Why does the kid swing alone in the park?
Pranavi Pratapa, Wenjie Zhou, Qingyao Zhu, Ziqian Zhu Mentor: Alejandro Bravo-Doddoli

Laboratory of Geometry at Michigan

Introduction
Observe a child sitting on a swing. What allows them to
move back and forth though they're sitting in the same po-
sition? The continued motion of bending and extending
their legs! This simple example illustrates the concept of
parametric resonance:
Parametric Resonance: a phenomenon that causes
an increase in perceived energy in our current system
through the translation of external energy from an outside system

Goal

- Understand the concept of resonance as it relates to a pendulum system through Matheiu's Equation
- Create stability charts for different solutions to Matheiu's Equation using theorems about the trace of a linearity matrix

The concept of resonance relates to that of the kid swinging because it describes how the biological energy of the child translates into mechanical, kinetic energy by moving their biological energy of the child
body forwards and backwards.

Background

Consider a classic pendulum. This is a great example of a nonlinear, autonomous system. How does the angle θ change over time?
We can model the change in this quantity by measuring θ, the acceleration of angle θ over time. Matheiu's equation (depicted below) describes how the pendulum system produces periodic parametric motion.

Mathieu's Equation

Mathieu's equation is a second-order non-autonomous differential equation with
the form

$$
\ddot{\theta}=-(\delta+\epsilon \omega(t)) \theta(t
$$

We're interested in analyzing the behavior of the equation when $\omega(t)=\cos (2 t)$

What does Mathieu's Equation represent?

- An ordinary differential equation relating θ, the angle of the pendulum, with time t
- Models the behavior of a kid swinging their legs with frequency $\omega(t)$ (We choose $\omega(t)=\cos (2 t)$ because 2 is the constant that allows for the natural periodicity of res-
onance to exhibit itself in the cearest manner) onance to exhibit itself in the clearest manner)
- Acceleration is related to both the original length of the pendulum δ and the displacement of the pendulum's length from its original position ϵ

Let A be the matrix of a linear mapping of the plane to itself which preserves area (det $A=1$). Then the mapping A is stable if $|\operatorname{tr} A|<2$, and unstable if $|\operatorname{tr} A|>2$.

We developed a computer program to computer matrix M using the numerical solutions to Mathieu's equation for different combinations of ϵ and δ. By computing the trace of matrix M, we were able to determine regions of stability and instability in our graph of $\epsilon \mathrm{vs}$. δ We produced one chart with $\theta(t)$ and one with $\sin (\theta(t))$

Initial Exploration

The red dot represents theta's initial con-
dition. Observe that both its velocity and actual value are increasing over time.

The stability chart for the reduced Math ieu's equation, where we set $\omega(t)=\cos (\theta)$.

The stability chart for the unreduced Math ieu's equation, where we have $\sin (\theta)$ in stead of θ

Future Directions

We can take our project further in the following three ways:

- Antiresonance

Antiresonance refers to the situation where energy is being transported out of the sysAntiresonance reers to the situation where energy is being transported out of the sys-
tem. We could explore this counterpart to resonance by constructing stability diagrams
for antiresonant systems.
Hill's Equation
Hill's equation is a second-order linear differential equation that takes the following form:

$$
\frac{d^{2} y}{d x^{2}}+f(t) y=0
$$

for some function f that depends on time. It is clear that Mathieu's equation acts on a specific case of Hill's equation; we could potentially explore other forms of $f(t)$ instead of simply restricting to periodic ones like we did in our current investigation.
Poincare Maps

Throughout this project, we've been exploring the values of (ε, δ) to find areas where motion is stable. While we now have a clearer understanding of how the pendulum will behave in the stable case, we have no knowledge of its behavior when it is unstable. We could further our investigation by ex ploring the unstable case and plotting cases. The figure below depicts a Poincare map that plots position vs. velocity in a chaotic system.

Theorem

References

A mola, V... Ordimary Difierential Equations. InT Press, (1978)

${ }^{[2]}$ Arnold, V. I. Mathematical methods of classical mechanics. Graduate exxts in mathematics; 60 ., 2nd ed, Springe ${ }^{[3]}$ Siva, Srinivas Koukula. Mathieu's Equation. http:/sites.google.comssitekolukulasivassinivas

