Dark Matter - Phonon Scattering

@ University of Michigan 10/09/2019

Simon Knapen Institute for Advanced Study

There is missing mass in galaxies

There is missing mass in galaxies

Dark matter velocity

$$\langle v \rangle \sim \sqrt{\frac{G_N M_{halo}}{R_{halo}}} \sim 200 \text{ km/s}$$

Dark Matter halo

The dark matter landscape

The dark matter landscape

etc (ADMX, MADMAX...)

The dark matter landscape

etc (ADMX, MADMAX...)

Experimental status

Cosmic visions report 2017: 1707.04591

Low mass dark matter detection

What do we need?

Experiment:

1. Low target mass materials:

$$q < 2m_{\chi}v_{\chi}, \qquad v_{\chi} \approx 10^{-3}$$
$$E_R = \frac{q^2}{2m_N} < 10^{-6} \times \frac{m_{\chi}^2}{m_N}$$

2. Ultra-sensitive calorimeters with low dark counts

Low mass dark matter detection

What do we need?

Experiment:

1. Low target mass materials:

$$q < 2m_{\chi}v_{\chi}, \qquad v_{\chi} \approx 10^{-3}$$
$$E_R = \frac{q^2}{2m_N} < 10^{-6} \times \frac{m_{\chi}^2}{m_N}$$

2. Ultra-sensitive calorimeters with low dark counts

Theory:

- 1. The mediator is important, independent set of constraints
- 2. Beyond "billiard ball" scattering: structure effects are critical!

Low mass dark matter detection

What do we need?

Experiment:

1. Low target mass materials:

$$q < 2m_{\chi}v_{\chi}, \qquad v_{\chi} \approx 10^{-3}$$
$$E_R = \frac{q^2}{2m_N} < 10^{-6} \times \frac{m_{\chi}^2}{m_N}$$

2. Ultra-sensitive calorimeters with low dark counts

Theory:

- 1. The mediator is important, independent set of constraints
- 2. Beyond "billiard ball" scattering: structure effects are critical!

Experiments under development

W. Guo, D. McKinsey: 1302.0534

Example: light scalar mediator with coupling to hadrons

Anomalous cooling of stars

Anomalous cooling of stars

Dark Matter self-interactions (Relaxed for subcomponent DM)

Strong astrophysical & terrestrial constraints

SK, T. Lin, K. Zurek: 1709.07882

Experimentally viable if subcomponent DM

SK, T. Lin, K. Zurek: 1709.07882

Coupling to electrons:

 $m_{\phi} = 10^{-3} \ \mu_{\chi e}$ 10^{-36} SENSEI 10^{-39} DAMIC SuperCDMS G2 10^{-42} Dirac materials $\overline{\sigma}_e \, [\mathrm{cm}^2]$ AI SC 10^{-45} 10^{-48} 10^{-51} $\frac{\Omega_{\chi}}{\Omega_{\rm DM}}$ = 1 10^{-54} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{2} 10¹ 10^{3} m_{χ} [MeV]

More freedom for mX > 1 MeV

An important special case

Very light dark photon mediator:

Mediator decouples from SM at low mass No fifth force bounds (screening)

H. An, M. Pospelov, Josef Pradler, A.Ritz:1412.8378 J. Chang, R. Essig, S. McDermott: 1611.03864

. . .

. . .

 χ

 p^+, e^-

Xenon10

 χ

 p^+, e^-

BBN

Stellar bounds

 10^{-32}

 10^{-33}

 10^{-34}

 $\overline{\sigma}_e \,\, [\mathrm{cm}^2]$

R. Essig et. al.: 1509.01598

Attempt to "match" target mass with dark matter mass

- $m_{\chi} > 1 \text{ GeV}$ \rightarrow nuclear recoils
- 1 MeV < m_{χ} < 1 GeV \rightarrow electron recoils
- m_{\chi} < 1 MeV

 \rightarrow q \approx m_{χ} v_{χ} < keV \sim nm⁻¹

Attempt to "match" target mass with dark matter mass

- $m_{\chi} > 1 \text{ GeV}$ \rightarrow nuclear recoils
- 1 MeV < m_{χ} < 1 GeV \rightarrow electron recoils
- $m_{\chi} < 1 \text{ MeV}$ $\rightarrow q \approx m_{\chi} v_{\chi} < \text{keV} \sim \text{nm}^{-1}$

Attempt to "match" target mass with dark matter mass

- $m_{\chi} > 1 \text{ GeV}$ \rightarrow nuclear recoils
- 1 MeV < m_{χ} < 1 GeV \rightarrow electron recoils
- $m_{\chi} < 1 \text{ MeV}$ $\rightarrow q \approx m_{\chi} v_{\chi} < \text{keV} \sim \text{nm}^{-1}$

Attempt to "match" target mass with dark matter mass

- $m_{\chi} > 1 \text{ GeV}$ \rightarrow nuclear recoils
- 1 MeV < m_{χ} < 1 GeV \rightarrow electron recoils
- $m_{\chi} < 1 \text{ MeV}$ $\rightarrow q \approx m_{\chi} v_{\chi} < \text{keV} \sim \text{nm}^{-1}$

Attempt to "match" target mass with dark matter mass

- $m_{\chi} > 1 \text{ GeV}$ \rightarrow nuclear recoils
- 1 MeV < m_χ < 1 GeV
 → electron recoils
- $m_{\chi} < 1 \text{ MeV}$ $\rightarrow q \approx m_{\chi} v_{\chi} < \text{keV} \sim \text{nm}^{-1}$

Scatter directly off phonons

→ strong material dependence!

Periodic potential (Hooke's law)

Periodic potential (Hooke's law)

$$\mathcal{V} = \mathcal{V}^{(0)} + \sum_{l,j} \mathcal{V}^{(i)}_{l,j} \cdot \mathbf{u}_{j,l} + \frac{1}{2} \sum_{l,l',j,j'} \mathbf{u}_{j,l} \cdot \mathcal{V}^{(2)}_{l,j,l',j'} \cdot \mathbf{u}_{j',l'} + \cdots$$
Atoms in Lattice unit cell sites

$$\mathbf{u}_{j,\mathbf{l}}(t) = \sum_{\nu}^{3n} \sum_{\mathbf{q}} \sqrt{\frac{1}{2Nm_j\omega_{\nu,\mathbf{q}}}} \left(\mathbf{e}_{\nu,j,\mathbf{q}} \hat{a}_{\nu,\mathbf{q}} e^{i\mathbf{q}\cdot(\mathbf{l}+\mathbf{r}_j^0) - i\omega_{\nu,\mathbf{q}}t} + \mathbf{e}_{\nu,j,\mathbf{q}}^* \hat{a}_{\nu,\mathbf{q}}^\dagger e^{-i\mathbf{q}\cdot(\mathbf{l}+\mathbf{r}_j^0) + i\omega_{\nu,\mathbf{q}}t} \right)$$

- phonon branches ν :
- momentum over Brioullin zone **q** :
- atom in primitive cell j:

In the harmonic approximation, just quantize as harmonic oscillator

atomic distance

In the harmonic approximation, just quantize as harmonic oscillator

Types of phonons

GaAs Brillouin zone

Types of phonons

Optical phonons

DM-phonon coupling depends strongly on underlying UV physics

DM-phonon coupling depends strongly on underlying UV physics

Examples of Polar Materials

2 atoms in primitive cell

10 atoms in primitive cell

At least two different atoms in the unit cell

Why polar materials?

1. Optical phonons for kinematic matching

2. Natural dipole in unit cell (nanocharged DM sources tiny electric field)

SK, T. Lin, M. Pyle, K. Zurek: 1712.06598

Why polar materials?

1. Optical phonons for kinematic matching

2. Natural dipole in unit cell (nanocharged DM sources tiny electric field)

- 3. Semi-conductors or insulators: screening is small
- 4. Crystal axis allows for directional detection (daily modulation!)
- 5. Readily available now
Frölich Hamiltonian

Electric dipole interacting with test charge:

H. Frölich, 1954C. Verdi, F. Giustino, Phys. Rev. Lett. 115, 176401 (2015)

$$H \sim i \, e \sum_{\mathbf{q}} \frac{\mathbf{q} \cdot \mathbf{P}}{|\mathbf{q}|^2} e^{i \mathbf{q} \cdot \mathbf{r}}$$

Frölich Hamiltonian

H. Frölich, 1954 C. Verdi, F. Giustino, Phys. Rev. Lett. 115, 176401 (2015)

• G reciprocal lattice

Frölich Hamiltonian

H. Frölich, 1954 C. Verdi, F. Giustino, Phys. Rev. Lett. 115, 176401 (2015)

Reach

Both GaAs and Sapphire probe Dark Matter masses as low as 10 keV

Probe the new parameter space with milligram-day exposure

SK, T. Lin, M. Pyle, K. Zurek: 1712.06598 S. Griffin, SK, T. Lin, M. Pyle, K. Zurek: 1807.10291

19

 χ

 p^+, e^-

 χ

Reach

Both GaAs and Sapphire probe Dark Matter masses as low as 10 keV

Probe the new parameter space with milligram-day exposure

SK, T. Lin, M. Pyle, K. Zurek: 1712.06598 S. Griffin, SK, T. Lin, M. Pyle, K. Zurek: 1807.10291

19

 χ

 p^+, e^-

 χ

Amplitude and pattern depends on DM mass

Daily modulation (dark photon mediator)

 p^+, e^-

 p^+, e

Daily modulation (dark photon mediator)

Amplitude and pattern depends on DM mass

22

Daily modulation (dark photon mediator)

Amplitude and pattern depends on DM mass

Dark photon absorption

Very light, bosonic dark matter can be absorbed on the target

Example: Dark photon dark matter: $\mathcal{L} \supset -\frac{\kappa}{2} F'_{\mu\nu} F^{\mu\nu}$

Dark photon absorption

Very light, bosonic dark matter can be absorbed on the target

Example: Dark photon dark matter: $\mathcal{L} \supset -\frac{\kappa}{2} F'_{\mu\nu} F^{\mu\nu}$

Dark Matter coupling to phonons

Which modes to use?

1. Single acoustic:

Experimentally extremely challenging

 χ

N

 χ

N

 ϕ

1. Single acoustic:

Experimentally extremely challenging

2. Single optical:

Strong destructive interference

 χ

N

 χ

N

 ϕ

1. Single acoustic:

Experimentally extremely challenging

2. Single optical:

Strong destructive interference

3. Double acoustic:

Next-to-leading order

 χ

N

 χ

N

 ϕ

Scattering potential:

$$V(\mathbf{r}) = \frac{2\pi b_X}{m_X} \sum_{\ell,j} A_j \delta(\mathbf{r}_{\ell,j} - \mathbf{r})$$

Phonon form factor:

$$|F_{\nu}(\mathbf{q})|^{2} = \left|\sum_{j} \frac{A_{j}}{\sqrt{m_{j}}} e^{-W_{j}(\mathbf{q})} \mathbf{q} \cdot \mathbf{e}_{\nu,j,\mathbf{q}} e^{-i\mathbf{q} \cdot \mathbf{r}_{j}}\right|^{2}$$

SK, T. Lin, M. Pyle, K. Zurek: 1712.06598S. Griffin, SK, T. Lin, M. Pyle, K. Zurek: 1807.10291P. Cox, T. Melia, S. Rajendran: 1905.05575

Scattering potential:

$$V(\mathbf{r}) = \frac{2\pi b_X}{m_X} \sum_{\ell,j} A_j \delta(\mathbf{r}_{\ell,j} - \mathbf{r})$$

Phonon form factor:

Daily modulation

$$|F_{\nu}(\mathbf{q})|^{2} = \left|\sum_{j} \frac{A_{j}}{\sqrt{m_{j}}} e^{-W_{j}(\mathbf{q})} \mathbf{q} \cdot \mathbf{e}_{\nu,j,\mathbf{q}} e^{-i\mathbf{q} \cdot \mathbf{r}_{j}}\right|^{2}$$

SK, T. Lin, M. Pyle, K. Zurek: 1712.06598S. Griffin, SK, T. Lin, M. Pyle, K. Zurek: 1807.10291P. Cox, T. Melia, S. Rajendran: 1905.05575

Scattering potential:

$$V(\mathbf{r}) = \frac{2\pi b_X}{m_X} \sum_{\ell,j} A_j \delta(\mathbf{r}_{\ell,j} - \mathbf{r})$$

Phonon form factor:

Daily modulation

$$|F_{\nu}(\mathbf{q})|^{2} = \left|\sum_{j} \frac{A_{j}}{\sqrt{m_{j}}} e^{-W_{j}(\mathbf{q})} \mathbf{q} \cdot \mathbf{e}_{\nu,j,\mathbf{q}} e^{-i\mathbf{q}\cdot\mathbf{r}_{j}}\right|^{2}$$
Acoustic
$$|F_{\nu}^{(ac)}(\mathbf{q})|^{2} \approx \frac{q^{2}}{m_{p}} \left|\sum_{j} \sqrt{A_{j}} e^{-i\mathbf{q}\cdot\mathbf{r}_{j}}\right|^{2}$$

SK, T. Lin, M. Pyle, K. Zurek: 1712.06598 S. Griffin, SK, T. Lin, M. Pyle, K. Zurek: 1807.10291 P. Cox, T. Melia, S. Rajendran: 1905.05575

Scattering potential:

$$V(\mathbf{r}) = \frac{2\pi b_X}{m_X} \sum_{\ell,j} A_j \delta(\mathbf{r}_{\ell,j} - \mathbf{r})$$

Phonon form factor:

Lattice constant

Destructive interference kills leading order piece for optical phonons

SK, T. Lin, M. Pyle, K. Zurek: 1712.06598 S. Griffin, SK, T. Lin, M. Pyle, K. Zurek: 1807.10291 P. Cox, T. Melia, S. Rajendran: 1905.05575

Daily modulation

Rate for scalar mediator

Huge enhancement for the acoustic mode (but needs ultra low threshold)

SK, T. Lin, M. Pyle, K. Zurek: 1712.06598 S. Griffin, SK, T. Lin, M. Pyle, K. Zurek: 1807.10291

27

 χ

N

 χ

N

 ϕ

Daily modulation (Sapphire)

Qualitatively different from dark photon mediator!

S. Griffin, SK, T. Lin, M. Pyle, K. Zurek: 1807.10291

N

Which modes to use?

1. Single acoustic:

Experimentally extremely challenging

2. Single optical:

Strong destructive interference

3. Double acoustic:

Next-to-leading order

In progress with B. Campbell-Deem, T. Lin, P. Cox, T. Melia

 χ

N

 χ

N

 ϕ

Phonon perturbation theory

Scattering potential:

$$V(\mathbf{r}) = \frac{2\pi b_X}{m_X} \sum_{\ell,j} A_j \delta(\mathbf{r}_{\ell,j} - \mathbf{r}) \qquad \Rightarrow \qquad V(\mathbf{q}) = \frac{2\pi b_X}{m_X} \sum_{\ell,j} A_j e^{i\mathbf{q}\cdot\mathbf{r}_{\ell,j}}$$

Matrix element:

$$\left|\mathcal{M}\right|^{2} \sim \left|\left\langle \Phi_{f}\right| \sum_{\ell,l} A_{j} e^{i\mathbf{q}\cdot\mathbf{r}_{\ell,j}} \left|0\right\rangle\right|^{2}$$

Double expansion in the phonon self-coupling and momentum transfer

In progress with B. Campbell-Deem, T. Lin, P. Cox, T. Melia

 χ

N

 χ

N

 ϕ

Phonon perturbation theory

Scattering potential:

$$V(\mathbf{r}) = \frac{2\pi b_X}{m_X} \sum_{\ell,j} A_j \delta(\mathbf{r}_{\ell,j} - \mathbf{r}) \qquad \Rightarrow \qquad V(\mathbf{q}) = \frac{2\pi b_X}{m_X} \sum_{\ell,j} A_j e^{i\mathbf{q}\cdot\mathbf{r}_{\ell,j}}$$

Matrix element:

Double expansion in the phonon self-coupling and momentum transfer

In progress with B. Campbell-Deem, T. Lin, P. Cox, T. Melia

 χ

N

 χ

N

 ϕ

Phonon perturbation theory

Scattering potential:

$$V(\mathbf{r}) = \frac{2\pi b_X}{m_X} \sum_{\ell,j} A_j \delta(\mathbf{r}_{\ell,j} - \mathbf{r}) \qquad \Rightarrow \qquad V(\mathbf{q}) = \frac{2\pi b_X}{m_X} \sum_{\ell,j} A_j e^{i\mathbf{q}\cdot\mathbf{r}_{\ell,j}}$$

Double expansion in the phonon self-coupling and momentum transfer

In progress with B. Campbell-Deem, T. Lin, P. Cox, T. Melia

 χ

N

 χ

N

 ϕ

Phonon self-interactions

Potential:

$$\mathcal{V} = \mathcal{V}^{(0)} + \sum_{\mathbf{l},j} \mathcal{V}^{(i)}_{\mathbf{l},j} \cdot \mathbf{u}_{j,\mathbf{l}} + \frac{1}{2} \sum_{\mathbf{l},\mathbf{l}',j,j'} \mathbf{u}_{j,\mathbf{l}} \cdot \mathcal{V}^{(2)}_{\mathbf{l},j,\mathbf{l}',j'} \cdot \mathbf{u}_{j',\mathbf{l}'} + \cdots$$

Phonon self-interactions

Potential:

$$\mathcal{V} = \mathcal{V}^{(0)} + \sum_{\mathbf{l},j} \mathcal{V}^{(i)}_{\mathbf{l},j} \cdot \mathbf{u}_{j,\mathbf{l}} + \frac{1}{2} \sum_{\mathbf{l},\mathbf{l}',j,j'} \mathbf{u}_{j,\mathbf{l}} \cdot \mathcal{V}^{(2)}_{\mathbf{l},j,\mathbf{l}',j'} \cdot \mathbf{u}_{j',\mathbf{l}'} + \cdots$$

Higher order terms give effective Hamiltonian (in isotropic approximation):

$$\delta H = \int d^3 \mathbf{r} \; \frac{1}{2} (\beta + \lambda) u_{ii} u_{jk} u_{jk} + (\gamma + \mu) u_{ij} u_{ki} u_{kj} + \frac{\alpha}{3!} u_{ii} u_{jj} u_{kk} + \frac{\beta}{2} u_{ii} u_{jk} u_{kj} + \frac{\gamma}{3} u_{ij} u_{jk} u_{ki} u_{ki} + \frac{\beta}{3!} u_{ii} u_{jk} u_{ki} + \frac{\beta}{3!} u_{ii} u_{ii} u_{jk} u_{ki} + \frac{\beta}{3!} u_{ii} u_{jk} u_{ki} u_{ki} + \frac{\beta}{3!} u_{ii} u_{jk} u_{ki} u_{ki}$$

With $u_{ij} \equiv \partial_i u_j$

Phonon self-interactions

Potential:

$$\mathcal{V} = \mathcal{V}^{(0)} + \sum_{\mathbf{l},j} \mathcal{V}_{\mathbf{l},j}^{(t)} \cdot \mathbf{u}_{j,\mathbf{l}} + \frac{1}{2} \sum_{\mathbf{l},\mathbf{l}',j,j'} \mathbf{u}_{j,\mathbf{l}} \cdot \mathcal{V}_{\mathbf{l},j,\mathbf{l}',j'}^{(2)} \cdot \mathbf{u}_{j',\mathbf{l}'} + \cdots$$

Higher order terms give effective Hamiltonian (in isotropic approximation):

$$\delta H = \int d^3 \mathbf{r} \, \frac{1}{2} (\beta + \lambda) u_{ii} u_{jk} u_{jk} + (\gamma + \mu) u_{ij} u_{ki} u_{kj} + \frac{\alpha}{3!} u_{ii} u_{jj} u_{kk} + \frac{\beta}{2} u_{ii} u_{jk} u_{kj} + \frac{\gamma}{3} u_{ij} u_{jk} u_{ki}$$

With $u_{ij} \equiv \partial_i u_j$

Couplings arise from expanding the potential beyond harmonic approximation

Third order elastic constants

Can be measured!

Self-interactions matrix element

$$\begin{split} \widetilde{\mathcal{M}} &= (\beta + \lambda) \Big[(\mathbf{q} \cdot \mathbf{e}) (\mathbf{k}_1 \cdot \mathbf{k}_2) (\mathbf{e}_1 \cdot \mathbf{e}_2) + (\mathbf{k}_1 \cdot \mathbf{e}_1) (\mathbf{q} \cdot \mathbf{k}_2) (\mathbf{e} \cdot \mathbf{e}_2) + (\mathbf{k}_2 \cdot \mathbf{e}_2) (\mathbf{k}_1 \cdot \mathbf{q}) (\mathbf{e}_1 \cdot \mathbf{e}) \Big] \\ &+ (\gamma + \mu) \Big[(\mathbf{q} \cdot \mathbf{k}_2) \big[(\mathbf{k}_2 \cdot \mathbf{e}_1) (\mathbf{e}_2 \cdot \mathbf{e}) + (\mathbf{k}_2 \cdot \mathbf{e}) (\mathbf{e}_2 \cdot \mathbf{e}_1) \big] \\ &+ (\mathbf{k}_2 \cdot \mathbf{k}_1) \big[(\mathbf{q} \cdot \mathbf{e}_1) (\mathbf{e}_2 \cdot \mathbf{e}) + (\mathbf{q} \cdot \mathbf{e}_2) (\mathbf{e} \cdot \mathbf{e}_1) \big] \\ &+ (\mathbf{q} \cdot \mathbf{k}_2) \big[(\mathbf{k}_1 \cdot \mathbf{e}_2) (\mathbf{e}_1 \cdot \mathbf{e}) + (\mathbf{k}_1 \cdot \mathbf{e}) (\mathbf{e}_1 \cdot \mathbf{e}_2) \big] \Big] \\ &+ \alpha (\mathbf{q} \cdot \mathbf{e}) (\mathbf{k}_1 \cdot \mathbf{e}_1) (\mathbf{k}_2 \cdot \mathbf{e}_2) \\ &+ \beta \Big[(\mathbf{k}_1 \cdot \mathbf{e}_1) (\mathbf{q} \cdot \mathbf{e}_2) (\mathbf{k}_2 \cdot \mathbf{e}) + (\mathbf{q} \cdot \mathbf{e}) (\mathbf{k}_1 \cdot \mathbf{e}_2) (\mathbf{k}_2 \cdot \mathbf{e}_1) + (\mathbf{k}_2 \cdot \mathbf{e}_2) (\mathbf{q} \cdot \mathbf{e}_1) (\mathbf{k}_1 \cdot \mathbf{e}) \Big] \\ &+ \gamma \Big[(\mathbf{q} \cdot \mathbf{e}_1) (\mathbf{k}_1 \cdot \mathbf{e}_2) (\mathbf{k}_2 \cdot \mathbf{e}) + (\mathbf{q} \cdot \mathbf{e}_1) (\mathbf{k}_1 \cdot \mathbf{e}) (\mathbf{k}_2 \cdot \mathbf{e}_1) \Big] \end{split}$$

In progress with B. Campbell-Deem, T. Lin, P. Cox, T. Melia

Self-interactions matrix element

$$\begin{split} \widetilde{\mathcal{M}} &= (\beta + \lambda) \Big[(\mathbf{q} \cdot \mathbf{e}) (\mathbf{k}_1 \cdot \mathbf{k}_2) (\mathbf{e}_1 \cdot \mathbf{e}_2) + (\mathbf{k}_1 \cdot \mathbf{e}_1) (\mathbf{q} \cdot \mathbf{k}_2) (\mathbf{e} \cdot \mathbf{e}_2) + (\mathbf{k}_2 \cdot \mathbf{e}_2) (\mathbf{k}_1 \cdot \mathbf{q}) (\mathbf{e}_1 \cdot \mathbf{e}) \Big] \\ &+ (\gamma + \mu) \Big[(\mathbf{q} \cdot \mathbf{k}_2) \big[(\mathbf{k}_2 \cdot \mathbf{e}_1) (\mathbf{e}_2 \cdot \mathbf{e}) + (\mathbf{k}_2 \cdot \mathbf{e}) (\mathbf{e}_2 \cdot \mathbf{e}_1) \big] \\ &+ (\mathbf{k}_2 \cdot \mathbf{k}_1) \big[(\mathbf{q} \cdot \mathbf{e}_1) (\mathbf{e}_2 \cdot \mathbf{e}) + (\mathbf{q} \cdot \mathbf{e}_2) (\mathbf{e} \cdot \mathbf{e}_1) \big] \\ &+ (\mathbf{q} \cdot \mathbf{k}_2) \big[(\mathbf{k}_1 \cdot \mathbf{e}_2) (\mathbf{e}_1 \cdot \mathbf{e}) + (\mathbf{k}_1 \cdot \mathbf{e}) (\mathbf{e}_1 \cdot \mathbf{e}_2) \big] \Big] \\ &+ \alpha (\mathbf{q} \cdot \mathbf{e}) (\mathbf{k}_1 \cdot \mathbf{e}_1) (\mathbf{k}_2 \cdot \mathbf{e}_2) \\ &+ \beta \Big[(\mathbf{k}_1 \cdot \mathbf{e}_1) (\mathbf{q} \cdot \mathbf{e}_2) (\mathbf{k}_2 \cdot \mathbf{e}) + (\mathbf{q} \cdot \mathbf{e}) (\mathbf{k}_1 \cdot \mathbf{e}_2) (\mathbf{k}_2 \cdot \mathbf{e}_1) + (\mathbf{k}_2 \cdot \mathbf{e}_2) (\mathbf{q} \cdot \mathbf{e}_1) (\mathbf{k}_1 \cdot \mathbf{e}) \Big] \\ &+ \gamma \Big[(\mathbf{q} \cdot \mathbf{e}_1) (\mathbf{k}_1 \cdot \mathbf{e}_2) (\mathbf{k}_2 \cdot \mathbf{e}) + (\mathbf{q} \cdot \mathbf{e}_1) (\mathbf{k}_1 \cdot \mathbf{e}) (\mathbf{k}_2 \cdot \mathbf{e}_1) \Big] \end{split}$$

4 non-vanishing channels:

- $LA^* \rightarrow LA LA$
- LA* \rightarrow LA TA
- LA* \rightarrow TA TA (polarized in momentum-plane)
- LA* \rightarrow TA TA (polarized orthogonal to momentum-plane)

Comparing different channels

Example GaAs:

Differential scattering rate

Comparing different channels

Example GaAs:

Differential scattering rate

The anharmonic contribution tends to dominate

Preliminary results

In progress with B. Campbell-Deem, T. Lin, P. Cox, T. Melia

Translations spontaneously broken, so proportional to momenta

$\begin{array}{l} \underline{\operatorname{Crystal}} \\ \langle \mathbf{q} \,|\, \delta H \,|\, \mathbf{k}_1, \, \mathbf{k}_2 \rangle \sim (\mathbf{q} \cdot \mathbf{e}) \,(\mathbf{k}_1 \cdot \mathbf{e}_1) \,(\mathbf{k}_2 \cdot \mathbf{e}_2) + \cdots \\ \sim q \end{array} \longrightarrow \qquad \begin{array}{l} \operatorname{Rate} \ \sim \mathcal{O}(q^2) \\ \end{array}$

Translations spontaneously broken, so proportional to momenta

Superfluid Helium

$$\langle \mathbf{q} \, | \, \delta H \, | \, \mathbf{k}_1, \, \mathbf{k}_2 \rangle \sim \lambda \mathbf{q} \cdot (\mathbf{k}_1 + \mathbf{k}_2) + \lambda' \omega \, \mathbf{k}_1 \cdot \mathbf{k}_2 + \lambda'' \omega \omega_1 \omega_2 + \cdots$$
$$\sim q^2$$

Translations NOT spontaneously broken, but mysterious cancellation anyways...

Superfluid Helium

Translations NOT spontaneously broken, but mysterious cancellation anyways...

~

$\begin{array}{l} \underbrace{\operatorname{Crystal}}_{\langle \mathbf{q} | \,\delta H \, | \, \mathbf{k}_{1}, \, \mathbf{k}_{2} \rangle \sim (\mathbf{q} \cdot \mathbf{e}) \, (\mathbf{k}_{1} \cdot \mathbf{e}_{1}) \, (\mathbf{k}_{2} \cdot \mathbf{e}_{2}) + \cdots}_{\sim q} & \longrightarrow & \operatorname{Rate} \ \sim \mathcal{O}(q^{2}) \\ \\ \text{Translations spontaneously broken, so proportional to momenta} \\ \\ \underbrace{\operatorname{Superfluid Helium}}_{\langle \mathbf{q} | \,\delta H \, | \, \mathbf{k}_{1}, \, \mathbf{k}_{2} \rangle \sim \lambda \mathbf{q} \cdot (\mathbf{k}_{1} + \mathbf{k}_{2}) + \lambda' \omega \mathbf{k}_{1} \cdot \mathbf{k}_{2} + \lambda'' \omega \omega_{1} \omega_{2} + \cdots} & \longrightarrow & \operatorname{Rate} \ \sim \mathcal{O}(q^{4}) \\ & \sim q^{2} \end{array}$

Translations NOT spontaneously broken, but mysterious cancellation anyways...

Crossing symmetry then implies that the leading term in the q-expansion cancels

(The self-interaction is however much stronger in helium, overcoming this additional suppression)

SK, T. Lin, K. Zurek: 1611.06228 A. Caputo, A. Esposito, A. Polosa: 1907.10635

37

SK, T. Lin, M. Pyle, K. Zurek: 1712.06598
 S. Griffin, SK, T. Lin, M. Pyle, K. Zurek: 1807.10291
 P. Cox, T. Melia, S. Rajendran: 1905.05575
 B. Campbell-Deem, P. Cox, T. Melia, SK, T. Lin: to appear

[a] K. Schutz, K. Zurek: 1604.08206
[b] SK, T. Lin, K. Zurek: 1611.06228
[c] F. Acanfora, A. Esposito, A. Polosa: 1902.02361
[d] A. Caputo, A. Esposito, A. Polosa: 1907.10635

37

Summary		TES and QP collection antennas (W) Athermal Phonon Collection Fins (A) 1 cm ³ Polar Crystal	N 25 M M 25 M
Scatt	erina	Crystals	Superfluid Helium
	<u> </u>		
Coupling to charge	Single optical	Large [1,2]	X
	Single acoustic	Tiny [1,2]	Tiny [b]
Coupling to mass	Single acoustic	experimentally hard [1,2]	experimentally impossible
	Single optical	small [1,2,3]	X
	multiphonon	small [4]	small [a,b,c,d]

SK, T. Lin, M. Pyle, K. Zurek: 1712.06598
 S. Griffin, SK, T. Lin, M. Pyle, K. Zurek: 1807.10291
 P. Cox, T. Melia, S. Rajendran: 1905.05575
 B. Campbell-Deem, P. Cox, T. Melia, SK, T. Lin: to appear

[a] K. Schutz, K. Zurek: 1604.08206
[b] SK, T. Lin, K. Zurek: 1611.06228
[c] F. Acanfora, A. Esposito, A. Polosa: 1902.02361
[d] A. Caputo, A. Esposito, A. Polosa: 1907.10635

37

Summary		TES and QP collection antennas (W) Athermal Phonon Collection Fins (A) 1 cm ³ Polar Crystal	M N N N
<u>Scatt</u>	ering	Crystals	Superfluid Helium
Coupling to charge	Single optical Single acoustic	Large [1,2] Tiny [1,2]	X Tiny [b]
	Single acoustic	experimentally hard [1,2]	experimentally impossible
Coupling to mass	Single optical	small [1,2,3]	X
	multiphonon	small [4]	small [a,b,c,d]
Δ Ι ₂			

<u>Absorption</u>

Dark photon	Large [2]	Tiny [b]
Scalar	Future work	Future work

SK, T. Lin, M. Pyle, K. Zurek: 1712.06598
 S. Griffin, SK, T. Lin, M. Pyle, K. Zurek: 1807.10291
 P. Cox, T. Melia, S. Rajendran: 1905.05575
 B. Campbell-Deem, P. Cox, T. Melia, SK, T. Lin: to appear

- [a] K. Schutz, K. Zurek: 1604.08206
- [b] **SK**, T. Lin, K. Zurek: 1611.06228
- [c] F. Acanfora, A. Esposito, A. Polosa: 1902.02361
- [d] A. Caputo, A. Esposito, A. Polosa: 1907.10635

