Statistical
 Analysis of Rank \& Bias

Ethan Harr, Gage Larson, Yihan Yao Mentor: Amichai Lampert

Background

Finite Field F_{p} :

- Mathematical Field with p elements
- i.e. Only $0,1, \ldots, p-1$ can be used in coefficients \& variables of polynomials
- Achieve it by using "mod p ".

Example:

$$
P=4 x^{2} y z+z^{4}+u^{2} x y+3 x^{2} y^{2}
$$

DEFINITION For Rank:

1. Factorize:
$P=z\left(4 x^{2} y+z^{3}\right)+x y\left(u^{2}+3 x y\right)$
*Least number of factorizable components
2. Count:

2 pieces $\rightarrow \mathbf{A}+\mathbf{B} \rightarrow$ rank $=2$
DEFINITION For Bias:

1. Possible values for $[x, y, z, u]$: [$0,0,1,2$], $[0,1,2,3],[2,3,1,4]$,
2. Plug in -> Average.
3. Bias: quantify how uniform the distribution of outputs is

Two Properties of Polynomials:

Are they related? or are famous

mathematicians wrong?

Degree 2; Previously Proven Case

From [Green, Tao] [1], in the degree 2 case: "lack of equidistribution implies bounded rank"

higher rank \Longrightarrow equidistribution

Degree 3 and up

???

Conjecture: similar relationship for arbitrarily large degree[3]. But what do we see when we actually calculate these values for high degree polynomials?

Experimentally!

Bias vs Rank

In degree 3: conjecture seems likely!

Future Direction

$$
\operatorname{bias}(P) \leq\left|F_{p}\right|^{-r / 4} \leq\left|F_{p}\right|^{-r / 12}
$$

1. Proven (deg 3): $\operatorname{bias}(P) \leq\left|F_{p}\right|^{-r / 12}$ [2] Our examples (deg 3): $\operatorname{bias}(P) \leq\left|F_{p}\right|^{-r / 4}$
2. Future: fully describe the rank and bias for degree 3 over small fields and a small number of variables
3. This data may help affirm a proper upper bound

References

[1] Ben Green, Terence Tao. The distribution of polynomials over finite fields, with applications to the Gowers norms. 2007.
[2] Karim Adiprasito et al. On the Schmidt and analytic ranks for trilinear forms. 2021.
[3] Tali Kaufman, Shachar Lovett. Worst Case to Average Case Reductions for Polynomials. 2008.
[4] Illinois Geometry Lab. IGL Poster Template. University of Illinois at Urbana-Champaign Department of Mathematics, 2017.

