Eigenstate Thermalization in Sachdev-Ye-Kitaev model & Schwarzian theory

Pranjal Nayak

[basesd on 1901.xxxxx]

with Julian Sonner and Manuel Vielma

Closed Quantum Systems

Quantum Mechanics is unitary!

$$|\psi(t)\rangle = \mathcal{U}(t,t_0)|\psi(t_0)\rangle$$

How come we observe thermal physics?

How come we observe black hole formation?

Plan of the talk

- √ Review of ETH
- √ Review of Sachder-Ye-Kitaer model
- √ Numerical studies of ETH in SYK model
- √ ETH in the Schwarzian sector of the SYK model
- VETH in the Conformal sector of the SYK model
- V A few thoughts on the bulk duals
- √ Summary and conclusion

Eigenstate Thermalization Hypothesis (ETH)

Classical thermalization: **ergodicity** & ← chaos

Classical thermalization: **ergodicity** &← chaos

V.S.

Quantum thermalization: Eigenstate Thermalisation Hypothesis

$$\langle m|\mathcal{O}|n\rangle = \overline{\mathcal{O}}_{\mathrm{mc}}(\overline{E})\delta_{mn} + e^{-S(\overline{E})/2}f(\overline{E},\omega)R_{mn}$$

Classical thermalization: **ergodicity** &← chaos

V.S.

Quantum thermalization: Eigenstate Thermalisation Hypothesis

$$\langle m|\mathcal{O}|n\rangle = \overline{\mathcal{O}}_{\mathrm{mc}}(\overline{E})\delta_{mn} + e^{-S(\overline{E})/2}f(\overline{E},\omega)R_{mn}$$

micro-canonical ensemble avg. energy of ensemble

Classical thermalization: **ergodicity** & ← chaos

V.S.

Quantum thermalization: Eigenstate Thermalisation Hypothesis

$$\langle m|\mathcal{O}|n\rangle = \overline{\mathcal{O}}_{\mathrm{mc}}(\overline{E})\delta_{mn} + e^{-S(\overline{E})/2}f(\overline{E},\omega)R_{mn}$$

micro-canonical entropy 1 in RMT

Classical thermalization: **ergodicity** &← chaos

V.S.

Quantum thermalization: Eigenstate Thermalisation Hypothesis

$$\langle m|\mathcal{O}|n
angle=\overline{\mathcal{O}}_{
m mc}(\overline{E})\delta_{mn}+e^{-S(\overline{E})/2}f(\overline{E},\omega)R_{mn}$$
 micro-canonical entropy 1 in RMT

A generic excited state will then thermalise by dephasing

$$\langle \psi | \mathcal{O} | \psi \rangle = \sum_{i,j} c_i^* c_j e^{it(E_i - E_j)} \mathcal{O}_{ij} \longrightarrow \overline{O}\left(\bar{E}\right) + e^{-S}$$
 expectation value of non-extensive operator dephasing: spectral chaos on average thermal up to exponential in S

Sachder-Ye-Kilaer (SYK) model: a Review

[Sachdev-Ye '93; Kitaev '15]

[Sachdev-Ye '93; Kitaev '15]

- De a model of N Majorana fermions
- with all-to-all couplings
- > and quenched random couplings

[Sachdev-Ye '93; Kitaev '15]

- De a model of N Majorana fermions
- with all-to-all couplings
- > and quenched random couplings

$$H = -\sum_{1 \le i_1 < i_2 < i_3 < i_4 \le N} J_{i_1 i_2 i_3 i_4} \psi_{i_1} \psi_{i_2} \psi_{i_3} \psi_{i_4}$$

$$1 \le i_1 < i_2 < i_3 < i_4 \le N$$

where, J is chosen from a Gaussian ensemble:

$$\langle J_{ijkl} \rangle = 0$$
 $\langle J_{ijkl}^2 \rangle = \frac{3! J^2}{N^3}$

[Sachdev '15; Parcollet, Georges '00; Kitaev '15; Polchinski, Rosenhaus '16; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16]

[Sachdev '15; Parcollet, Georges '00; Kitaev '15; Polchinski, Rosenhaus '16; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16]

at large-N, it is often useful to use bi-local effective action

$$-\frac{S_{\text{col}}}{N} = \log \operatorname{Pf}\left[\partial_{\tau} - \Sigma\right] + \frac{J^{2}}{2q} \int d\tau d\tau' |G(\tau, \tau')|^{q} - \frac{1}{2} \int d\tau d\tau' \Sigma(\tau', \tau) G(\tau, \tau')$$

[Sachdev '15; Parcollet, Georges '00; Kitaev '15; Polchinski, Rosenhaus '16; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16]

at large-N, it is often useful to use bi-local effective action

$$-\frac{S_{\text{col}}}{N} = \log \operatorname{Pf}\left[\partial_{\tau} - \Sigma\right] + \frac{J^{2}}{2q} \int d\tau d\tau' |G(\tau, \tau')|^{q} - \frac{1}{2} \int d\tau d\tau' \Sigma(\tau', \tau) G(\tau, \tau')$$

 $\Sigma(\tau, \tau')$ is the Lagrange multiplier that imposes $G(\tau, \tau') = \frac{1}{N} \sum_{i} \psi_i(\tau) \psi_i(\tau')$

[Sachdev '15; Parcollet, Georges '00; Kitaev '15; Polchinski, Rosenhaus '16; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16]

at large-N, it is often useful to use bi-local effective action

$$-\frac{S_{\text{col}}}{N} = \log \operatorname{Pf}\left[\partial_{\tau} - \Sigma\right] + \frac{J^{2}}{2q} \int d\tau d\tau' |G(\tau, \tau')|^{q} - \frac{1}{2} \int d\tau d\tau' \Sigma(\tau', \tau) G(\tau, \tau')$$

 $\Sigma(\tau, \tau')$ is the Lagrange multiplier that imposes $G(\tau, \tau') = \frac{1}{N} \sum_{i} \psi_i(\tau) \psi_i(\tau')$

In the large-N limit, the saddle point equations are given by, $\partial_{\tau} G(\tau,\tau') - \left[\Sigma * G\right](\tau,\tau') = \delta(\tau-\tau')$

$$J^2 G^{q-1}(\tau, au') = \Sigma(au, au')$$

[Sachdev '15; Parcollet, Georges '00;

Kitaev '15; Polchinski, Rosenhaus '16; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16]

at large-N, it is often useful to use bi-local effective action

$$-\frac{S_{\text{col}}}{N} = \log \operatorname{Pf}\left[\partial_{\tau} - \Sigma\right] + \frac{J^{2}}{2q} \int d\tau d\tau' |G(\tau, \tau')|^{q} - \frac{1}{2} \int d\tau d\tau' \Sigma(\tau', \tau) G(\tau, \tau')$$

 $\Sigma(\tau, \tau')$ is the Lagrange multiplier that imposes $G(\tau, \tau') = \frac{1}{N} \sum_{i} \psi_{i}(\tau) \psi_{i}(\tau')$

In the large-N limit, the saddle point equations are given by,

$$\partial_{\tau} G(\tau, \tau') - \left[\Sigma * G \right](\tau, \tau') = \delta(\tau - \tau')$$

$$J^2 G^{q-1}(\tau,\tau') = \Sigma(\tau,\tau')$$

captures Melonic Physics!

Emergent Symmetry of SYK

[Kitaev '15; Polchinski, Rosenhaus '16; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16]

Emergent Symmetry of 57K

[Kitaev '15; Polchinski, Rosenhaus '16; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16]

In the deep IR limit, $|\tau|J\gg 1$, the saddle point equations can be replaced by

$$\partial_{\tau} (\tau, \tau') - \left[\Sigma * G\right](\tau, \tau') = \delta(\tau - \tau')$$

$$J^{2} G^{q-1}(\tau, \tau') = \Sigma(\tau, \tau')$$

Emergent Symmetry of SYK

[Kitaev '15; Polchinski, Rosenhaus '16; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16]

In the deep IR limit, $|\tau|J\gg 1$, the saddle point equations can be replaced by

$$\partial_{\tau} (\tau, \tau') - \left[\Sigma * G \right] (\tau, \tau') = \delta(\tau - \tau')$$

$$J^{2} G^{q-1}(\tau, \tau') = \Sigma(\tau, \tau')$$

▶ The action and the saddle point equations are symmetric under reparametrizations:

$$G(\tau, \tau') \to \left(f'(\tau) f'(\tau') \right)^{2/q} G\left(f(\tau), f(\tau') \right)$$

$$\Sigma(\tau, \tau') \to \left(f'(\tau) f'(\tau') \right)^{2(1-1/q)} \Sigma\left(f(\tau), f(\tau') \right)$$

Emergent Symmetry of 51K

[Kitaev '15; Polchinski, Rosenhaus '16; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16]

In the deep IR limit, $|\tau|J\gg 1$, the saddle point equations can be replaced by

$$\partial_{\tau} (\tau, \tau') - \left[\Sigma * G \right] (\tau, \tau') = \delta(\tau - \tau')$$

$$J^{2} G^{q-1}(\tau, \tau') = \Sigma(\tau, \tau')$$

▶ The action and the saddle point equations are symmetric under reparametrizations:

$$G(\tau, \tau') \to \left(f'(\tau) f'(\tau') \right)^{2/q} G\left(f(\tau), f(\tau') \right)$$

$$\Sigma(\tau, \tau') \to \left(f'(\tau) f'(\tau') \right)^{2(1-1/q)} \Sigma\left(f(\tau), f(\tau') \right)$$

▶ This symmetry is explicitly broken by considering the 1/J corrections.

schwarzian in syk

[Kitaev '15; Maldacena, Stanford '16]

Schwarzian in Syk

[Kitaev '15; Maldacena, Stanford '16]

At low-energy break conformal symmetry. Leading soft-

mode physics

schwarzian in syk

[Kitaev '15; Maldacena, Stanford '16]

At low-energy break conformal symmetry. Leading softmode physics

Effective action on the 'reparametrization modes'

$$\int \frac{f(\tau)}{\mathbb{SL}(2,\mathbb{R})} \exp\left[-\frac{1}{g^2} \int d\tau \left\{ f(\tau), \tau \right\} \right]$$
where, $\left\{ f(\tau), \tau \right\} = \frac{f'''(\tau)}{f'(\tau)} - \frac{3}{2} \left(\frac{f''(\tau)}{f'(\tau)}\right)^2$

$$g^2 \sim \frac{\beta J}{N}$$

[Kitaev '15; Polchinski, Rosenhaus '15; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16; Gross, Rosenhaus '17]

[Kitaev '15; Polchinski, Rosenhaus '15; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16; Gross, Rosenhaus '17]

discrete tower of states

$$\mathcal{O}_n \sim \psi_i \, \partial^{2n+1} \psi_i$$

$$h_n = 2n + 1 + \epsilon_n$$

[Kitaev '15; Polchinski, Rosenhaus '15; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16; Gross, Rosenhaus '17]

continuum: Schwarzian

$$S = -\frac{1}{g^2} \int d\tau \left\{ f(\tau), \tau \right\}$$

$$f(\tau) \in \mathbf{Diff}(S^1)$$

discrete tower of states

$$\mathcal{O}_n \sim \psi_i \, \partial^{2n+1} \psi_i$$

$$h_n = 2n + 1 + \epsilon_n$$

[Kitaev '15; Polchinski, Rosenhaus '15; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16; Gross, Rosenhaus '17]

continuum: Schwarzian

$$S = -\frac{1}{g^2} \int d\tau \left\{ f(\tau), \tau \right\}$$

$$f(\tau) \in \mathbf{Diff}(S^1)$$

discrete tower of states

$$\mathcal{O}_n \sim \psi_i \, \partial^{2n+1} \psi_i$$

$$h_n = 2n + 1 + \epsilon_n$$

[Kitaev '15; Polchinski, Rosenhaus '15; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16; Gross, Rosenhaus '17]

continuum: Schwarzian

$$S = -\frac{1}{g^2} \int d\tau \left\{ f(\tau), \tau \right\}$$

$$f(\tau) \in \mathbf{Diff}(S^1)$$

discrete tower of states

$$\mathcal{O}_n \sim \psi_i \, \partial^{2n+1} \psi_i$$

$$h_n = 2n + 1 + \epsilon_n$$

Limit of conformal six-pt functions OPE coeffs.

ETH

[Kitaev '15; Polchinski, Rosenhaus '15; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16; Gross, Rosenhaus '17]

continuum: Schwarzian

$$S = -\frac{1}{g^2} \int d\tau \left\{ f(\tau), \tau \right\}$$

$$f(\tau) \in \mathbf{Diff}(S^1)$$

discrete tower of states

$$\mathcal{O}_n \sim \psi_i \, \partial^{2n+1} \psi_i$$

$$h_n = 2n + 1 + \epsilon_n$$

Ward identities for Schwarzian ~ monodromy method

weak ETH

Limit of conformal six-pt functions OPE coeffs.

ETH

[Kitaev '15; Polchinski, Rosenhaus '15; Jevicki, Suzuki, Yoon '16; Maldacena, Stanford '16; Gross, Rosenhaus '17]

continuum: Schwarzian

$$S = -\frac{1}{g^2} \int d\tau \left\{ f(\tau), \tau \right\}$$

$$f(\tau) \in \mathbf{Diff}(S^1)$$

discrete tower of states

$$\mathcal{O}_n \sim \psi_i \, \partial^{2n+1} \psi_i$$

$$h_n = 2n + 1 + \epsilon_n$$

Ward identities for Schwarzian ~ monodromy method

weak ETH

Limit of conformal six-pt functions OPE coeffs.

ETH

ETH in the 57K model: A numerical study

Study by Exact Diagonalization

▶ Solve SYK in exact diagonalization [Sonner, Vielma '17]

ETH is true in SYK!

▶ Solve SYK in exact diagonalization [Sonner, Vielma '17]

ETH is true in SYK!

$$\langle m|\mathcal{O}|n\rangle = \overline{\mathcal{O}}_{\mathrm{mc}}(\overline{E})\delta_{mn} + e^{-S(\overline{E})/2}f(\overline{E},\omega)R_{mn}$$

▶ Solve SYK in exact diagonalization [Sonner, Vielma '17]

ETH is true in SYK!

$$\langle m|\mathcal{O}|n\rangle = \overline{\mathcal{O}}_{\mathrm{mc}}(\overline{E})\delta_{mn} + e^{-S(\overline{E})/2}f(\overline{E},\omega)R_{mn}$$

number operator, \hat{n}_k , at some site k

▶ Solve SYK in exact diagonalization [Sonner, Vielma '17]

ETH is true in SYK!

$$\langle m|\mathcal{O}|n\rangle = \overline{\mathcal{O}}_{\mathrm{mc}}(\overline{E})\delta_{mn} + e^{-S(\overline{E})/2}f(\overline{E},\omega)R_{mn}$$

number operator, \hat{n}_k , at some site k

CMT or Not?

Need to look at the off-diagonal matrix elements

$$\langle m|\mathcal{O}|n\rangle = \overline{\mathcal{O}}_{\mathrm{mc}}(\overline{E})\delta_{mn} + e^{-S(\overline{E})/2}f(\overline{E},\omega)R_{mn}$$

RMT or Not?

Need to look at the off-diagonal matrix elements

$$\langle m|\mathcal{O}|n\rangle = \overline{\mathcal{O}}_{\mathrm{mc}}(\overline{E})\delta_{mn} + e^{-S(\overline{E})/2}f(\overline{E},\omega)R_{mn}$$

RMT or Not?

Need to look at the off-diagonal matrix elements

$$\langle m|\mathcal{O}|n\rangle = \overline{\mathcal{O}}_{\mathrm{mc}}(\overline{E})\delta_{mn} + e^{-S(\overline{E})/2}f(\overline{E},\omega)R_{mn}$$

More evidence of ETH

[Sonner, Vielma '17]

Compare OTOC in eigenstates to thermal result

Become essentially indistinguishable as system size increases

Conjecture:
$$\exists \lambda_{\rm L}^{\rm ETH} = \frac{2\pi}{\beta(E)}$$

? Can we understand the numerically observed thermalization in a finer detail? Analytically?

- ? Can we understand the numerically observed thermalization in a finer detail? Analytically?
- ? Can we understand how and why the results deviate from RMT behaviour?

- ? Can we understand the numerically observed thermalization in a finer detail? Analytically?
- ? Can we understand how and why the results deviate from RMT behaviour?
- ? Can we do a dual bulk computation to understand black hole formation in 2 dimensions?

ETH in the Schwarzian Limit

 Correlation functions of the fermions as well as of the excited operators in SYK spectrum get contribution from:

- Correlation functions of the fermions as well as of the excited operators in SYK spectrum get contribution from:
 - Exchange of Schwarzian modes

- Correlation functions of the fermions as well as of the excited operators in SYK spectrum get contribution from:
 - Exchange of Schwarzian modes

$$\langle \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3 \mathcal{O}_4 \rangle =$$

$$\int \frac{f(\tau)}{\mathbb{SL}(2,\mathbb{R})} \exp \left[-\frac{1}{g^2} \int d\tau \left\{ f(\tau), \tau \right\} \right] \left(\frac{f'(\tau_1) f'(\tau_2)}{|f(\tau_1) - f(\tau_2)|^2} \right)^{h_1} \left(\frac{f'(\tau_3) f'(\tau_4)}{|f(\tau_3) - f(\tau_4)|^2} \right)^{h_2}$$

Exchange of excited modes (conformal limit)

- Correlation functions of the fermions as well as of the excited operators in SYK spectrum get contribution from:
 - Exchange of Schwarzian modes

Exchange of excited modes (conformal limit)

18

The Schwarzian Enecry

The Schwarzian Encory

 For large but finite values of SYK coupling J, the conformal symmetry is explicitly broken

The Schwarzian Cheory

 For large but finite values of SYK coupling J, the conformal symmetry is explicitly broken

• $f(\tau)$ are the pseudo-Goldstone modes

The leading contribution to the physical observables is due to exchange of these modes

$$\left\langle \cdot \right\rangle = \int \frac{f(\tau)}{\mathbb{SL}(2,\mathbb{R})} \exp \left[-\frac{1}{g^2} \int d\tau \left\{ f(\tau), \tau \right\} \right] \left(\cdot \right)$$

Ward Identities

[PN, Sonner, Vielma '19]

Ward Identifies

[PN, Sonner, Vielma '19]

 Within Schwarzian theory, one can derive the following 'Ward' identity

$$\sum_{i=1}^{m} \left[h_i \left(\delta(x - x_{2i-1}) + \delta(x - x_{2i}) \right) + \left(sgn(x - x_{2i-1}) - sgn(x - x_{2i}) \right) \partial_{x_{2i}} \right] \prod_{j=1}^{n} \left\langle \mathcal{O}_j \left(x_{2j-1}, x_{2j} \right) \right\rangle$$

$$= -\frac{1}{g^2} \langle Sch(x) \prod_{i=1}^n \mathcal{O}_i(x_{2j-1}, x_{2j}) \rangle + \kappa_3$$

$$\mathcal{O}_j(x_{2j-1}, x_{2j}) \equiv \mathcal{O}_{h_j}(x_{2j-1}) \mathcal{O}_{h_j}(x_{2j})$$

Ward Identifies

[PN, Sonner, Vielma '19]

 Within Schwarzian theory, one can derive the following 'Ward' identity

$$\sum_{i=1}^{m} \left[h_i \left(\delta(x - x_{2i-1}) + \delta(x - x_{2i}) \right) + \left(sgn(x - x_{2i-1}) - sgn(x - x_{2i}) \right) \partial_{x_{2i}} \right] \prod_{j=1}^{n} \left\langle \mathcal{O}_j \left(x_{2j-1}, x_{2j} \right) \right\rangle$$

$$= -\frac{1}{g^2} \langle Sch(x) \prod_{i=1}^n \mathcal{O}_i(x_{2j-1}, x_{2j}) \rangle + \kappa_3$$

$$\mathcal{O}_j(x_{2j-1}, x_{2j}) \equiv \mathcal{O}_{h_j}(x_{2j-1}) \mathcal{O}_{h_j}(x_{2j})$$

• We are interested in computing $\langle HHLL \rangle$ where, 'heavy' operators are defined by $h_i \sim 1/g^2$

Ward Identifies

[PN, Sonner, Vielma '19]

 Within Schwarzian theory, one can derive the following 'Ward' identity

$$\sum_{i=1}^{m} \left[h_i \left(\delta(x - x_{2i-1}) + \delta(x - x_{2i}) \right) + \left(sgn(x - x_{2i-1}) - sgn(x - x_{2i}) \right) \partial_{x_{2i}} \right] \prod_{j=1}^{n} \left\langle \mathcal{O}_j \left(x_{2j-1}, x_{2j} \right) \right\rangle$$

$$= -\frac{1}{g^2} \langle Sch(x) \prod_{i=1}^n \mathcal{O}_i(x_{2j-1}, x_{2j}) \rangle + \kappa_3$$

$$\mathcal{O}_j(x_{2j-1}, x_{2j}) \equiv \mathcal{O}_{h_j}(x_{2j-1}) \mathcal{O}_{h_j}(x_{2j})$$

- We are interested in computing $\langle HHLL \rangle$ where, 'heavy' operators are defined by $h_i \sim 1/g^2$
- In the semi-classical limit, $g^2 \rightarrow 0$,

$$\{f(\tau), \tau\} = -g^2 \sum_{i} \left[\kappa_{1,i} \delta(\tau - \tau_{2i-1}) + \kappa_{1,i} \delta(\tau - \tau_{2i}) - \kappa_{2,i} \left(sgn(\tau - \tau_{2i-1}) - sgn(\tau - \tau_{2i}) \right) \right] + g^2 \kappa_3$$

Ward Identities

[PN, Sonner, Vielma '19]

 Within Schwarzian theory, one can derive the following 'Ward' identity

$$\sum_{i=1}^{m} \left[h_i \left(\delta(x - x_{2i-1}) + \delta(x - x_{2i}) \right) + \left(sgn(x - x_{2i-1}) - sgn(x - x_{2i}) \right) \partial_{x_{2i}} \right] \prod_{j=1}^{n} \left\langle \mathcal{O}_j \left(x_{2j-1}, x_{2j} \right) \right\rangle$$

$$= -\frac{1}{g^2} \langle Sch(x) \prod_{i=1}^n \mathcal{O}_i(x_{2j-1}, x_{2j}) \rangle + \kappa_3$$

$$\mathcal{O}_j(x_{2j-1}, x_{2j}) \equiv \mathcal{O}_{h_j}(x_{2j-1}) \mathcal{O}_{h_j}(x_{2j})$$

- We are interested in computing $\langle HHLL \rangle$ where, 'heavy' operators are defined by $h_i \sim 1/g^2$
- In the semi-classical limit, $g^2 \rightarrow 0$,

$$\{f(\tau), \tau\} = -g^2 \sum_{i} \left[\kappa_{1,i} \delta(\tau - \tau_{2i-1}) + \kappa_{1,i} \delta(\tau - \tau_{2i}) - \kappa_{2,i} \left(sgn(\tau - \tau_{2i-1}) - sgn(\tau - \tau_{2i}) \right) \right] + g^2 \kappa_3$$

can be
can be
obtained
from saddle
point of path
integral

Ward Identities

[PN, Sonner, Vielma '19]

 Within Schwarzian theory, one can derive the following 'Ward' identity

$$\sum_{i=1}^{m} \left[h_i \left(\delta(x - x_{2i-1}) + \delta(x - x_{2i}) \right) + \left(sgn(x - x_{2i-1}) - sgn(x - x_{2i}) \right) \partial_{x_{2i}} \right] \prod_{j=1}^{n} \left\langle \mathcal{O}_j \left(x_{2j-1}, x_{2j} \right) \right\rangle$$

$$= -\frac{1}{g^2} \langle Sch(x) \prod_{i=1}^n \mathcal{O}_i(x_{2j-1}, x_{2j}) \rangle + \kappa_3$$

$$\mathcal{O}_j(x_{2j-1}, x_{2j}) \equiv \mathcal{O}_{h_j}(x_{2j-1}) \mathcal{O}_{h_j}(x_{2j})$$

- We are interested in computing $\langle HHLL \rangle$ where, 'heavy' operators are defined by $h_i \sim 1/g^2$
- In the semi-classical limit, $g^2 \rightarrow 0$,

will be used
$$\{f(\tau),\tau\}=-\,g^2\sum_i\left[\kappa_{1,i}\delta(\tau-\tau_{2i-1})+\kappa_{1,i}\delta(\tau-\tau_{2i})\right.\\ \left.-\kappa_{2,i}\left(sgn(\tau-\tau_{2i-1})-sgn(\tau-\tau_{2i})\right)\right]+g^2\kappa_3$$

can be
can be
obtained
from saddle
point of path
integral

• The solution for $f(\tau)$ can be found by solving the Hill's equation:

Fion:
$$p''(\tau) + \frac{1}{2}T(\tau) p(\tau) = 0$$
where,
$$T(\tau) = -g^2 \sum_{i} \left[\kappa_{1,i} \delta(\tau - \tau_{2i-1}) + \kappa_{1,i} \delta(\tau - \tau_{2i}) - \kappa_{2,i} \left(sgn(\tau - \tau_{2i-1}) - sgn(\tau - \tau_{2i}) \right) \right] + g^2 \kappa_3$$

• The solution for $f(\tau)$ can be found by solving the Hill's equation:

Tion:
$$p''(\tau) + \frac{1}{2}T(\tau) p(\tau) = 0$$
where,
$$T(\tau) = -g^2 \sum_{i} \left[\kappa_{1,i} \delta(\tau - \tau_{2i-1}) + \kappa_{1,i} \delta(\tau - \tau_{2i}) - \kappa_{2,i} \left(sgn(\tau - \tau_{2i-1}) - sgn(\tau - \tau_{2i}) \right) \right] + g^2 \kappa_3$$

• We do the computation with a finite background temperature, $T = 1/\beta$ impose trivial monodromy around the thermal circle

• The solution for $f(\tau)$ can be found by solving the Hill's equation:

$$p''(\tau) + \frac{1}{2}T(\tau) p(\tau) = 0$$

where,
$$T(\tau) = -g^2 \sum_{i} \left[\kappa_{1,i} \delta(\tau - \tau_{2i-1}) + \kappa_{1,i} \delta(\tau - \tau_{2i}) \right]$$

$$-\kappa_{2,i} \left(sgn(\tau - \tau_{2i-1}) - sgn(\tau - \tau_{2i}) \right) \right] + g^2 \kappa_3$$

• We do the computation with a finite background temperature, $T = 1/\beta$

impose trivial monodromy around the thermal

circle

• The solution for $f(\tau)$ can be found by solving the Hill's equation:

$$p''(\tau) + \frac{1}{2}T(\tau) p(\tau) = 0$$

where,
$$T(\tau) = -g^2 \sum_{i} \left[\kappa_{1,i} \delta(\tau - \tau_{2i-1}) + \kappa_{1,i} \delta(\tau - \tau_{2i}) \right]$$

$$-\kappa_{2,i} \left(sgn(\tau - \tau_{2i-1}) - sgn(\tau - \tau_{2i}) \right) \right] + g^2 \kappa_3$$

• We do the computation with a finite background temperature, $T = 1/\beta$

impose trivial monodromy around the thermal

circle

$$\frac{\langle \mathcal{O}_{H}(\tau_{1}) \mathcal{O}_{L}(\tau_{3}) \mathcal{O}_{L}(\tau_{4}) \mathcal{O}_{H}(\tau_{2}) \rangle}{\langle \mathcal{O}_{H}(\tau_{1}) \mathcal{O}_{H}(\tau_{2}) \rangle} = \left(\frac{\pi T_{eff}}{\sin \left(\pi T_{eff} | \tau_{34} | \right)}\right)^{2h_{L}}$$

$$\tau_{1} < \tau_{3}, \tau_{4} < \tau_{2}$$

• The solution for $f(\tau)$ can be found by solving the Hill's equation:

$$p''(\tau) + \frac{1}{2}T(\tau) p(\tau) = 0$$

where,
$$T(\tau) = -g^2 \sum_{i} \left[\kappa_{1,i} \delta(\tau - \tau_{2i-1}) + \kappa_{1,i} \delta(\tau - \tau_{2i}) \right]$$

$$-\kappa_{2,i} \left(sgn(\tau - \tau_{2i-1}) - sgn(\tau - \tau_{2i}) \right) \right] + g^2 \kappa_3$$

• We do the computation with a finite background temperature, $T = 1/\beta$ impose trivial monodromy around the thermal

circle

$$\frac{\langle \mathcal{O}_{H}(\tau_{1}) \mathcal{O}_{L}(\tau_{3}) \mathcal{O}_{L}(\tau_{4}) \mathcal{O}_{H}(\tau_{2}) \rangle}{\langle \mathcal{O}_{H}(\tau_{1}) \mathcal{O}_{H}(\tau_{2}) \rangle} = \left(\frac{\pi T_{eff}}{\sin \left(\pi T_{eff} || \tau_{34} ||\right)}\right)^{2h_{L}}$$

$$\tau_{1} < \tau_{3}, \tau_{4} < \tau_{2}$$

Effective Temperature

[PN, Sonner, Vielma '19]

Effective Temperature

[PN, Sonner, Vielma '19]

• We find:

Effective Temperature

[PN, Sonner, Vielma '19]

- We find:
 - \bullet $T_{e\!f\!f} > T$ and $T_{e\!f\!f} \propto g^2 h_H$

[PN, Sonner, Vielma '19]

- We find:
 - \bullet $T_{eff} > T$ and $T_{eff} \propto g^2 h_H$
 - \bullet $T_{eff} \propto T$

[PN, Sonner, Vielma '19]

• We find:

 \bullet $T_{eff} > T$ and $T_{eff} \propto g^2 h_H \checkmark$

 \bullet $T_{eff} \propto T$

Light operators see an Effective temperature due to the presence of heavy operators

[PN, Sonner, Vielma '19]

We find:

$$\star$$
 $T_{eff} > T$ and $T_{eff} \propto g^2 h_H \checkmark$

 \bullet $T_{eff} \propto T$

Light operators see an Effective temperature due to the presence of heavy operators

but not when the background temperature goes to ZERO!

Effective temperature goes to ZERO with Background temperature

[PN, Sonner, Vielma '19]

We find:

- \bullet $T_{eff} > T$ and $T_{eff} \propto g^2 h_H \checkmark$
- \bullet $T_{eff} \propto T$

Light operators see an Effective temperature due to the presence of heavy operators

but not when the background temperature goes to ZERO!

Effective temperature goes to ZERO with Background temperature

• Recall, in the previous computation we first took, $N \to \infty$ followed by $\beta J \to \infty$

$$\Rightarrow g^2 \sim \frac{\beta J}{N} \to 0$$

• Recall, in the previous computation we first took, $N \to \infty$ followed by $\beta J \to \infty$

$$\Rightarrow g^2 \sim \frac{\beta J}{N} \to 0$$

• Alternatively, we could have considered N, $\beta J \to \infty$ simultaneously such that $g^2 \sim \frac{\beta J}{N}$ stays finite followed by $g \to 0$

• Recall, in the previous computation we first took, $N \to \infty$ followed by $\beta J \to \infty$

$$\Rightarrow g^2 \sim \frac{\beta J}{N} \to 0$$

• Alternatively, we could have considered N, $\beta J \to \infty$ simultaneously such that $g^2 \sim \frac{\beta J}{N}$ stays finite followed by $g \to 0$

$$\frac{\langle \mathcal{O}_{H}(\tau_{1}) \mathcal{O}_{L}(\tau_{3}) \mathcal{O}_{L}(\tau_{4}) \mathcal{O}_{H}(\tau_{2}) \rangle}{\langle \mathcal{O}_{H}(\tau_{1}) \mathcal{O}_{H}(\tau_{2}) \rangle} = \left(\frac{\pi T_{eff}}{\sinh \left(\pi T_{eff} | \tau_{34} | \right)}\right)^{2h_{L}}$$

$$\tau_{1} < \tau_{3}, \tau_{4} < \tau_{2}$$

[LMTV '18; Altland, Bagrets, Kamanev '16]

Schwarzian theory is closely related to 1-D
 Liouville theory, [Altland, Bagrets, Kamanev '16]
 as well as to dimensional reduction of 2-D Liouville
 theory [Lam, Mertens, Turiaci, Verlinde '18]

- Schwarzian theory is closely related to 1-D
 Liouville theory, [Altland, Bagrets, Kamanev '16]
 as well as to dimensional reduction of 2-D Liouville
 theory [Lam, Mertens, Turiaci, Verlinde '18]
- There is another class of states in the Liouville theory with energy E,

Eigenfunctions of Liouville QM ≠ FZZ boundary states in 2D Liouville

- Schwarzian theory is closely related to 1-D
 Liouville theory, [Altland, Bagrets, Kamanev '16]
 as well as to dimensional reduction of 2-D Liouville
 theory [Lam, Mertens, Turiaci, Verlinde '18]
- There is another class of states in the Liouville theory with energy E,

Eigenfunctions of Liouville QM ≠ FZZ boundary states in 2D Liouville

These states *thermalize* with

$$\tilde{T}_{eff} = \frac{\sqrt{2g^2 E}}{2\pi}$$

[Lam, Mertens, Turiaci, Verlinde '18]

ETH in the Conformal Limit

Correlation Functions

- Correlation functions of the fermions as well as of the excited operators in SYK spectrum get contribution from:
 - Exchange of Schwarzian modes

$$\langle \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3 \mathcal{O}_4 \rangle =$$

$$\int \frac{f(\tau)}{\mathbb{SL}(2,\mathbb{R})} \exp \left[-\frac{1}{g^2} \int d\tau \left\{ f(\tau), \tau \right\} \right] \left(\frac{f'(\tau_1)f'(\tau_2)}{|f(\tau_1) - f(\tau_2)|^2} \right)^{h_1} \left(\frac{f'(\tau_3)f'(\tau_4)}{|f(\tau_3) - f(\tau_4)|^2} \right)^{h_2}$$

Exchange of excited modes (conformal limit)

Correlation Functions

- Correlation functions of the fermions as well as of the excited operators in SYK spectrum get contribution from:
 - Exchange of Schwarzian modes

$$\langle \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3 \mathcal{O}_4 \rangle =$$

$$\int \frac{f(\tau)}{\mathbb{SL}(2,\mathbb{R})} \exp \left[-\frac{1}{g^2} \int d\tau \left\{ f(\tau), \tau \right\} \right] \left(\frac{f'(\tau_1) f'(\tau_2)}{|f(\tau_1) - f(\tau_2)|^2} \right)^{h_1} \left(\frac{f'(\tau_3) f'(\tau_4)}{|f(\tau_3) - f(\tau_4)|^2} \right)^{h_2}$$

Exchange of excited modes (conformal limit)

A study of 3-point fins.

A study of 3-point fins.

discrete tower of states
$$\mathcal{O}_n \sim \psi_i \; \partial^{2n+1} \psi_i$$

$$h_n = 2n+1+\epsilon_n$$

• In the conformal limit, we consider the 3-point correlation functions. [Jevicki, Suzuki, Yoon '16; Gross, Rosenhaus '17]

A study of 3-point fins.

discrete tower of states $\mathcal{O}_n \sim \psi_i \; \partial^{2n+1} \psi_i$ $h_n = 2n+1+\epsilon_n$

- In the conformal limit, we consider the 3-point correlation functions. [Jevicki, Suzuki, Yoon '16; Gross, Rosenhaus '17]
- We are interested in the limit, $m, n \to \infty \gg k \sim \mathcal{O}(1)$

A Study of 3-point

discrete tower of states

$$\mathcal{O}_n \sim \psi_i \, \partial^{2n+1} \psi_i$$

$$h_n = 2n + 1 + \epsilon_n$$

$$h_n = 2n + 1 + \epsilon_n$$

- In the conformal limit, we consider the 3-point correlation functions. [Jevicki, Suzuki, Yoon '16; Gross, Rosenhaus '17]
- We are interested in the limit, $m, n \to \infty \gg k \sim \mathcal{O}(1)$

$$\langle \mathcal{O}_m \mathcal{O}_k \mathcal{O}_n \rangle = \mathfrak{g}(E, d) \times \left[2^{-2(2E-1)} \sqrt{2\pi E} \frac{\Gamma(4E-1)}{\Gamma(2E-d)\Gamma(2E+d)} \right]$$

$$\xrightarrow{E \to \infty} f_k(E) \, \delta_{m,n} + e^{-E \ln 2} \, R(E,d)$$

[PN, Sonner, Vielma '19]

$$E = \frac{m+n}{2}, \ d = n-m$$

A Study of 3-point fins.

discrete tower of states

$$\mathcal{O}_n \sim \psi_i \, \partial^{2n+1} \psi_i$$

$$h_n = 2n + 1 + \epsilon_n$$

- In the conformal limit, we consider the 3-point correlation functions. [Jevicki, Suzuki, Yoon '16; Gross, Rosenhaus '17]
- We are interested in the limit, $m, n \to \infty \gg k \sim \mathcal{O}(1)$

$$\langle \mathcal{O}_m \mathcal{O}_k \mathcal{O}_n \rangle = \mathfrak{g}(E, d) \times \left[2^{-2(2E-1)} \sqrt{2\pi E} \frac{\Gamma(4E-1)}{\Gamma(2E-d)\Gamma(2E+d)} \right]$$

$$E \to \infty \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_k(E) \, \delta_{m,n} + e^{-E \ln 2} \, R(E,d)$$

[PN, Sonner, Vielma '19]

$$E = \frac{m+n}{2}, \ d = n-m$$

conformal sector of SYK satisfies ETH

A Bulle Story?

Dual of Schwarzian theory in 1st Limit?

Dual of Schwarzian theory in 1st Limit?

[Vos '18]

Dual of Schwarzian theory in 2nd Limit?

Thermal AdS₂

Dual of SYK theory in Conformal Limit?

Dual of SYK theory in Conformal Limit?

Can the ETH in conformal sector be understood as a correction?

Summary

- We showed that Eigenstate thermalization can be studied analytically in SYK model in 2 limits:
 - Schwarzian limit: where the contribution of pseudo-Goldstone modes is considered
 - First Thermodynamic limit: $N \to \infty$ then $\beta J \to \infty$ Weak ETH!
 - Second Thermodynamic limit: $N, \beta J \to \infty$ simultaneously, followed by $g^2 \sim \frac{\beta J}{N} \to 0$ NO ETH!
 - ETH in boundary states of Liouville theory: ETH!
 - ◆ Conformal limit: where only the operators that are primaries of Virasoro (and their descendants) are considered ETH!

TO DO

- Bulk dual of the each of the above limits
- Are 'heavy' states chaotic?

Summary

- We showed that Eigenstate thermalization can be studied analytically in SYK model in 2 limits:
 - Schwarzian limit: where the contribution of pseudo-Goldstone modes is considered
 - First Thermodynamic limit: $N \to \infty$ then $\beta J \to \infty$ Weak ETH!
 - Second Thermodynamic limit: $N, \beta J \to \infty$ simultaneously, followed by $g^2 \sim \frac{\beta J}{N} \to 0$
 - ETH in boundary states of Liouville theory: ETH!
 - ◆ Conformal limit: where only the operators that are primaries of Virasoro (and their descendants) are considered

ETH!

TO DO

- Bulk dual of the each of the above limits
- Are 'heavy' states chaotic?

