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 The study of rigid body motion is equivalent to the study of dynamics in the group of
rotations R> denoted by SO(3).

« General dynamics in SO(3) are chaotic. There exist only three examples where the
dynamics are integrable (non-chaotic): Lagrange, Euler and Kovalevskaya tops.

* These tops have many potential applications in the study of planetary motion, but they

» We derived differential equations for the Euler angle rates from our Hamiltonians

Example: Differential Equations for Lagrange Top
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are difficult to visualize. Figure 2: Euler Top Motion Snapshots dt  sin?(0) dt Iy sin“(0) ’
Lagrange Top Euler Angles d°9 _ (a®+b°)cos(6) 3t cos20) B 0
OBJECTIVE: - e dt? sin?(0) 25in3(0) 2
Simulate Lagrange, Euler, and Kovalevskaya Tops in MATLAB ) B
| . * To find the equations of motion, we used ordinary differential equation solvers and other

T numerical integration methods.

« Our packages support custom initial conditions including angular velocity, moments of
Inertia, and initial heading. It also supports configuring multiple tops within one file.

RESULTS

Euler Angle Rates

L | — ) m— 0 v|

THEORETICAL BACKGROUND

RIGID BODY MOTION: Tops (and also the Earth) can undergo three motions

Euler Angle Rate
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EULER TOP VIDEO
« Gimbal locking causes momentary spike in the Euler angle rates.
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LAGRANGE TOP VIDEO
* Nutation causes effective potential U, ¢ to oscillate.

Figure 3: Lagrange Top Animation Interface Snapshot

Kovalevskaya Top
Figure 1: Rotation, precession, and nutation diagram — —r— e

Euler Angles

KOVALEVSKAYA TOP VIDEO
« Back-and-forth motion: a combination of rotation and precession.

APPLICATIONS

LIE GROUPS
- Lie groups model continuous symmetries, e.g. SO(3) is the group of rotations in R?.

 The tangent space T*SO(3) = space of velocities where the Possion bracket is defined.

 Possion bracket {F, H} is a tool we can use to find the equations of motion of our tops
where F'is a smooth function and H is the Hamiltonian.

Euler Angle
3 3

* Integrable tops have many potential applications to planetary motion because planets
are chaotic systems, making them difficult to study.

Time
Angular Momentum

« Earth is similar to a Lagrange top, but its motion is closer to that of a fast top, i.e. it
rotates much faster than it nutates or precesses.

 For reference, the Earth rotates roughly every 24 hours, nutates every 18.6 years, and
precesses every 26,000 years!

HAMILTON’S EQUATIONS OF MOTION [Hamilton]

, OH and 7 OH e S
€T, — -, P = —— 2/
! api br 8:1:@ TN

where H(x,p) given x = (x1, ...., xp) is position and p = (py, ...., pn) iS Momentum

FUTURE RESEARCH:
Study Connections Between Motion of Earth and Fast Tops

EULER ANGLES Figure 4: Kovalevskaya Top Animation Interface Snapshot
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* Moment of inertia I = “rotational mass.”

* There exists a natural orthonormal set of principal axes for a
rigid body I, I and I3 that simplify equations of motion.
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Table 1: Tops’ Properties Table
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