

What is an Exponential Sum?

Exponential sums are ubiquitous in mathematics. They incorporate a number of diverse mathematical fields and have applications from quadratic reciprocity to heat equations.

This is an example of an exponential sum!

Basic Form

Generally, exponential sums are sums of the following form:

$$\sum_{\in \mathbb{F}_q^{\times}} f(x) e^{\frac{2\pi x i}{p}} \text{ with } f: \mathbb{F}_q^{\times} \to \mathbb{C}$$

Project Goal

Explore properties of a variety of exponential sums and provide numerical evidence for their properties. These include questions such as:

- How do certain sums distribute?
- How do these sums reflect the behavior of analagous functions?
- How can we visualize the properties of these sums?

Gauss Sums

Many are familiar with the Gaussian Integral: $\int_{-\infty}^{\infty} ae^{\frac{-(x-b)^2}{2c^2}} = ac\sqrt{2\pi}$ We consider an analagous sum over a finite field:

Definition

The Gauss sum $G_q : \mathbb{F}_q^{\times} \to \mathbb{C}$ is defined as:

$$G(\chi,\psi) = \sum_{x \in \mathbb{F}_{q}^{\times}} e^{\frac{2\pi i b j}{q-1}} \cdot e^{\frac{2\pi i a x}{p}}$$

In particular, j satisfies $x = \zeta^j$ for some generator ζ .

First, the sizes of Gauss sums are described as follows:

Theorem 1: (Lidl and Niederreiter [3])

 $\int p - 1, \quad \text{if } \chi = \psi = 1$ $G_p(\chi, \psi) = \{ -1, \quad \text{if } \chi = 1, \psi \neq 1 \}$ if $\chi \neq 1, \psi = 1$ $|G(\chi,\psi)| = \sqrt{p}$ otherwise.

In order to visualize this theorem and calculate the Gauss Sums for user-provided values of the prime characteristic p, field degree d, and a and b, please see the Gauss Sum Calculator HTML code.

Explorations in Gauss and Kloosterman Sums

Jonathan Wolinski and Tianshuo Yang

Laboratory of Geometry at Michigan. Mentored by Dr. Elad Zelingher.

Another interesting property of Gauss sums is that their angles tend to equidistribute evenly [2] about the unit circle. See the equidistribution properties in action:

To create your own histograms for a specified prime characteristic p, degree d, and value a, please see the Gauss Sum Histogram HTML code.

To test the additional visualization tools with user-provided values, please see the Hasse-Davenport Relation visualizer HTML code. For more interesting applications of Gauss sums, see [1].

Kloosterman Sums

We can now generalize Gauss sums to a broader class of exponential sums known as Kloosterman sums. One sum of interest is as follows:

Example 2. The Kloosterman sum $\frac{1}{\sqrt{q}} \sum_{x \in \mathbb{T}^{\times}} \psi(x + a/x)$ is analogous to the classical

Bessel function
$$\int_{\mathbb{S}^1} \exp{(x+a/x)} \frac{dx}{x}$$
.

One interesting result [4] is that the distribution of the inverse cosine of these sums resembles $\frac{2}{-}\sin^2 x$. See this equidistribution in action:

Example 3. The above Kloosterman sum over \mathbb{F}_{41}^{\times} and then $\mathbb{F}_{103}^{\times}$:

One tool for further analysis of exponential sums is the *L*-function, which is as follows.

Definition

Here, Kl_m represents the normalized Kloosterman sum over a finite field of degree m.

We can numerically verify that the $L^{(-1)^k}$ is a polynomial of degree q. We can also study the roots of the polynomial:

Example 4. See the L-function root for G_{5^2} and coefficients for Kl_3 :

As seen above, the root for G_5^2 lies on the unit circle and the coefficients of degree ≥ 3 are zero for Kl_3 .

Check out our code repository at https://gitlab.eecs.umich.edu/logm/wi24/expsums! We plan to continue to develop more features and deploy more optimizations in coming months.

- bridges2020-243.html.
- jstor.org/stable/j.ctt1b7x80x (visited on 04/05/2024).
- 0608595 [math.NT].

Acknowledgement

We would like to express our sincerest thanks to Dr. Elad Zelingher for providing us with extensive background information as well as feedback and assistance throughout our coding process.

 $L(T, \widetilde{Kl}) = \exp(\sum_{m \ge 1} \frac{\widetilde{Kl_m} \cdot T^m}{m})$

Our Code

References

[1] Ellen Eischen and Stephan Garcia. "A Gallery of Gaussian Periods". In: Proceedings of Bridges 2020: Mathematics, Art, Music, Architecture, Education, Culture. Ed. by Carolyn Yackel et al. Phoenix, Arizona: Tessellations Publishing, 2020, pp. 243–248. ISBN: 978-1-938664-36-6. URL: http://archive.bridgesmathart.org/2020/

[2] Nicholas M. Katz. Gauss Sums, Kloosterman Sums, and Monodromy Groups. (AM-116). Princeton University Press, 1988. ISBN: 9780691084336. URL: http://www.

[3] Rudolf Lidl and Harald Niederreiter. "Exponential Sums". In: *Finite Fields*. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1996, 186â267. [4] I. E. Shparlinski. On the distribution of Kloosterman sums. 2006. arXiv: math /