

Introduction: Schubert Polynomials, Pipes, and Strings

Objective

Construct a combinatorial object to represent Quantum Schubert Polynomials and implement a Python library for pipe-dreams.

Definition. A permutation $\sigma \in S_n$ is an ordering of numbers $1, 2, \ldots, n$. For example, $\sigma = (3, 1, 4, 2) = (\sigma(1), \sigma(2), \sigma(3), \sigma(4))$ is a permutation in S_4 mapping 1 to 3, 2 to 1, 3 to 4, and 4 to 2.

Schubert Polynomial

- They are indexed by permutation, i.e the Schubert polynomial of σ is \mathfrak{S}_{σ} , where σ is some permutation.
- Represent cohomology classes in flag varieties

• More easily manipulated compared to their geometric counterparts. Quantum Schubert Polynomial

- A generalization of Schubert Polynomials. Extra "quantum" q-variables.
- Have some applications in quantum physics and string theory.

σ	S_{σ}	S^q_{σ}
123	1	1
213	x_1	x_1
132	$x_1 + x_2$	$x_1 + x_2$
231	$x_1 x_2$	$x_1x_2 + q_1$
312	x_1^2	$x_1^2 - q_1$
321	$x_1^2 x_2$	$x_1(x_1x_2+q_1)$

Schubert Polynomials can be calculated recursively using symmetric and divided difference operators, and quantum schubert polynomial also have a complex explicit definitions. Combinatorial representations help generate these polynomials without the full algebraic or recursive definitions.

Bumpless Pipe Dreams

Ordinary and bumpless pipedreams are two combinatorial representations of Schubert polynomials, and there is a bijection between these two representations. We implemented both the Ordinary pipe-dream and bumpless pipe-dream representations in Python. We will cover bumpless pipe-dreams.

Definition. A bumpless pipe dream is a $n \times n$ array of tiles of the following form:

such that the tiles form strands that move from the right side of the n imes n array to the bottom side.

Figure 1: Bumpless pipedreams for 123

Quantum Pipe Dreams

Tuong Le, Shuge Ouyang, Joseph Restivo, Leo Tao, Angelina Zhang, Dr.George Seelinger

Laboratory of Geometry at Michigan

Figure 5: Quantum bumpless pipe dreams for 3142.

 $\mathfrak{S}_{3142}^q = x_1^2 x_3 + x_1^2 x_2 - q_1 x_3 + q_1 x_1$

For a quantum bumpless pipe-dream, the strands move from the right to the bottom, during which they can move downward, upward or leftward. The monomial weights for a quantum bumpless pipe-dream can be calculated as the product of the following:

- An empty tile \Box on row i contributes x_i
- A domino tile starting on row i contributes q_i
- A southwest elbow \Box on row *i* contributes $-q_i$
- A vertical tile \Box on row *i* where the strand is moving upward contributes $-q_i$

Theorem 2

weight of all quantum bumpless pipe dream for σ .

Double Schubert Polynomial

- •A different generalization of Schubert polynomials
- A summation of binomials in terms of x_i and y_i rather than monomials

Quantum Double Schubert Polynomials are a generalization of both double and quantum Schubert polynomials Schubert Polynomials

Our proof for this theorem is a bijective proof for a certain recurrence relation. This construction also generalizes naturally to quantum double bumpless pipe dreams by replacing the weight of an empty tile by $x_i - y_j$ where i is its row and j is its column. We also implemented the quantum bumpless pipe-dreams in a Python class (using Sage).

Quantum Pipe Dreams from Classical Pipe Dreams

- A different pipe dream formulation for Schubert polynomials
- there is a bijection from Bumpless Pipe Dreams to Classic Pipe Dreams
- Is it possible to construct a Quantum Ordinary Pipe Dream?

- ical Society, 1997
- [2] Nantel Bergeron and Sara Billey. Rc-graphs and schubert polynomials. *Experimental Mathematics*, 1993.

LOG(M)

• A cross tile \blacksquare on row i where the vertical strand moves upwards contributes q_i

Future Directions

References

[1] Sergey Fomin, Sergei Gelfand, and Alexander Postnikov. Quantum schubert polynomials. Journal of the American Mathemat-