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A generic excited state will then thermalise by dephasing
zt E —F
(WIO) = D _ cje;e 750 — O (E

v

dephasing: on average thermal
spectral chaos up to exponential in S

expectation value
of non-extensive operator



Sachdev-Ye-Kikaev

(SYK) wmodel: a Review



SYK model: a new Guinea Pig



SYK model: a new Guinea Pig

[Sachdev-Ye '93;
Kitaev "15]



SYK model: a new Guinea Pig

[Sachdev-Ye '93; » a model of N Majoraha fermions

Kitaev '15] > wikh all=Fo-all r:c:rupi.ings

> and quenrzked random coupi.mss



SYK model: a new Guinea Pig

[Sachdev-Ye '93; » a model of N Majorav\a fermions

Kitaev '15] > wikh all=Fo-all r:c:rupi.ings

> and quen&ked random coupi.mss

— e e —

| H = —Z Jibisi, Vi Wi Wi,

| 1<i, <i,<i3<i, <N
where, J is chosen from a Gaussian ensemble:

31 J°
{Jijrr? =0 <Ji]2'kl> =3




Solvable Limit of SYK

[Sachdev "15; Parcollet, Georges ‘00;
Kitaev '15; Polchinski, Rosenhaus "16; Jevicki, Suzuki, Yoon ‘16; Maldacena, Stanford '16]



Solvable Limit of SYK

[Sachdev "15; Parcollet, Georges ‘00;
Kitaev '15; Polchinski, Rosenhaus "16; Jevicki, Suzuki, Yoon ‘16; Maldacena, Stanford '16]

p at large-N, it is often useful to use bi-local effective
action

2

Scol J 1
— — log Pf [aT — Z] + — deT,l G(T, T,) |C[ - deT/Z(T,a T)G(Ta T,)
N 2q 2




Solvable Limit of SYK

[Sachdev "15; Parcollet, Georges ‘00;
Kitaev '15; Polchinski, Rosenhaus "16; Jevicki, Suzuki, Yoon ‘16; Maldacena, Stanford '16]

p at large-N, it is often useful to use bi-local effective
action

2

Scol J 1
— — log Pf [aT — Z] + — deTll G(T, T,) |C[ - deT/Z(Tla T)G(Ta T,)
N 2q 2

1
>(7,7") Is the Lagrange multiplier that imposes G(7,7) = ~ 2 w(7) wi(t')



Solvable Limit of SYK

[Sachdev "15; Parcollet, Georges ‘00;
Kitaev '15; Polchinski, Rosenhaus "16; Jevicki, Suzuki, Yoon ‘16; Maldacena, Stanford '16]

p at large-N, it is often useful to use bi-local effective
action

2

Scol J 1
— — log Pf [aT — Z] + — deTll G(T, T,) |CI - deT/Z(Tla T)G(Ta T,)
N 2q 2

1
>(7,7") Is the Lagrange multiplier that imposes G(7,7) = ~ 2 w(7) wi(t')

» In the large-N limit, the saddle point equations are given
by, 0. G(z,7") — [Z 8 G: (7,7") = o(t — 1)
J? G Yz, 1) = X(z, 1)




Solvable Limit of SYK

[Sachdev "15; Parcollet, Georges ‘00;
Kitaev '15; Polchinski, Rosenhaus "16; Jevicki, Suzuki, Yoon ‘16; Maldacena, Stanford '16]

p at large-N, it is often useful to use bi-local effective
action

2

Scol J 1
— — log Pf [aT — Z] + — deTll G(T, T,) |C[ - deT/Z(Tla T)G(Ta T,)
N 2q 2

1
>(7,7") Is the Lagrange multiplier that imposes G(7,7) = ~ 2 w(7) wi(t')

» In the large-N limit, the saddle point equations are given
by, 0. G(z,7") — [Z 8 G: (7, 7)) =o(t — 7')
AN J? G Yz, 1) = X(z, 1)

-0 00

ii captures Melonic Physics!




Emergent Symmetry of SYK

[Kitaev '15; Polchinski, Rosenhaus '16; Jevicki, Suzuki, Yoon ‘16; Maldacena, Stanford "16]



Emergent Symmetry of SYK

[Kitaev '15; Polchinski, Rosenhaus '16; Jevicki, Suzuki, Yoon ‘16; Maldacena, Stanford "16]

» In the deep IR limit, |z|J > 1, the saddle point
equations can be replaced by

(x ) — |[2*G|(r,7) = 8(zr = 7))
J* G, 7) = X(z, 7))



Emergent Symmetry of SYK

[Kitaev '15; Polchinski, Rosenhaus '16; Jevicki, Suzuki, Yoon ‘16; Maldacena, Stanford "16]

» In the deep IR limit, |z|J > 1, the saddle point
equations can be replaced by

(x ) — |[2*G|(r,7) = 8(zr = 7))
J* G, 7) = X(z, 7))

» The action and the saddle point equations are symmetric
under reparametrizations:

G(r.7) = (f(2) £(2))" G (f(). f(2))
S(z,7) = (f@ £@) VT (), (7))

ih'W(/)onformal Symme
of |
1D




Emergent Symmetry of SYK

[Kitaev '15; Polchinski, Rosenhaus '16; Jevicki, Suzuki, Yoon ‘16; Maldacena, Stanford "16]

» In the deep IR limit, |z|J > 1, the saddle point
equations can be replaced by

(x ) — |[2*G|(r,7) = 8(zr = 7))
J* G, 7) = X(z, 7))

» The action and the saddle point equations are symmetric
under reparametrizations:

G(r.7) = (f(2) £(2))" G (f(). f(2))
S(z,7) = (f@ £@) VT (), (7))

ih'W(/)onformal Symme
of |
1D

» This symmetry is explicitly broken by considering the
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[Kitaev '15; Maldacena, Stanford '16]

» At low-energy break conformal symmetry. Leading soft-
mode physics
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» Effective action on the ‘reparametrization modes’
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p Solve SYK in exact diagonalization [Sonner, Vielma '17]
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KMT or Not?
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More evidence of ETH

[Sonner, Vielma '17]

Compare OTOC in eigenstates to thermal result
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2 Can we understand the numerically observed
thermalization in a finer detail? Analytically?

2 Can we understand how and why the results
deviate from RMT behaviour?

2 Can we do a dual bulk computation to understand
black hole formation in 2 dimensions?
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The Schwarzian theore

e For large but finite values of SYK coupling J, the

conformal symmetry is explicitly broken
G,l[f]

e f(r)are the pseudo-Goldstone modes

The leading contribution to the physical
observables is due to exchange of these modes

(") = J Sui(;)u%) o [_é[ A (T)’T}] ()
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e The solution for f(z) can be found by solving the ‘
Hill's equation:
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A New Order of Limits

e Recall, in the previous computation we first took,
N — co  followed by pJ —

BJ
N

> 0

:>g2~

o Alternatively, we could have consideredﬂ
N, ] — oo simultaneously such that g2 ~ ~ stays finite

followed by g — 0
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—

[LMTV "18; Altland, Bagrets, Kamanev '16]
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Schwarzian <= Liocuville

e Schwarzian theory is closely related to 1-D

LiouVville theory, [Altland, Bagrets, Kamanev ’16]
as well as to dimensional reduction of 2-D Liouville

theOI‘y [Lam, Mertens, Turiaci, Verlinde "18]
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Schwarzian <= Liocuville

e Schwarzian theory is closely related to 1-D

LiouVville theory, [Altland, Bagrets, Kamanev ’16]
as well as to dimensional reduction of 2-D Liouville

theOI‘y [Lam, Mertens, Turiaci, Verlinde "18]

e There is another class of states in the Liouville
theory with energy E,

f, Elgenfunctlons of LIOUVI||e QM =

These states thermalize W|th

\/2¢°E |

27

Lam, Mertens, Turiaci, Verlinde "18]
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ETH in the Conformal

Limaik




Correlabtion Functions

e Correlation functions of the fermions as well as of
the excited operators in SYK spectrum get
contribution from:

7 3
+ Exchange of Schwarzian modes
hl h2
<@1@2@3@4> = T2 7:4
h, h,
() [ 1 J ] ( F@)f () ) ( F@)f (z) >
exp |—— |drf(7), 7
J SL2.R) g V@) | f(z) = f()|° | f(z3) — fzp) |
+ Exchange of (conformal limit)
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Correlabtion Functions

e Correlation functions of the fermions as well as of
the excited operators in SYK spectrum get
contribution from:

+ Exchange of Schwarzian modes

hl h2
£(0) [ 1 J ] ( F)f (z) ) ( Fe)f (z) >
exp |—— |drf(7), 7
J SL(2,R) g” { } | f(z)) — f(z) | | f(z3) — f(z) |

~ + Exchange of (confi

(conformal limit)
|1 \ 0 (7 (%)
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e In the conformal limit, we consider the 3-point
COI‘I‘elation fu nCtiOnS. [Jevicki, Suzuki, Yoon '16; Gross, Rosenhaus '17]
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27



Q’“f C s ? nfms‘

e In the conformal limit, we consider the 3-point
COI‘I‘elation fu nCtiOnS. [Jevicki, Suzuki, Yoon '16; Gross, Rosenhaus '17]

e We are interested in the limit, m,n — co >k ~ O(1)

' T4E - 1) ‘

_ TQE-dITQE+d)

E—> oo f(E)S,,+e """ R(E,d)
/ m-+n

E = .d=n—m
2

(0,0,0,) = g(E,d) X [272E-Dy/27E

[PN, Sonner, Vielma "19]
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e In the conformal limit, we consider the 3-point
COI‘I‘elatiOn fu nCtiOnS. [Jevicki, Suzuki, Yoon '16; Gross, Rosenhaus '17]

e \We are interested in the limit, m,n — co > k ~ O(1)

FA4E — 1
(6,06,0,) = g(E, d)>< 0-2CE-1), /2 7F ( )
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Dual of Schwarzian &haorv A 1st

Limaik?
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Dual of Schwarzian &haorv A 1st

Limaik?

[Vos 18]

29



Dual of Schwarzian theory in 2nd

Linaik?

Thermal AdS,
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Dual of SYK theory in Conformal
Limait?

BH
1
: geometry?
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Dual of SYK theory in Conformal
Limit?

BH
|
¢
: geomeﬁrj.

Can the ETH in conformal sector be understood as a correction?
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e We showed that Eigenstate thermalization can be studied analytically in SYK model
in 2 limits:

+ Schwarzian limit: where the contribution of pseudo-Goldstone modes is
considered

» First Thermodynamic limit: N — oo then J — o

Weale ETH!
J
» Second Thermodynamic limit: N, J - « simultaneously, followed by g ~ ’B— -0
No ETH!

» ETH in boundary states of Liouville theory: ETH!'

+ Conformal limit: where only the operators that are primaries of Virasoro
(and their descendants) are considered

ETH
T0 DO

e Bulk dual of the each of the above limits

e Are ‘heavy’ states chaotic?
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e We showed that Eigenstate thermalization can be studied analytically in SYK model
in 2 limits:

+ Schwarzian limit: where the contribution of pseudo-Goldstone modes is
considered

» First Thermodynamic limit: N — oo then J — o

Weale ETH!
J
» Second Thermodynamic limit: N, J - « simultaneously, followed by g ~ ’B— -0
No ETH!

» ETH in boundary states of Liouville theory: ETH!'

+ Conformal limit: where only the operators that are primaries of Virasoro
(and their descendants) are considered

ETH!

TO DO

e Bulk dual of the each of the above limits

e Are ‘heavy’ states chaotic?

THANK YOU'
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