

When High Energy Meets High Intensity

Yu-Dai Tsai, Fermilab/U Chicago

[1] FORMOSA: Looking Forward to Millicharged Dark Sectors (2010.07941)
[2] Dark photon, inelastic dark matter, muon g-2, and LongQuest (1908.07525)
[3] Cosmic-ray Produced MCPs in Neutrino Observatories (2002.11732)
[4] The FerMINI Experiment (1812.03998, PRD '19)
[5] Millicharged Particles (MCPs) in Neutrino Experiments (1806.03310, PRL '19)

New Experiments, New Models & Complementarity with Astro-Cosmo Searches

Yu-Dai Tsai, Fermilab/U Chicago

[6] Resonant Self Interacting Dark Mesons (2008.08608)

[7] New Pathways to to the Relic Abundance of Vector-Portal Dark Matter (2011.01240)

[8] Elastically Decoupling Dark Mater (1512.04545)

arXiv: https://arxiv.org/a/tsai_y_1.html

Contact: ytsai@fnal.gov

What do I do?

- New Dark Matter Models
- Accelerator Probes (New Experimental Proposals)
- Novel Astrophysical/Cosmological Searches
 - Light axion effects on Trans-Neptunian object (TNO) & exoplanet precessions

(w/ Vagnozzi, Visinelli, Wu)

- Is GW170817 a primordial black hole event?
- Dark Matter in neutron stars
- Small-scale test of v-dep. SIDM (w/ Kaplinghat, Valli, Yu)

Outline

- Dark Matter Complementarity
- Proton Fixed-Target: Scattering
- LHC Forward Experiment

• Proton Fixed-Target: Decay

Resonant Dark Meson

Dark Matter Complementarity:

Why accelerator / astro probe? Why MeV – GeV range?

Exploration of Dark Matter & Mediator

Dark Sector Candidates

Search Techniques

- Resonant SIDM w/ Hitoshi+; Kinetic Decoupling DM w/. Tracy+
- Two Major Probes: Accelerator & Astro-Cosmo Searches, and why?
- MeV to GeV mass region?

Example: Constraints on Millicharged Dark Matter

Also consider ambient dark matter

Produce dark particles in collisions

Same mass and interaction strength.

Different assumptions

Some details of these figures will be explained later

Not all bounds are created with equal assumptions

Assumptions

Or, how likely is it that theorists would be able to argue our ways around them

Accelerator-based: **Collider**, **Fixed-Target Experiments** Some other ground-based experiments

techinical

Astrophysical productions (not from ambient DM): energy loss/cooling, etc: Rely on modeling/observations of (extreme/complicated/rare) systems (SN1987A & Cosmic ray, etc)

Dark matter direct/indirect detection: abundance, velocity distribution, etc

Ldifferent

Cosmology: assume cosmological history, species, etc

Accelerator Experiments: Focusing on Proton Fixed-Target & LHC Forward Experiments

Accelerator Experiments

- Produce these particles
- "Robust" Bounds

- Independent of DM abundance / velocity dist.

Many of them existing and many to come:

complement each other

- **Dark matter attenuation** in atmosphere and crust is not an issue usually
- Are these really the astro / cosmo dark matter?

Proton Fixed-Target & Neutrino Experiments

- High-Energy Intensity Frontier
- High statistics, e.g. LSND has 10²³ Protons on Target (POT)
- Neutrinos are dark-sector particles.
- Relatively high-energy proton beams on targets:

O(100 – 400) GeV (I will compare Fermilab/CERN facilities)

- Shielded/underground: lower background
- Many of them existing and many to come:

strength in numbers

LHC Forward Physics Region

• LHC collision + fixed-targe-like intensity:

High-Intensity Energy Frontier

- Benefits from both worlds! No need to build a new beamline
- The FASER & FASER-nu collaboration
- Forward Physics Facility Proposal
- New proposal: FORMOSA & Forward Proto-DUNE,
- New Neutrino Campus

Astro-Cosmo Dark Matter Searches Why is it so important? Hints on DM Properties

Searching for "Actual" Dark Matter

- **Direct Detection**: Searching for local ambient dark matter
- Small-scale structure study: Searching for the effects of dark matter in galaxies and clusters

• **Cosmological measurement**: searching for the dark matter effects on the cosmic evolution

• Reveal the actual story of dark matter!

Small-Scale Structure Study

Plot includes dwarfs (red), low surface brightness
(LSBs) spiral galaxies (blue) and clusters (green)
Diagonal lines are contours of constant σ/m.
Velocity-Dependent Self-Interacting Dark Matter
Kaplinghat, Tulin, Yu, arXiv:1508.03339

Why study MeV – GeV+ dark sectors? Revealing the dark secrets of the Universe

Signals of discoveries grow from anomalies Maybe nature is telling us something so we don't have to search in the dark? (or probably systematics?)

Some anomalies involving MeV - GeV+ Explanations

- Muon g-2 anomaly
- LSND & MiniBooNE anomaly
- EDGES result
- Beryllium anomaly
- Small-Scale Structure Problems

Below ~ MeV there are also **strong astrophysical/cosmological bounds** that are hard to avoid even with very relaxed assumptions Some anomalies involving MeV - GeV+ Explanations

- Muon g-2 anomaly
- LSND & MiniBooNE anomaly
- EDGES result
- Beryllium anomaly
- Small-Scale Structure Problems

Below ~ MeV there are also **strong bounds**

Boldface: I studied / Red: I have studied and require dark matter property

My studies on these anomalies

• Proton charge radius anomaly:

- Light Scalar & Dark Photon at Borexino & LSND, Pospelov, Tsai, PLB '18, 1706.00424
- LSND/MiniBooNE Anomalies
- Dipole Portal Heavy Neutral Lepton,

Magill, Plestid, Pospelov, **Tsai**, PRD '18, <u>1803.03262</u>

- Dark Neutrino at Scattering Experiments: CHARM-II & MINERvA

Argüelles, Hostert, Tsai, PRL '20, 1812.08768

- EDGES 21-cm absorption spectrum anomaly
- Millicharged Particles in Neutrino Experiments, Magill, Plestid, Pospelov & Tsai, PRL '19, 1806.03310
- FerMINI Experiment, Kelly & Tsai, PRD '19, <u>1812.03998</u>
- Cosmic-ray produced MCP in neutrino observatories, <u>2002.11732</u>
- Muon g-2 Anomaly

Dark Photon, Inelastic Dark Matter, and Muon g-2 Windows in

CHARM, NuCal, NA62, SeaQuest, and LongQuest,

Tsai, de Niverville, Liu, <u>1908.07525</u>

When High Energy Meets High Intensity Proton Fixed-Target & Collider-Forward Experiments

When Energy meets Intensity

Vision of this part of my research program:

- Filling low-mass / high-mass gap
 (dark sector, e.g. portals, MCP, etc)
- low-energy / high-energy gap (neutrino, nuclear physics)

Facilities

- LSND: Total of 10^{23} POT (beam: 800 MeV), King of POT
- Fermilab (undergoing a Proton Improvement Plan, PIP):
- Booster Beam (BNB): ~ 10^{20} POT/yr (8 GeV), now
- NuMI beam: 1 4 x 10^{20} POT/yr (120 GeV), now
- LBNF beam (future): $\sim 10^{21}$ POT/yr (120 GeV), future
- CERN SPS beam:
- NA62: up to 3 x 10^{18} POT/yr (400 GeV), now
- SHiP: up to 10^{19} POT/yr (400 GeV), future
- **CERN LHC**: 10^{16} POT/yr, $\sqrt{s} = 13$ TeV

Scattering Experiments vs Decay Experiments

Scattering Experiments: Studying Neutrinos and Dark Matter Scattering FORMOSA & Forward-DUNE

Scattering Detectors

- MiniBooNE, SBND, MicroBooNE, MINERvA, DUNE, etc
- Many have primary goals to study neutrino scattering and/or neutrino oscillation

Features (comparing to decay detector):

- 1. higher density
- 2. complicated design compared to the decaying detector.
- 3. Smaller fiducial volume (for near-beam detectors); cost more.
- 4. Usually studying stable particles (neutrino, dark matter, millicharged particles)

Some Production Channels

Heavy (vector) mesons are important for high-mass mCP's in high-energy beams

BR($\pi^0 \rightarrow 2\gamma$) = 0.99 BR($\pi^0 \rightarrow \gamma e^- e^+$) = 0.01 BR($\pi^0 \rightarrow e^- e^+$) = 6 * 10⁻⁶ BR(J/ $\psi \rightarrow e^- e^+$) = 0.06

MCP Produced in Fixed-Target Experiments

Example: Neutrinos at the Main Injector (NuMI) beamline See <u>https://arxiv.org/abs/1507.06690</u> (NuMI collaboration)

Scattering Detectors

MiniBooNE Detector

arXiv:0806.4201 MiniBooNE collaboration

 χ

 $\bar{\chi}$

MicroBooNE Detector

arXiv:1612.05824 MicroBooNE collaboration

- NuMI Beam
- BNB
- LBNF (future)

DUNE Near Detector

arXiv:2002.02967, DUNE TDR V - I

MINERvA Detector

29

Specialized "Scattering" Detectors

- NuMI beam
- BNB
- LBNF (future)

Low-cost / specialized detectors to add to the beam facilities?

Facilities

• Fermilab NuMI beam: ~ 10^20 POT/yr (120 GeV), now

Neutrinos at the Main Injector (NuMI) , for NIMOs +

• Fermilab LBNF beam (future): $\sim 10^{21}$ POT/yr (120 GeV),

Long Baseline Neutrino Facility (LBNF), for DUNE

• CERN HL-LHC: 10^{16} POT/yr equivalent, $\sqrt{s} = 13$, 14 TeV

Millicharged Particle: Model & Signature

Model: Millicharged Particles

- Test of charge quantization, and thus grand unification theory, superstring theory, string compactifications (Wen, Witten, Nucl. Phys. B 261 (1985) 651-677, Youtube: [link])
- No need for dark photon, but can be a consequence of massless dark photon theory
- Our search is simply a search for particles (fermion χ) with {mass, electric charge} = { $m_{\chi}, \epsilon e$ }
- A particle fractionally (or irrationally) charged under SM U(1) hypercharge $\mathcal{L}_{MCP} = i\bar{\chi}(\partial - i\epsilon' e B + M_{MCP})\chi$
- EDGES result is another hint on DM Properties

Kinetic Mixing and MCP Phase (skip)

• New fermion
$$\chi$$
 charged under new gauge boson B'.

 Millicharged particle (MCP) can be a low-energy consequence of massless dark photon (a new U(1) gauge boson) coupled to a new fermion (become MCP in a convenient basis.)

Scattering Detectors

MiniBooNE Detector

arXiv:0806.4201 MiniBooNE collaboration

 χ

 $\bar{\chi}$

MicroBooNE Detector

arXiv:1612.05824 MicroBooNE collaboration

- NuMI Beam
- BNB
- LBNF (future)

DUNE Near Detector

arXiv:2002.02967, DUNE TDR V - I

MINERvA Detector

Sensitivity at Neutrino Detectors

- Electron recoil-energy threshold: MeV to 100 MeV
- Can use **timing information** to improve sensitivity
- Double-hit to reduce background (see next page)
- Will include more updates later!

x-axis: m_x (MCP mass), y-axis: $\epsilon = Q_x/e$ (charge ratio).
Double-Hit Consideration: ArgoNeuT Study & Constraint

Harnik, Liu, Ornella: multi-scattering, point back to target to reduce the background (ArgoNeuT & DUNE), arXiv:1902.03246 / ArgoNeuT collab: arXiv:1911.07996

New related study: Marocco & Sarkar, arXiv:2011.08153

x-axis: m_x (MCP mass), y-axis: $\epsilon = Q_x/e$ (charge ratio).

Specialized "Scattering" Detectors

- NuMI beam
- BNB
- LBNF (future)

MilliQan, arXiv:1410.6816 (Haas, Hill, Izaguirre, Yavin) See also arXiv:1607.04669; arXiv:1810.06733; arXiv:2005.06518

FerMINI @ NuMI-MINOS Hall

FIG. 3. An illustration of the FerMINI experiments utilizing the NuMI facility.

Yu-Dai Tsai Fermilab

MINOS hall downstream of NuMI beam

Going Forward: LHC Forward Physics Region! Best of both worlds Not fixed target, but has fixed-target intensity

Yu-Dai Tsai, Fermilab, 2020

Looking Forward at LHC!

Berlin, Kling, 1810.01879

FORMOSA: FORward MicrOcharge SeArch

Foroughi, Kling, Tsai, arXiv:2010.07941

Formosa means "beautiful" in Portuguese and is the ancient name of Taiwan

Yu-Dai Tsai, Fermilab 2020

FORMOSA Sensitivity

FORMOSA-I: $\sim 0.2 \text{ m} \times 0.2 \text{ m} \times 4 \text{ m}$ consisting of 4 layers of 16 scintillator bars @UJ12/TI12 tunnel. FORMOSA-II: $\sim 1 \text{ m} \times 1 \text{ m} \times 4 \text{ m}$ consisting of 4 layers of 400 scintillator bars @ FPF.

Adding new related study: Marocco & Sarkar, arXiv:2011.08153

Strongly Interacting Dark Matter

DM-SM Interaction too strong that attenuation stop the particles from reach the direct detection detector

DMATIS (Dark Matter ATtenuation Importance Sampling), Mahdawi & Farrar '17

Reference Cross-Section

$$\bar{\sigma}_{\rm e,ref} = \frac{16\pi\alpha^2\epsilon^2\mu_{\chi e}^2}{q_{\rm d,ref}^4}, q_{\rm d,ref} = \alpha m_e$$

- Reference Cross-section for MCP-Electron Scattering (Direct Detection)
- $\mu_{\chi e}$ is the reduced mass of the electron and χ , α is the fine structure constant.
- $q_{\rm ref}$ is a reference momentum transfer (for normalization)
- We choose the typical momentum transfer in DM-electron collisions for noble-liquid and semiconductor targets.
- This just is a normalization! Can choose the other one for comparison
- Comparing to e.g. SENSEI, CDMS-HVeV, XENON10, XENON100, and DarkSide-50

Probe of Millicharged Dark Matter

- Here we plot the critical reference cross-section see <u>1905.06348</u> (Emken, Essig, Kouvaris, Sholapurkar)
- Yu-Dai Tsai, Fermilab
- Accelerator probes can help close the Millicharged SIDM window!
- Cosmic-ray production & Super-K detection <u>2002.11732</u>

Reviving MDM for EDGES

Liu, <u>Outmezguine</u>, Redigolo, Volansky, '19

EDGES gives another hint of dark matter property, just like small-scale structure

FORMOSA: Neutrino & EDM

FORMOSA can study

- Heavy Neutrino Electric Dipole Moment (ongoing) (Sher, Stevens, 1710.06894, MoEDAL-MAPP, 1909.05216, Chu +, 2001.06042)
- Tau Neutrino Electric Dipole Moment (exciting!)

Strong advantage at the FORMOSA site!)

- Other Neutrino Physics Topics (maybe?)
- Saeid Foroughi, Felix Kling, Yu-Dai Tsai, ongoing

Forward Proto-DUNE & Neutrino Campus!

Figure 3: Left: draft of ProtoDUNE-SP [2]. Right: draft of ProtoDUNE-DP [3]

DUNE Collaboration (arXiv:1706.07081 + arXiv:1409.4405) Updates, see, e.g. arXiv:1910.10115 & arXiv:2007.06722

Forward Proto-DUNE & New Neutrino Campus!

New Idea: FORWARD-DUNE & New Neutrino Campus Kling, Tsai (+ Feng, Cavanna)

Summary

- Proton Fixed-Target Experiments
- LHC Forward Experiments

can study

- Millicharged Particles
- Other Dark Matter Models
- Neutrinos & New Neutrino Physics

Decay Experiments LongQuest Experiment

Yu-Dai Tsai, Fermilab, 2020

Decay Experiments/Detectors

Including CHARM decay detector (DD), NuCAL, NA62, SeaQuest, DUNE Near Detector (ND) (see, e.g. arXiv:1908.07525),

• Experiments optimized to study **decaying particles**, or simply two charged particle final states, e.g. from Drell-Yan (SeaQuest)

General features:

- 1. Large decay volume
- 2. Low density (likely vacuumed), low background
- 3. Simple design thus relatively low cost (tracking planes + ECal)
- Often, there is external magnetic field (track separations/momentum reconstruction/filter-out soft SM radiation)
- 5. Usually studying long-lived particles (mediators, e.g., dark photons)

Decay Experiments/Detectors

CHARM: CERN HAmburg Rome Moscow

Decay Experiments/Detectors

SeaQuest/LongQuest-Proposal, Tsai, deNiverville, Liu, '19

Gardner, Holt, Tadepalli, 1509.00050; Berlin, Gori, Schuster, Toro, 1804.00661, DarkQuest

DarkQuest

arXiv:1509.00050 (Gardner, Holt, Tadepalli); arXiv:1804.00661 (Berlin, Gori, Schuster, Toro)

Nhan Tran (Fermilab) was rewarded Fermilab LDRD funding (w/ Krnjaic & Toups) and is leading detailed SeaQuest/DarkQuest study + snowmass white paper.

We are looking into long-term plan: arXiv:1908.07525 (Tsai, de Niverville, Liu)

LongQuest: Three Stage Retool of SpinQuest, as Dedicated Long-Lived Particle Experiment

LongQuest (I-III)

- A search for long-lived particles with extended decay length, improved decay detectors, and additional long based-line detectors using SeaQuest (SpinQuest) facility.
- Working on a pheno paper with Ming Liu, Kun Liu, and Patrick de Niverville.

Legion of Decay Experiments

1	Experiment	Beam Energy	РОТ	$L_{\rm dist.}$	$L_{ m dec}$
	CHARM	$400 {\rm GeV}$	2.4 e18	480 m	$35 \mathrm{~m}$
Existing Probes	NuCal	$70 {\rm GeV}$	1.7 e18	64 m	$23 \mathrm{m}$
Future Probes	NA62	$400 {\rm GeV}$	*1.3e16/1e18	82 m	$75 \mathrm{m}$
	SeaQuest	$120 {\rm GeV}$	*1.4e18/1e20	$5 \mathrm{m}$	*7 m
	LongQuest	$120 {\rm GeV}$	*1e20	$5 \mathrm{m}$	*7/13 m

TABLE I. This table provides a comparison of experiments considered in this paper. *Indicates not yet decided; $L_{\text{dist.}}$ is the distance from the target to the decay region; $L_{\text{dec.}}$ is the fiducial particle decay length. The detector areas $A_{\text{dec.}}$ are more complicated and not listed in the table. Our information regarding the NA62 experimental configuration was updated directly through contact with the NA62 collaboration

Yu-Dai Tsai, Fermilab, 2020

arXiv/1908.07525

Interesting Long-Lived Particles for Decay Studies

Yu-Dai Tsai, Fermilab, 2020

Renormalizable "Portals"

- Dark sectors can include mediator particles coupled to the SM via the following **renormalizable interactions.**
- High-Dim. axion portal is also popular

Legion of Probes on Dark Photon

(a) Updates on dark photon bounds and NA62 projection.

Consider proton bremsstrahlung production properly resonance from mixing with the ρ and ω mesons

(b) Compilation of projections and constraints on dark photon.

New Projections from NA62 and LongQuest,

Tsai, de Niverville, Liu, <u>1908.07525</u>

Beyond Simple Dark-Sector Models

- Cosmology motivated models:
 Inelastic Dark Matter, etc
- Strongly Self-Interaction DM (motivated by dark QCD)
 Motivated by small-scale problems

Resonant Dark Mesons

Yu-Dai Tsai, Fermilab, 2020

Resonant SIDM: Vector Resonance

QCD & Meson Spectrum

Lessons from QCD. $K^+K^- \to \phi, B^0\overline{B}^0 \to \Upsilon(4S).$

- $m_{K^{\pm}(u\bar{s}/\bar{u}s)} \approx 493$ MeV; $m_{\phi(s\bar{s})} \approx 1019$ MeV.
- $m_{B^0} \approx 5279 \text{ MeV}; m_{\Upsilon(4S)} \approx 10580 \text{ MeV}.$
- Inspired by these, we will build a 2-flavor light quarks with hidden-QCD and an asymmetric dark matter model later
- Can use the *φ*-K-K system to build a light dark matter model with proper freeze-out
- Link to **ELDER/SIMP** models with **existing lattice results**
- See Tsai, McGehee, and Murayama, <u>arXiv:2008.08608</u> for details

SM resonances

$$\frac{m(^{8}\text{Be}) - 2m(\alpha)}{m(^{8}\text{Be})} = 0.000012,$$

$$\frac{m(^{12}\mathrm{C}^*) - m(^{8}\mathrm{Be}) - m(\alpha)}{m(^{12}\mathrm{C}^*)} = 0.000026.$$

Triple-alpha process

$$\frac{m(\phi) - 2m(K^0)}{m(\phi)} = 0.024,$$
$$\frac{m(D^{0*}) - m(D^0) - m(\pi^0)}{m(D^{0*})} = 0.0035,$$
$$\frac{m(B_{s1}) - m(B^*) - m(K^0)}{m(B_{s1})} = 0.0011,$$
$$\frac{m(\Upsilon(4S)) - 2m(B^0)}{m(\Upsilon(4S))} = 0.0019.$$

Summarized in Tsai, McGehee, and Murayama, arXiv:2008.08608

- The beryllium-8 ground state has almost exactly the energy of two alpha particles., ⁸Be + 4He has almost exactly the energy of an <u>excited state of 12C</u>. (7.66 MeV 0+ excited state of 12 C),
- The <u>resonance</u> greatly increases the probability that an incoming alpha particle will combine with beryllium-8 to form carbon.
- This resonance was predicted by <u>Fred</u> <u>Hoyle</u> before its actual observation, based on the physical necessity for it to exist, in order for carbon to be formed in stars.
- This energy resonance and process gave very significant support to Hoyle's hypothesis of <u>stellar nucleosynthesis</u>, which posited that all chemical elements had originally been formed from hydrogen, the true primordial substance.
- The <u>anthropic principle</u> has been cited to explain the fact that nuclear resonances are sensitively arranged to create large amounts of carbon and oxygen in the universe.
- <u>Wiki/Triple-alpha_process</u>
- J. D. Barrow and F. J. Tipler, The Anthropic Cosmological Principle. 1988.

Meson resonances

For $m_Q = m_d$,

we show π^0 as well as the average masses of the first three ρ and ω states. For $m_Q = m_s$, we show K^0 and the first three ϕ 's. For $m_Q = \{m_c, m_b\}$, we show D^0 and B^0 as well as the first four ψ and Υ states, respectively.

Heavy Quark Dark Meson Model

• C. Quigg and J. L. Rosner, "Quarkonium Level Spacings," Phys. Lett. B 71 (1977) 153–157.

Figure 3: The crossings of the sum of heavy quark pseudoscalar meson masses and heavy quarkonium excited states for different heavy quark masses, m_Q .

Heavy Quark Meson ADM

- Dark matter are not the lightest meson (because of the heavy quark) in the theory, thus cannot be symmetric
- We consider one light quark u and two heavy quarks c' and b' and assume the c' and b' abundances are fixed by their asymmetry $n_c = n_{\bar{b}}$. we will drop the ' since everything is dark state from now on.

Dark meson mass

Heavy Quark Meson ADM

• We consider one light quark u and two heavy quarks c and b and assume the c and b abundances are fixed by their asymmetry $n_c = n_{\bar{b}}$.

 $D^0(c\bar{u})B^+(u\bar{b}) \to \Upsilon(c\bar{b})(nS)$

$$V(r) = C \ln(r/r_0),$$

$$m_{\Upsilon(nS)} - m_{\Upsilon(1S)} \approx C \ln\left(\frac{4n}{3}\right)$$

in the large n limit. The mass splitting is

$$\begin{split} \Delta_n &\equiv m_{\Upsilon(nS)} - m_{\Upsilon((n-1)S)} \\ &= C \left[\frac{1}{n} + \mathcal{O}\left(\frac{1}{n^2} \right) \right]. \\ m_Q &\approx n^2 \left(\frac{4}{3e} \right)^2 \Lambda. \end{split}$$

Decays to Dark Photon

• Dropped the ' now except for γ , but these are all dark states

- $m_{ADM} = m_B \sim m_Q \sim 5 m_P \sim 5 \text{ GeV}$
- $\Lambda \sim m_{\pi} > 2 m_{\gamma'}$ (assuming the dark neutral pion $\pi (u\bar{u})$ decays to two dark photons γ')
- The lower the mass of the dark photon is, the more likely one hits the resonance, since the mass of the dark matter is fixed to around 5 GeV
Dark photon for neutral pion decay

$$m_{ADM} = m_B \sim m_Q \sim 5 m_P$$

 $m_Q \sim 5 \text{ GeV}$

 $m_Q/\Lambda \sim 10$ is desired

 $\Lambda \sim m_{\pi}$, > 2 m_{γ} , (assuming the dark neutral pion $\pi' (u\bar{u})$ decays to two dark photons γ')

 $\pi'(u\bar{u})$ decays to two massive dark photons

Asymmetric Dark Matter Parameter

Inelastic Dark Matter

Yu-Dai Tsai, Fermilab, 2020

New Bounds on Inelastic Dark Matter

(e) Compilation of relevant constraints and sensitivity projections for iDM with $\alpha_D = 0.1$ and $\Delta = 0.1$. $m_{A'}/m_{\chi 1} = 3$.

Tsai, de Niverville, Liu, <u>1908.07525</u>

See, Duerr, Ferber, Hearty, Kahlhoefer, Schmidt-Hoberg, Tunney, 1911.03176, for Belle II update

Looking Ahead

- Exploring New Physics where High Energy meets High Intensity
- Cosmology-driven models: relaxions, baryogenesis models
- Naturalness-motivated models, quirks, KOTO-related models
- Near-future (and almost free) opportunity
 (NuMI Facility, SBN program, DUNE Near Detector, etc.)
- Other new low-cost alternatives/proposals (~ \$1M) to probe exotic stable particles (FerMINI, FORMOSA) and new forces (LongQuest)
- Dark sectors in neutrino observatories
- New exciting searches for dark matter

- General Collider Beam-dumps
- ILC Beam-Dump / Forward Exp

Thank You! Thank for the Invitation!

Yu-Dai Tsai, Fermilab, '20

MCP Detection: Electron Scattering

- Q^2 is the squared 4-momentum transfer.
- lab frame: $Q^2 = 2m_e (E_e m_e)$, $E_e m_e$ is the electron recoil energy.
- Expressed in **recoil energy threshold**, $E_e^{(min)}$, we have

$$\sigma_{e\chi} \simeq 2.6 \times 10^{-25} \text{cm}^2 \times \epsilon^2 \times \frac{1 \text{ MeV}}{E_e^{(\text{min})} - m_e}$$

 Sensitivity greatly enhanced by accurately measuring low energy electron recoils for MCP's & light-mediator scattering

MCP Detection: Ionization

- Want very low momentum transfer: ionization and scintillation signature
- Signature proportional to dE/dx of the MCP, referred to as energy loss/stopping power
- Can be approximated with the Bethe-Bloch Formula (various modified versions and detailed considerations.)

$$\left\langle -\frac{dE}{dx}\right\rangle \propto \epsilon^2.$$

intentionally make the plot small so we don't get into too much details of this. http://pdg.lbl.gov/2020/reviews

Dark photon for neutral pion decay

$$m_{ADM} = m_B \sim m_Q \sim 5 \text{ GeV}$$

 $\Lambda \sim m_{\pi \prime} > 2 m_{\gamma \prime}$ (assuming the dark neutral pion π' (u u-bar) decays to two dark photons γ')

$$\Lambda \approx m_Q \left(\frac{3e\Delta}{4\,\mathrm{F.T.}}\right)^{2/3} \sim m_p \frac{\Omega_{\mathrm{DM}}}{\Omega_{B,\mathrm{SM}}} \left(\frac{3e\Delta}{4\,\mathrm{F.T.}}\right)^{2/3}$$

 $\pi'(u\bar{u})$ decays to two massive dark photons

The Rise of Dark Sector: Sub-GeV DM

3

- The Lee-Weinberg bound (1977'): below ~ 2 GeV, DM freeze-out through weak-Interaction (e.g. through Z-boson) would overclose the Universe.
- Could consider ways to get around this but generally sub-GeV DM needs BSM mediators to freeze-out to proper relic abundance.
- Mediator is needed for a proper freeze-out: the rise of "dark sector" (DM + mediators + stuffs).
- Another motivation to consider dark sector other than anomalies

Cosmic-Ray Production & Neutrino Observatories

Yu-Dai Tsai, Fermilab, 2020

MCP in Neutrino Observatories

Compilation of MCP Probes

(a) Existing bounds and MCP dedicated experiments

(b) Comparison of future projections

LOI Update: <u>link</u>

LOI Endorsers or White Paper Authors Sign-Up Link: link2

Advantages of FerMINI-type experiments

- 1. LHC entering long shutdown
- NuMI operating, shutting down in 5 years (DO IT NOW! Fermilab! USA!)
- 3. Broadening the physics case for fixed-target facilities
- 4. **DUNE near detector design** still underway
- 5. Can develop at NuMI/MINOS and then move to DUNE
- 6. Sensitivity better than milliQan for MCP up to 5 GeV and don't have to wait for HL-LHC
- 7. Timeliness, Low-cost, Movable, Tested, Easy to Implement,
- Synergy between dark matter, neutrino, and collider community. (contact <u>ytsai@fnal.gov</u>)

Inelastic Dark Matter

- One of the few viable MeV GeV thermal dark matter candidates
- A "thermal target" for DM searches
- Can explain g-2 and freeze-out to the right relic DM abundance
- Smith, Weiner, arXiv:0101138

$$\mathcal{L} \supset \sum_{i=1,2} ar{\chi}_i (i \partial \!\!\!/ - m_{\chi_i}) \chi_i - (g_D A'_\mu ar{\chi_1} \gamma^\mu \chi_2 + ext{h.c.}).$$

$$\Delta \equiv \frac{m_2 - m_1}{m_1}$$
, $g_D \equiv \sqrt{4\pi\alpha_D}$, $m_{A'} > m_{x1} + m_{x2}$.

1703.06881 (Izaguirre, Kahn, Krnjaic, Moschella)

Inelastic Dark Matter (iDM)

- Co-annihilation freeze out to right relic abundance but avoid CMB constraints
- Considered thermal targets for newly proposed experiments
- Suppressed at the CMB epoch
- <u>1703.06881</u> (Izaguirre, Kahn, Krnjaic, Moschella)

$$m_1 \sim \frac{\epsilon \left(\alpha_D \,\alpha_{\rm em} \,T_{\rm eq} \,m_{\rm pl}\right)^{1/2}}{\left(m_{A'}/m_1\right)^2} \,e^{-x_f \Delta/2} \,,$$

iDM in Fixed-Target and Collider

- Collider: 1508.03050 (Izaguirre, Krnjaic, Shuve)
- Fixed target:
- 1703.06881 (FT: Izaguirre, Kahn, Krnjaic, Moschella),
- 1804.00661 (SeaQuest: Berlin, Gori, Schuster, Toro)
- 1902.05075 (g-2: Mohlabeng)
- 1908.07525 (Strong bounds: Tsai, de Niverville, Liu)

New Bounds on Inelastic Dark Matter

Inelastic Dark Matter: $\mathcal{L} \supset \sum_{i=1,2} \bar{\chi}_i (i\partial \!\!\!/ - m_{\chi_i}) \chi_i - (g_D A'_\mu \bar{\chi_1} \gamma^\mu \chi_2 + \mathrm{h.c.}).$

DUNE preliminary results by deNiverville & Tsai,

Inelastic Dark Matter & Muon g-2 explainer

(a) iDM: $\Delta = 0.4$, $\alpha_D = 0.1$. With muon g - 2 and DM regimes. $m_{A\prime}/m_{\chi 1} = 3$.

Inelastic Dark Matter & Muon g-2 explainer

(a) iDM: $\Delta = 0.4$, $\alpha_D = 0.1$. With muon g - 2 and DM regimes. $m_{A\prime}/m_{\chi 1} = 3$.

<u>1908.07525, **Tsai**</u>, deNiverville, Liuz ₉₃

DUNE Near Detector Complex

- <u>1912.07622</u> (Berryman, Gouvêa, Fox, Kayser, Kelly, Raaf)
- New scattering + decay studies (De Niverville, De Roeck, Petrillo, **Tsai**, Tsai, in preparation)

FerMINI Collaboration (BRN proposal)

Chris Hill OSU

Andy Haas NYU

Jim Hirschauer Fermilab

David Miller U Chicago

David Stuart UCSB

Zarko Pavlovic Fermilab

Yu-Dai Tsai Fermilab/U.Chicago

Cindy Joe Fermilab

Ryan Heller Fermilab

Maxim Pospelov Minnesota / Perimeter

Ryan Plestid McMaster

Albert de Roeck CERN

Joe Bramante Queen's U

Bithika Jain ICTP-SAIFR

MCP Production/Flux

120 GeV proton beam on target (graphite)

Photoelectrons (PE) from Scintillation

• The averaged number of photoelectron (PE) seen by the

detector from single MCP is:

$$N_{PE} \propto \left\langle -\frac{dE}{dx} \right\rangle \times l_{scint}, \ \left\langle -\frac{dE}{dx} \right\rangle \propto \epsilon^2.$$

 $\langle dE/dx\rangle$ is the "mass stopping power" (PDG 2018)

One can use modified **Bethe-Bloch Formula** to get an approximation

- $N_{PE} \sim \epsilon^2 \times 10^6$ for 1 meter plastic scintillation bar
- $\epsilon \sim 10^{-3}$ roughly gives one PE

Signature: Triple Coincidence

• Based on Poisson distribution, zero event in each bar correspond to $P_0 = e^{-N_{PE}}$, so the probability of seeing triple

incident of one or more photoelectrons is:

$$P = \left(1 - e^{-N_{PE}}\right)^3$$

• $N_{x,detector} = N_x$ (going through detector) x P.

Scintillation based detection

Directly from Matthew Citron's talk at NF3 kickoff meeting: link

See Snowmass LOI "Sensitivity reach of scintillator-based detectors for millicharged particles" (link) 101