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1. Background

Partial differential equations (PDEs) are a fundamental tool in mathematics and science
because they are incredibly useful for modeling and analyzing a wide range of phenomena
in fields such as physics, engineering, economics, biology, etc. When faced with a real
world problem, it is often helpful to abstract the problem into a mathematical model which
we can solve, which can be mathematically interpreted and applied to the same real world
problem. Partial differential equations are such mathematical models.

We investigate the Nonlinear Schrodinger Equation (NLS), which has applications in fiber
optics, Bose-Einstein condensates, and deep water and rogue waves.

Nonlinear Schrodinger Problem
Definition. The Nonlinear Schrödinger Equation (NLSE) is given by

iεut +
ε2

2
uxx − κ|u|2u = 0

where the subscripts indicate partial derivatives and u(x, t) is a complex-valued func-
tion s.t. u : R× [0,∞) → C
The equation is said to be focusing if κ < 0, and defocusing if κ > 0.

2. Problem

Before we define the problem, we can discuss the physical interpretation of the constant
ε in the NLSE. In physical applications, ε in the NLSE is Planck’s constant, ℏ. Planck’s
constant represents the point where physical behavior is modeled by quantum mechanics
rather than classical mechanics. One of our project’s goals is to see how the solutions to
the NLSE change as this constant may change.

The main goal of our project is to determine the solutions to the focusing Nonlinear
Schrödinger Equation numerically, and in particular, to better understand how solutions
with interesting initial conditions behave in the semiclassical limit, i.e., when ε → 0
In particular, we are interested in initial conditions that:

• are even functions, decay exponentially, are analytic, have strictly negative second
spatial derivatives

Reasons for studying the focusing case include:

• the equation can only have solutions in the semiclassical limit if the initial conditions
are analytic

3. Method

To study the Nonlinear Schrodinger Equation, we employ the split-step Fourier method.
This method computes the solution in a series of small steps by treating the linear and
nonlinear term separately. The NLSE can be solved analytically for some initial conditions
by something called the Inverse Scattering Transform, first introduced by Gardner et. al.
[4]. There exists a wide variety of initial conditions for which the NLSE has been solved
analytically, and we intend to improve our model by comparing our numerical results to
the analytical solutions [7].

4. Results

We show some results for the semiclassical limit of u(x, 0) = sech(x) as ϵ → 0.

Figure 1: u(x, 0) = sech(x), ϵ = 1

Figure 2: u(x, 0) = sech(x), ϵ = 0.5

Figure 3: u(x, 0) = sech(x), ϵ = 0.1

We now show some interesting visualizations.

This is sech with a phase velocity. In addition to the mathematical results, this project has
also produced code and supplemental documentation to solve the NLSE in both MATLAB
and Python. Both the code and documentation will be made public at the conclusion of
the project.

5. Future Directions

Following the completion of our implementation of a numerical solver of the Nonlinear
Schrödinger Equation, we would like to employ the Fourier discrete cosine transform
(DCT) to the split-step algorithm, as the initial conditions that are of interest are given
by even, analytic functions. Advantages of using DCT compared to FFT include:
• It removes errors due to odd modes
• It is more computationally efficient compared to FFT

We would also like to determine the mean squared errors of the numerical solutions gen-
erated by the split-step method using DCT and FFT, against known analytical solutions to
the NLSE.

Additionally, we would like to expand our scope to include the modified Nonlinear
Schrödinger Equation, which is defined in the following way:

Modified Nonlinear Schrödinger Equation

iεut +
ε2

2
uxx − κ|u|2u + α(|u|2u)x = 0

A wide variety of modified versions of the Nonlinear Schrödinger Equation exist with ap-
plications including
• modelling gravity waves in the presence of wind, dissipation, and shear currents
• the study of how intense light pulses propogate in nanoparticle-doped glass
• modelling Bose-Einstein condensates in ultra-cold temperature

[1], [3], [8]. By studying how to adapt our implementation, we hope to better understand
how the NLSE can be changed to model different types of real-world phenomena.
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