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What is an Exponential Sum?

Exponential sums are ubiquitous in mathematics. They incorporate a number of di-
verse mathematical fields and have applications from quadratic reciprocity to heat equa-
tions.

A Surprising Example
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This is an example of an exponential sum!

Basic Form
Generally, exponential sums are sums of the following form:∑

x∈F×
q

f (x)e
2πxi
p with f : F×q → C

Project Goal
Explore properties of a variety of exponential sums and provide numerical evidence for
their properties. These include questions such as:
• How do certain sums distribute?
• How do these sums reflect the behavior of analagous functions?
• How can we visualize the properties of these sums?

Gauss Sums

Many are familiar with the Gaussian Integral:
∫∞
−∞ ae

−(x−b)2

2c2 = ac
√
2π

We consider an analagous sum over a finite field:

Definition
The Gauss sum Gq : F×q → C is defined as:

G(χ, ψ) =
∑
x∈F×

q

e
2πibj
q−1 · e

2πiax
p

In particular, j satisfies x = ζj for some generator ζ.

First, the sizes of Gauss sums are described as follows:

Theorem 1: (Lidl and Niederreiter [3])

Gp(χ, ψ) =


p− 1, if χ = ψ = 1

−1, if χ = 1, ψ ̸= 1

0, if χ ̸= 1, ψ = 1

|G(χ, ψ)| = √
p otherwise.

In order to visualize this theorem and calculate the Gauss Sums for user-provided val-
ues of the prime characteristic p, field degree d, and a and b, please see the Gauss Sum
Calculator HTML code.

Another interesting property of Gauss sums is that their angles tend to equidistribute
evenly [2] about the unit circle. See the equidistribution properties in action:

Example 1. Observe equidistribution among G5d as the degree grows from 2 to 5:

To create your own histograms for a specified prime characteristic p, degree d, and value a, please see the
Gauss Sum Histogram HTML code.

To test the additional visualization tools with user-provided values, please see the Hasse-
Davenport Relation visualizer HTML code. For more interesting applications of Gauss
sums, see [1].

Kloosterman Sums

We can now generalize Gauss sums to a broader class of exponential sums known as
Kloosterman sums. One sum of interest is as follows:

Example 2. The Kloosterman sum
1
√
q

∑
x∈F×

q

ψ(x + a/x) is analogous to the classical

Bessel function

∫
S1
exp (x + a/x)

dx

x
.

One interesting result [4] is that the distribution of the inverse cosine of these sums re-

sembles
2

π
sin2 x. See this equidistribution in action:

Example 3. The above Kloosterman sum over F×41 and then F×103:

One tool for further analysis of exponential sums is the L-function, which is as follows.

Definition

L(T, K̃l) = exp(
∑
m≥1

K̃lm · Tm

m
)

Here, K̃lm represents the normalized Kloosterman sum over a finite field of degree m.

We can numerically verify that the L(−1)k is a polynomial of degree q. We can also study
the roots of the polynomial:

Example 4. See the L−function root for G52 and coefficients for Kl3:

As seen above, the root for G2
5 lies on the unit circle and the coefficients of degree ≥ 3 are zero for Kl3.

Our Code

Check out our code repository at https://gitlab.eecs.umich.edu/logm/wi24/expsums!
We plan to continue to develop more features and deploy more optimizations in coming
months.
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