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∗ Main focus on 1903.02608 (& 1903.03607), done in 
collaboration with P. Mitra

∗ Focuses on the soft theorem/asymptotic symmetry 
side of the triangle that Strominger introduced

Collaboration

Soft theorems

Asymptotic
symmetries

Memory 
effect



∗ Relevant papers
∗ 1407.3789 (TH, Mitra, Porfyriadis, Strominger): Massless 

QED in 4D
∗ 1505.05346 (Campiglia, Laddha) and 1506.02906 (Kapec, 

Pate, Strominger) : Massive QED in 4D
∗ 1412.2763 (Kapec, Lysov, Strominger): Massless QED in 

even dimensions

History



∗ Leading soft photon theorem – A theorem in QFT 
first discovered by studying Feynman diagrams

∗ Asymptotic symmetry group of QED – Large gauge 
transformations that leave the EOM invariant while 
changing the physical state

∗ We would like to demonstrate that the Ward identity 
associated to the asymptotic symmetries of QED is 
equivalent to the leading soft photon theorem in all 
dimensions.

Goal of presentation



∗ Review the leading soft photon theorem and 
asymptotic symmetries

∗ Construct the charge generating asymptotic 
symmetries in (d+2)-dimensional QED

∗ Establish the Ward identity associated to the 
asymptotic symmetries

∗ Demonstrate how the Ward identity arises from the 
leading soft photon theorem in d+2 dimensions

Outline of presentation



∗ Weinberg’s soft photon theorem relates the 
matrix elements of a Feynman diagram with 
an external soft photon insertion to that of 
the same diagram without an external soft 
photon.

Soft photon theorem



From Weinberg, The 
Quantum Theory of 
Fields, Vol. 1

∗ Two ways to insert a 
soft photon

∗ In the diagrams we 
take q → 0.

Soft photon theorem



∗ In equation form, assuming all particles are outgoing 
for simplicity,

∗ Universality suggests this theorem might arise from 
some symmetry.

Leading soft photon theorem



∗ Symmetries are one of the most useful tools in 
theoretical physics.

∗ One way to think of certain symmetries is in terms of 
a Ward identity, i.e. their charges commute with the 
S-matrix.

∗ Asymptotic symmetries are symmetries that act on 
the physical states in a nontrivial manner.

Asymptotic symmetries



∗ In many cases, asymptotic symmetries are local in 
spacetime coordinates.

∗ Sometimes called “large gauge symmetries” to 
distinguish from trivial gauge symmetries

∗ This definition of large gauge symmetries allows for 
topologically trivial symmetries as well.

∗ Large gauge symmetry physical if and only if it gives 
rise to nontrivial Ward identity

Asymptotic symmetries



∗ Certainly some asymptotic symmetries are physical!
∗ Strong link established between many asymptotic 

symmetries and soft theorems – soft theorems are 
just Ward identities for asymptotic symmetries

∗ Examples:
∗ Leading soft photon theorem = Ward identity for 

asymptotic symmetry in QED in 4D (TH, Mitra, 
Porfyriadis, Strominger)

∗ Leading soft graviton theorem = Ward identity for 
supertranslations in 4D (TH, Mitra, Lysov, Strominger) 

Remarkable equivalence



∗ This equivalence is remarkable!
∗ Soft theorems were first studied in QED in 1937 by Bloch 

and Nordsieck, later by Low et al in 1958, then later 
extended by Weinberg to gravity in 1965.

∗ Asymptotic symmetries appeared in the work of BMS in 
1962, where they deduced the symmetry group for 
asymptotically flat spacetimes.

∗ One uses perturbative Feynman diagrams, the other 
uses asymptotic structures at null infinity.

∗ We attempt now to extend this equivalence to odd 
dimensions.

Remarkable equivalence



∗ Massless Green’s function
∗ Supported only on the lightcone in even dimensions
∗ Supported on the entire interior of the lightcone in odd 

dimensions
∗ Asymptotics of gauge field
∗ Analytic in even dimensions and admits Taylor expansion
∗ Non-analytic in odd dimensions

∗ We still believe a connection between soft theorems 
and asymptotic symmetries.

Qualitative differences



In 4D spacetime -- From 
A. Strominger, 
arXiv:1312.2229 [hep-th] 

U

∗ Easier to work in flat null 
coordinates in d+2 dimensions

∗ We choose our asymptotic 
boundary to be I+ and I-. Hence 
we only focus on massless 
particles.

Switching coordinate systems



∗ The (d+2)-dimensional metric is given by

with

Choosing our coordinates



∗ Maxwell’s equation is

∗ There is a local symmetry under which

Equations of motion



∗ We decompose general solution to Maxwell’s 
equation as

∗ Radiative field satisfies homogeneous Maxwell’s 
equation, and Coulombic field is sourced by the 
matter current.

Radiative and Coulombic modes



∗ Near I±, the field strength obeys the fall-off 
conditions

∗ The matter current also obeys

Asymptotic expansion at I±



∗ We write

∗ The leading constraint equation is

Leading constraint equation



In 4D spacetime --
From A. Strominger, 
arXiv:1312.2229 [hep-
th] 

U

∗ To study scattering, we need to relate the field 
strength near I+ to that near I-. This is done in a 
natural way such that Lorentz invariance is preserved.

∗ We get the matching conditions

Matching conditions



∗ The matching condition immediately implies the 
following quantity is conserved:

∗ This precisely generates the large gauge transforms in 
QED parametrized by ε.

∗ When ε=1, this is the usual charge in QED defined via 
Gauss’ law.

Conserved charge



∗ We decompose the charge into soft and hard parts:

where

∗ The form of the soft charge is dimension dependent.

Soft and hard charges



∗ In flat null coordinates, we can perform mode 
expansion to get

∗ We assume the creation and annihilation operators 
admit a soft expansion

Radiative field



∗ In odd dimensions, this is

Radiative field – Odd dimensions



∗ In even dimensions, this is

Radiative field – Even dimensions



∗ In odd dimensions the coefficient of 1/rd in Fur is

∗ In even dimensions the coefficient of 1/rd in Fur is

Extracting the coefficient



∗ To get rid of log divergences in even dimensions so 
that the charge is well-defined, we assume

∗ This means the strict zero energy limit of both the 
creation and annihilation operator just produce a new 
vacuum state.

Removing log divergences



∗ In odd dimensions, there is nonzero flux through i+.

∗ In even dimensions the coefficient of 1/rd in Fur is

Properties of the coefficient



∗ With the assumption, the soft charge is

∗ Choose to get

Soft charge



∗ The charge Qε is conserved in the scattering process 
due to the matching condition, so it must commute 
with the S-matrix. Hence, the Ward identity 
corresponding to the asymptotic symmetry is simply 

Deriving the Ward identity



∗ Decomposing the charge into soft and hard pieces, 
and acting on the in and out states, we get

∗ We claim this is the soft theorem in flat null 
coordinates in disguise.

Obtaining the Ward identity



∗ Recall the leading soft photon theorem is

∗ Using the LSZ reduction formula, inserting an 
outgoing soft photon corresponds to the operator 
insertion

Connecting to soft photon theorem



Connecting to soft photon theorem

∗ Switching to the flat null coordinates, the soft photon 
theorem becomes

∗ Taking the derivative of both sides gives us precisely 
the Ward identity derived two slides ago!



∗ Performed an asymptotic expansion of Fur in both odd 
and even dimensions near I±

∗ Extracted the 1/rd coefficient in Fur and wrote down 
the corresponding soft and hard charges

∗ Used the matching condition to write down the Ward 
identity

∗ Rewrote the leading soft theorem in terms of flat null 
coordinates and showed it matched the Ward identity

Summary



∗ We can readily generalize this to the subleading soft 
photon theorem in arbitrary dimensions, as well as 
nonabelian gauge theory (see 1903.03607).

∗ We want to generalize this analysis to gravity as well.
∗ Memory effects in odd dimensions is being explored.
∗ We want to better understand the assumption

Ongoing research



Thank you for listening!
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