKGROUND

Invariant Theory and Matrix Groups

Invariant theory studies functions unchanged under group actions. In our case, the group is the general linear group:

- $GL_n(\mathbb{C})$: all invertible $n \times n$ complex matrices[1].
- $\operatorname{PGL}_n(\mathbb{C}) = \operatorname{GL}_n(\mathbb{C})/\mathbb{C}^{\times}$: projective group modulo scalar matrices[2]. Invariant Rings:

The ring $\mathbb{C}[GL_n]$ is the algebra of polynomial functions on $GL_n(\mathbb{C})$, and we define[3]:

$$\mathbb{C}[\mathrm{GL}_n]^{\mathrm{GL}_n} = \{ f \in \mathbb{C}[\mathrm{GL}_n] \mid f(g^{-1}xg) = f(x) \}$$

These are "class functions", depending only on eigenvalues. Similarly for PGL_n , we study $\mathbb{C}[\mathrm{PGL}_n]^{\mathrm{PGL}_n}.$

 $\mathbb{C}[PGL_n]^{PGL_n} \cong \mathbb{C}[T^n]^{S_n} \cong \mathbb{C}[V_n]^{S_n},$

where

 $V_n = \{ (x_1, x_2, \dots, x_n) \in \mathbb{Z}^n \mid x_1 + x_2 + \dots + x_n = 0 \}.$

The symmetric group S_n acts on V_n by permuting the coordinates. C-Algebra

Let V be an abelian group. The complex group algebra C[V] is defined [4] as the \mathbb{C} -vector space with basis elements $\{t^v \mid v \in V\}$. The multiplication on C[V] is given by linear extension of the rule

$$t^{v} \cdot t^{w} = t^{v+w}, \quad \forall v, w \in V.$$

Since V is abelian, the multiplication is commutative, and thus C[V] is a commutative C-algebra.

Example: The C-Algebra of \mathbb{Z} and \mathbb{Z}^n

For $C[\mathbb{Z}]$:

 $C[\mathbb{Z}]$ is the group algebra of the group \mathbb{Z} . Since every element of \mathbb{Z} can be written as an integer n, we denote the corresponding basis element by t^n . With the multiplication rule

$$t^n \cdot t^m = t^{n+m},$$

 $C[\mathbb{Z}]$ becomes isomorphic to the ring of Laurent polynomials $C[t, t^{-1}]$. For $C[\mathbb{Z}^n]$:

In a similar way, every element of \mathbb{Z}^n is an *n*-tuple (v_1, v_2, \ldots, v_n) . We denote the corresponding basis element by t^v , which can also be written as

$$t^v = t_1^{v_1} t_2^{v_2} \cdots t_n^{v_n}.$$

The multiplication rule is

$$t^v \cdot t^w = t^{v+w},$$

Ring of Invariants Linkun Ma, Yan Yu, Veer Agarwal

Mentor: Sean Cotner, Teresa Yu

University of Michigan Laboratory of Geometry

where the addition is done component-wise. Therefore, $C[\mathbb{Z}^n] \cong C[t_1, t_1^{-1}, t_2, t_2^{-1}, \dots, t_n]$

MAIN THEORY

Theorem 1. We have the following isomorphisms[3]: $C[PGL_n]^{PGL_n} \cong C[T^n]^{S_n} \cong$

where

 $V_n = \{(x_1, x_2, \dots, x_n) \in Z^n \mid x_1 + x_2 \in$ The symmetric group S_n acts on V_n by permuting the

Theorem 2. Let $\lambda = (x_1, x_2, \dots, x_n) \in \mathbb{Z}^n$ be a weight if

 $x_1 + x_2 + \dots + x_n = 0.$

Then λ is dominant if and only if

 $x_1 \ge x_2 \ge \cdots \ge x_n.$

Cases n = 1 and n =

Case n = 1: For n = 1, we have

 $V_1 = \{0\},\$

 $C[T^1]^{S_1} \cong C[t, t^{-1}],$

which is simply the full Laurent polynomial ring. **Case** n = 2:

For n = 2, the weight space is

so the torus is $T^1 \cong \mathbb{C}^{\times}$. Hence,

 $V_2 = \{ (x, -x) \mid x \in \mathbb{Z} \}.$

Each weight (x, -x) is assigned the basis element $t^{(x, -x)}$ particular, define $u = t^{(1,-1)}.$

The symmetric group S_2 acts on V_2 by interchanging construct an S_2 -invariant, we consider

 $u + u^{-1}$.

Moreover, one can show (by induction, for example) that

 $u^n + u^{-n}$ can be expressed as a polynomial in $u + u^{-1}$ (e.g., $u^2 +$ Thus, we obtain $C[V_2]^{S_2} \cong C[u+u^{-1}].$

Case n = 3

can be described by

 $D_3 = \{ (m, n) \in \mathbb{Z}_{>0}^2 \mid 2m \ge n, \ 2n \ge m \}.$ By observation, we conjecture that the minimal generators for D_3 are

negative integer combination of these generators. First, we construct our invariants by enforcing the condition that the sum of the coordinates is zero. We set

$$(a, b, c) =$$

so that

 $\sigma_{(1,0,-1)}, \quad \sigma_{(1,1,-2)}, \quad \sigma_{(2,-1,-1)}.$

Each invariant is defined as a sum over the S_3 -orbit of a basic generator. For example, we define

$$\sigma_{(1,0,-1)} = t^{(1,0,-1)} + t^{(1,-1,0)} + t^{($$

struction ensures that $\sigma_{(1,0,-1)}$ is invariant under the action of S_3 . only three distinct terms since two coordinates coincide). Using these definitions, one can derive the following relation:

$$\sigma_{(1,0,-1)}^{3} = 9 + 9 \sigma_{(1,0,-1)} + 3 \sigma_{(1,0,-1)} + \sigma_{(2,-1,-1)}$$

This relation encapsulates the interplay between the sigma invariants constructed from the basic generator t and serves as the final result in our derivation.

[1] J.S. Milne. Group Theory Notes. Available at http://www.jmilne.org/math/, 2021. [2] Charles C. Pinter. A Book of Abstract Algebra. Second Edition, Dover Publications, Inc., Mineola, New York, 2010. [3] Hanspeter Kraft and Claudio Procesi. Classical Invariant Theory: A Primer. Springer, 2007. [4] Michael Atiyah and Ian MacDonald. Introduction to Commutative Algebra. Addison-Wesley, 1969. [5] William Fulton and Joe Harris. Representation Theory: A First Course. Springer, 1991. Thank you, Sean Cotner, Teresa Yu, for supporting our research project.

LOG(M)

For n = 3, after an appropriate linear transformation, the semigroup of dominant weights

Figure 1: Visualization of D3

We can use induction to show that every point $(m, n) \in D_3$ can be expressed as a non-

(m, -n, n-m),

a+b+c=0.

Thus, the corresponding three sigma invariants are given by

 $t^{(-1,1,0)} + t^{(-1,0,1)} + t^{(0,1,-1)} + t^{(0,-1,1)}$

where $t^{(x,y,z)}$ denotes the basic generator corresponding to the weight (x,y,z). This con-Similarly, $\sigma_{(1,1,-2)}$ and $\sigma_{(2,-1,-1)}$ are constructed in the analogous way (their sums involve

> $\sigma_{(1,0,-1)}^{3} = 9 + 9 \sigma_{(1,0,-1)} + 6 \sigma_{(2,-1,-1)} + 6 \sigma_{(1,1,-2)}$) $\sigma_{(2,-1,-1)} + 3 \sigma_{(1,0,-1)} \sigma_{(1,1,-2)}$ $\sigma_{(1,1,-2)}$

REFERENCES