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A geodesic is the shortest curve connecting two point, geodesics define classical geo-
metric object as the sphere in more abtracts geometries. Our project seeks to visualize
the geodesics of SLy(R) by using Hamiltonian approach. For the main objectives, we
will:

1. Identify the Lie algebra of SL.o(R);

2. Endow SLo(R) with coordinates;

3. Determine the geodesic equations;

4. Visualize the time evolution of the geodesics.

SLo(R) as a group

Definition. The special linear group of 2 x 2 matrices, is the set of 2 x 2 matrices of
determinant 1.

* Closure: The expression det(AB) = det(A)det(B) guarantees that if A and B are in
SLQGR) then AB isin SLQGR).

» Associativity: Forany A, B, C, € SIs(R), (AB)C = A(BC).
* [dentity: The identity matrix I is in SLo(R).

- Inverse: Existence of inverses is guaranteed since det(A) # 0 and det(A~1) = 1.

Lie algebra
Theorem. For any X € M,(R), then det(exp(X)) = exp(Tr X).

The space of trace-free matrices in M5(R) is spanned by

10 0 —1 01
f=(0h) = (V) =)

Local coordinates
We use the above result to endow SLo(R) with local coordinates. We will consider the
parametrization V(60, z,y) of SLy(R) given by

g =V(0,x,y) =exp(0Ey) exp(xF1) exp(yE3).

The vector space spanned by {F;, E», E5} are called the Lie algebra of SLy(IR) denoted
by slo(R) [4]. Commutators are introduced on Lie algebra associated with matrix groups:

A, B] = AB — BA.
for any Y,.Y5 € slp(R), with the commutation relations

[E17 EQ] — _2E37 [Ela Eg] — _2E27 [E27 ES] — _2E1
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Determine the Geodesic Flow

The cotangent bundle T* SLy(R) is an auxilary space that we use to define the geodesic
flow. We parametrize T SLo(R) by the coordinates: (p, g) := (pg, Dz, Py, V(0, 2, 7)).

Hamiltonian Formalism
A function H on T* S1»(R) defines a system of differential equations called Hamilton equa-

tion:
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A solution to the Hamiltonian equations parametrizes the level of the Hamiltonian function.
Poisson Bracket
The Poisson bracket {-,-} : C°°(T™* SLy(R)) x C°(T* SLy(R)) — C°(T™ SLy(R)) is given by
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An alternative way of writing Hamilton equations is {f, H} = f [1].

Momentum Functions
We define a change of coordinates from p = (py, pz, py) to P = (P, P», P3) given by

sinh(2 .
P = _coshEQz))pe + cosh(2y)py — sinh(2y) tan(2x)py;
cosh(2 ,
Py, = coshEZ?aJ:;pe — sinh(2y)ps + cosh(2y) tan(2z)py;
Py = Py

The coordinates (P;, P, P3) are called momentum functions, they are auxilary functions to
build the geodesic flow [9].

The momentum functions satisfies the following Poisson bracket relation

{P, o} = —2P3, {P»,P3} =—-2P and {P, P3} = —-2P,.

Geodesic Equations
The Hamiltonian function governing the geodesic flow is given by
1
H(P,g) = 5 (PE+PF+P}).

The geodesic equations are the Hamiltonian equations defined by the above equation. If
(p(t), g(t)) is a solution to the geodesic equations, then ¢(¢) is a geodesic curve in SLy(R).
When we set up the energy H = % then geodesic ¢(t) is parametrized by arc length.

We write the geodesic equations in terms of the mometum functions since they encode
the symmetries of the system

. . Cosh(2y> Slﬂh<2y>
Pl PPy 9 0 cosh(2x) ~ cosh(27) Py
By | = 0 clE] =10 —sin(y cosh(2y) P
Ps —4P P Yy 1 cosh(2y) tanh(2x) — sinh(2y) tanh(2x) P

Geodesic Flow

The geodesic flow is a map @' : T*SLy(R) — T*SLy(R) defined in the following way:
(P, g) = (P(t),g(t)), where (P(t), g(t)) is a solution to the geodesic equation with initial
condition (P(0),¢(0)) = (P, g) [5].

The surface S(t, gg) which flows along the geodesics, is given by:

S(t: g0) = {9 € SLa(R) : (P, g) = @(P(0),g9) and PL(0) + PF(0) + P3(0) = 1)}
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Visualizing the Time Evolution

Using numerical ODE-system solver scipy.integrate.solve_ivp, we are able to numerically
solve this system for ¢ € |0, 2|, which gives us how the geodesic curve in coordinate repre-
sentation in R3 changes with the parametrization t.

The initial conditions of this numerical solution we present are as follows:

6(0) 0 Py(0) cos(¥) cos(¢)
z0) ] =10], [|£0)] = {sn(e)cos(s)
y(0) 0 P3(0) sin(¢)

where ¢ € (—7/2,7/2), ¢ € (0,27). In other words, the initial conditions of P;, P,, P; are
parametrized as points on S.

Time Step: 100, t = 1.0

3D Visualization of 52
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Figure 1: (left): A visualization of the Euclidean sphere in R3. Each 3-tuple of (P(0), P»(0), P5(0)) can be
seen as a point on this sphere; (right): A snapshot of the geodesic flow att = 1.0.

We generate a grid of points in spherical coordinates, with azimuthal angle ¢ ranging from
0 to 2w and polar angle 6 ranging from 0 to .

The resulting points are plotted as a surface in 3D to visualize the unit sphere S2.

A full video of the geodesic flow is readily presented following the QR code below:
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