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Introduction

Observe a child sitting on a swing. What allows them to
move back and forth though they’re sitting in the same po-
sition? The continued motion of bending and extending
their legs! This simple example illustrates the concept of
parametric resonance:

Parametric Resonance: a phenomenon that causes
an increase in perceived energy in our current system
through the translation of external energy from an outside system

Goal

« Understand the concept of resonance as it relates to a pendulum system
through Matheiu’s Equation

 Create stability charts for different solutions to Matheiu’s Equation using theo-
rems about the trace of a linearity matrix

The concept of resonance relates to that of the kid swinging because it describes how the
biological energy of the child translates into mechanical, kinetic energy by moving their
body forwards and backwards.

An illustration of parametric resonance! This video shows
< monks pulling a rope in a church, causing the increased os-
cillation of a bell swinging from side to side

Background

Consider a classic pendulum. This is a great example
of a nonlinear, autonomous system. How does the
angle # change over time?

“. N We can model the change in this quantity by measur-
trajectors?‘\.._‘_T,_L_\__,x‘).%e ing 6, the acceleration of angle ¢ over time. Matheiu’s
L equation (depicted below) describes how the pendu-

i lum system produces periodic parametric motion.

Mathieu’s Equation

Mathieu’s equation is a second-order non-autonomous differential equation with
the form

H=— (6 + au(t)) o(t)

We're interested in analyzing the behavior of the equation when w(t) = cos(2t)

What does Mathieu’s Equation represent?
* An ordinary differential equation relating 6, the angle of the pendulum, with time ¢

* Models the behavior of a kid swinging their legs with frequency w(t) (We choose
w(t) = cos(2t) because 2 is the constant that allows for the natural periodicity of res-
onance to exhibit itself in the clearest manner)

 Acceleration is related to both the original length of the pendulum ¢ and the displace-
ment of the pendulum’s length from its original position
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Initial Exploration

Resonance occurs when energy increases over time. When this occurs, both position and
velocity are expected to increase. The plots below confirms this is so:

Figure 1: Angular Velocity V.S. Angle 6
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The red dot represents theta’s initial con-
dition. Observe that both its velocity and
actual value are increasing over time.

Figure 2: Angle 6 V.S. Time
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Notice that as energy is imported into the
system, the angle becomes greater peri-
odically.

We are now interested in exploring what it means for a particular solution to be stable or

unstable for specific values of 4 and e.

 Stable: when all solutions to the equation are bounded and nonperiodic, i.e. do not

diverge to infinity

« Unstable: some solutions are unbounded, with chaotic behaviors being exhibited

These definitions become relevant as we explore numerical solutions to different repre-

sentations of Mathieu’s Equation.

Numerical Solutions

« Recall that Mathieu’s equation is a linear map. That means all linear combinations of
its solutions will also be solutions. We can then define a linear map from the set of all

posible solutions to itself.

- Define the flow of Matheiu’s equation to be a linear map A : R? — R? that preserves
the volume of a solution. Because A is a linear map, it can be modeled by a matrix M.
Furthermore, because it preserves volume, detA = 1. Thus the solutions to this matrix,
which determine the stability of our original equation, can be determined by the trace

of M.

The following theorem illustrates this finding:

Theorem

Let A be the matrix of a linear mapping of the plane to itself which preserves area
(det A = 1). Then the mapping A is stable if |tr A| < 2, and unstable if |tr A| > 2.

We developed a computer program to computer matrix M using the numerical solutions to
Mathieu’s equation for different combinations of ¢ and ¢. By computing the trace of matrix
M, we were able to determine regions of stability and instability in our graph of € vs. 4.
We produced one chart with 6(¢) and one with sin(6(t))
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The stability chart for the reduced Math- The stability chart for the unreduced Math-
leu’s equation, where we set w(t) = cos(f). leu’s equation, where we have sin(d) in-
stead of 4

Future Directions

We can take our project further in the following three ways:

- Antiresonance

Antiresonance refers to the situation where energy is being transported out of the sys-
tem. We could explore this counterpart to resonance by constructing stability diagrams
for antiresonant systems.

- Hill’'s Equation

Hill's equation is a second-order linear differential equation that takes the following form:

d%y

— + = ()

5+ f(t)y
for some function f that depends on time. It is clear that Mathieu’s equation acts on a
specific case of Hill's equation; we could potentially explore other forms of f(¢) instead

of simply restricting to periodic ones like we did in our current investigation.

- Poincare Maps

3 | | | Throughout this project, we've been
exploring the values of (¢, ) to find ar-
eas where motion is stable. While we
now have a clearer understanding of
how the pendulum will behave in the
stable case, we have no knowledge of
its behavior when it is unstable. We
could further our investigation by ex-
ploring the unstable case and plotting
graphs that showcase motion in such
cases. The figure below depicts a
Poincare map that plots position vs.
velocity in a chaotic system.
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