FAILURE OF CONVERSE THEOREMS OF GAUSS SUMS MODULO ℓ

ELAD ZELINGHER

Gauss sums are prominant objects in number theory. Given two characters $\alpha \colon \mathbb{F}_{q^n}^{\times} \to \mathbb{C}^{\times}$ and $\beta \colon \mathbb{F}_{q^m}^{\times} \to \mathbb{C}^{\times}$ and a non-trivial character $\psi \colon \mathbb{F}_q \to \mathbb{C}^{\times}$, one can attach a Gauss sum

$$G(\alpha \times \beta, \psi)$$
.

A celebrated theorem by Nien is the converse theorem of Gauss sums: suppose that $\alpha_1, \alpha_2 \colon \mathbb{F}_{q^n}^{\times} \to \mathbb{C}^{\times}$ are multiplicative characters such $\alpha_1 \upharpoonright_{\mathbb{F}_q^{\times}} = \alpha_2 \upharpoonright_{\mathbb{F}_q^{\times}}$ and such that for any $1 \leq m \leq \frac{n}{2}$ and any character $\beta \colon \mathbb{F}_{q^m}^{\times} \to \mathbb{C}^{\times}$ we have

$$G(\alpha_1 \times \beta, \psi) = G(\alpha_2 \times \beta, \psi).$$

Then there exists $0 \le k \le n-1$ such that $\alpha_1 = \alpha_2^{q^k}$.

Recently, Bakeberg–Gerbelli-Gauthier–Goodson–Iyengar–Moss–Zhang investigated the question what happens if we replace \mathbb{C} with $\overline{\mathbb{F}}_{\ell}$ for some ℓ prime, such that ℓ is coprime to q. They found counterexamples for this theorem for n = 2 and made a conjecture of the pairs (q, ℓ) for which the converse theorem fails when n = 2. In this project, we will investigate this question for more general n and will try to come up with a more general conjecture.

Prerequisites.

- Familiarity with finite fields and group theory.
- Coding experience. We will mostly be using SageMath.