
Large Scale Geometry of Integers
Haruto Kitagawa, Kyle Lee, Caleb Lee, Nicholas Amadeus

Mentors: Yanlong Hao
University of Michigan Laboratory of Geometry

ABSTRACT

• This project focuses on developing algorithms to compute the cheapest way to generate
an element of various finitely generated groups

• In particular, we focus on the Integers Z and the 4x4 Integer Heisenberg Group H(4)

• We prove the correctness of our algorithms then implement them in Python

OBJECTIVE: Develop word metric algorithms on the Integer group
Z and the 4-Dimensional Integer Heisenberg group H(4)

THEORETICAL BACKGROUND

Definition. Word Metric :
• The word metric on a finitely generated group G with generating set X is a function
[3]:

|g|X = min
{
n ∈ N : g = xk11 xk22 . . . xknn , xi ∈ X

}
• The word metric d(g, h) between two elements g, h ∈ G is defined as:

d(g, h) = |g−1h|

WORD METRIC OF THE INTEGER GROUP

• Objective: develop an algorithm that computes the word-metric on Z given generators

• Inputs: List of generators (X = {x1, ...xn}), integer to compute word-length of (n)

• Output: k, the word-length of n with respect to X

• Notation: |n|X = k if and only if the word-length of n with respect to X is k

• Note: we only consider generators that generate Z

Key Lemma:
Suppose X is a finitely generated subset of Z that generates Z, with |X| = k. We
define M = x1+x2

2 x1 +
x2+x3

2 x2 + ... + xk+xk−1
2 xk−1 + xk, with xi being the ith term when

we order X. Then, for all n > M , |n|X = |n− xk|X + 1.

• The lemma gives us an efficient way to compute |n|X using linear recurrence

• We will hence precompute all |k|X for k < M , then use recurrence to compute |n|X

Algorithm for Word-Metric on Z
Given the ordered generating set X = {x1, x2, . . . , xk} ⊂ Z, the word length |n|X of any
integer n ∈ Z can be computed as follows:
• Verify that gcd(X) = 1 to ensure X generates Z (Bezout’s Lemma) [4].
• Compute the constant M as defined in the Lemma.
• Precompute the word lengths |n|X for all integers with |n| ≤ M .
• For |n|X > M , apply the recurrence relation: |n|X = |n − xk|X + 1 until we hit a
precomputed value. Return the result.

WORD METRIC ON HEISENBERG GROUP

Definition. 4 by 4 Heisenberg group with integer entries: A group with the elements of
the form: 

1 x1 x2 z
0 1 0 y1
0 0 1 y2
0 0 0 1


where x1, x2, z, y1, y2 ∈ Z [5].
Denote such Heisenberg group as H(4).

Theorem 1. The generating elements of H(4) are:

X1 =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , X2 =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Y1 =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 , Y2 =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .

Any element of the H(4) group can be expressed via the product of any of these matri-
ces.

• Heisenberg groups are important examples of nilpotent groups
• Similarly to the Integer word-metric, we make use of some important lemmas to simplify
computing word-lengths of Heisenberg matrices

Lemma 1. Partial Commutativity of generating element
These pairs of generating matrices are commutative.

X1X2 = X2X1, X1Y1 = Y1X1, Y2X2 = X2Y1, Y2Y1 = Y1Y2.

We are able to express the word of an element H ∈ H(4), where

H = W1W2 · · ·WkWk+1 · · ·Wn,

as a product of two sequences, where:

A = W1W2 · · ·Wk, Generated by the pair X1, Y2,

B = Wk+1Wk+2 · · ·Wn, Generated by the pair X2, Y1.

Lemma 2. Group Homomorphism Theorem
The set generated by each pair of commutative matrices is isomorphic to H(3), the 3x3
Heisenberg Group, which has 2 generators

• Blachere ([5]) gives us an analytic formula to solve for the word-length of any 3x3
Heisenberg Matrix. We use this result to divide our 4x4 matrix into two instances of
computing word-lengths of 3x3 matrices

• We now just require a way to solve for the ’cheapest’ z in the split cases

Algorithm for Word-Metric on H(4) Given a list x1, x2, y1, y2, z as corresponding to the
definition, we compute the word-length of the matrix with these values as follows:
• Extract values of x1, x2, y1, y2, z
• Derive analytic formulas L(x1, y2, z) and L(x2, y1, z) with z as a free variable using
Blachere’s result

• Optimize by solving for ⌊min (L(x1, y2, z0) + L(x2, y1, (z − z0)))⌋ analytically
The key insight is that we can use case-by-case techniques to calculate the optimal
’split’ of the variable z amongst our two generating pairs.

RESULTS

We were successful in proving computational formulas for both groups we considered.

Algorithm
Name

Runtime
Complexity

Space
Complexity

Word-Metric
Algorithm for Z O(1) O(1)

Word-Metric
Algorithm for
Integer H(4)

O(n) O(1)

The QR code links to our github repository of code

FUTURE WORK

• We want to study the large scale structure of Z through the lens of the open problem of
Rough Isometry, which requires the diverse study of metrics on Z

• Word-metrics are examples of Rough-Isometries: and we can extract insights from
studying them to study the open problem

FUTURE RESEARCH: Make progress on the Rough Isometry of Z
problem using insights from these examples

REFERENCES

[1] M. Zynman, S. Majewicz, and A. E. Clement, The Theory of Nilpotent Groups, Birkhauser, 2017.

[2] J. K. Hunter, An Introduction to Real Analysis, University of California at Davis, 2014.

[3] J. Lanfranco, An Introduction to Quasi-Isometry and Hyperbolic Groups, Master’s thesis

[4] E. Bezout, TheÌorie geÌneÌrale des eÌquations algeÌbriques, 1779.

[5] S. Blachere, ”Word Distance on the Discrete Heisenberg Group,” Colloquium Mathematicum, 2003.

[6] Marcos Zynman, Stephen Majewicz, Anthony E. Clement. The Theory of Nilpotent Groups. Birkhauser, 2017.

Thank you, Dr. Hao, for supporting our research project.

LOG(M) Poster Session December 2024

