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Non-equilibrium physics displays a huge variety of phenomena in nature.
These range from heavy ion collisions to black holes dynamics, from driven
systems to non-equilibrium steady states, etc.

Many open questions: thermalization, information paradox, turbulence, ...

What is a suitable framework which captures systematically these
phenomena?
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Goal: encode low-energy description of non-equilibrium systems into
effective field theories, independent of microscopic details.

Direct applications include:

@ Systematic computation of hydrodynamic fluctuations. E.g. long-time

tails, renormalization of transport. Current methods (e.g. stochastic
hydro) are not systematic.
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[Boon, “Molecular hydrodynamics,” '91]

@ Topological response of periodically driven systems, which are
inherently far from equilibrium.
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[Nathan et al., '16]
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OUTLINE

@ Near equilibrium: infrared instability of chiral diffusion
@ Far from equilibrium: Floquet topological response

@ Conclusions
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© Near equilibrium: infrared instability of chiral diffusion

o
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CHIRAL DIFFUSION IN 1+1

Quantum systems in local thermal equilibrium — hydrodynamics

At sufficiently low energy, the only degrees of freedom are conserved
charges. Example: U(1) charge, momentum, ...
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CHIRAL DIFFUSION IN 1+1

Quantum systems in local thermal equilibrium — hydrodynamics

At sufficiently low energy, the only degrees of freedom are conserved
charges. Example: U(1) charge, momentum, ...

We will be interested in systems with anomalously non-conserved U(1)
current with chiral anomaly:
OpJ! = ce™Fyy

¢ = 4~ anomaly coefficient, F,, = 9,A, — 0, A,.
@ Neglect energy-momentum conservation

o Local equilibrium: p = e~ T(H=#(t)Q)
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CHIRAL DIFFUSION IN 141

lo

p = e TH=-n(t0Q)

DIt = ce™ F,
1
Jt=n(p) = xpu + EX/MZ +o, = —dcu— o0k

e —4cpu required by second law [Son,Surowka '09].
e Chiral diffusion:

1
XOeps = AcOxp — 003 pu+ S/ Oep® = 0
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MOoOTIVATIONS [

e Edge of quantum Hall systems [Kane,Fisher '95; Ma,Feldman '19]

magnetic field

Gappless (chiral) edge mode
[Hasebe, Totsuka '13]

e Surface chiral metals [Balents,Fisher '95; Sur,Lee '13]

® ®

o Chiral magnetic effect [Vilenkin '80; Son,Spivak '13; Yamamoto '15]
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MoTivATIONS 11

Hydrodynamic long time tails:
o Change qualitatively correlation functions at late time.
[Alder,Wainwright '70;Kovtun,Yaffe '03;Chen-Lin,Delacretaz,Hartnoll

'18]
LN

wr " [Boon, “Molecular hydrodynamics,” '91]
@ Momentum conservation causes more violent effects leading to
anomalous scaling [Forster,Nelson,Stephen '74] . E.g. d = 2:

1\ 2
N~ <Iog >
w

Breakdown of hydrodynamics! [Schepper,Beyeren '74]
@ Result of the interplay between thermal fluctuations and interactions

of collective modes
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I will show:
@ Chiral diffusion breaks down in the IR
@ |t persists even without momentum conservation!

@ It furnishes a novel mechanism to flow to a non-trivial IR fixed point.
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EFT OF CHIRAL DIFFUSION

o Consider a quantum system in a thermal state pg = e " /Tr(e=#)
with
oIt = ce"™F,,

e Background sources: Ay, Az,

oWIALA] _ Ty [U(Al)pOUT(Aﬂ} _ / Dijy Dippe/ 1A= i52,42)
PO

t; = —00 A Ji ty — o0
: e |

( n
Aoy Js

e Anomalous conservation of Ji and J5' implies the Ward identity

W[A1M+8MA1,AQM+8M>\2] = W[Al;uA2p]+c/>\1F1;w_C/)\2F2;w
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EFT OF CHIRAL DIFFUSION

W[Alu + BMA17A2;L + 8,u)\2] = W[Al;uAZ,u] + C/>\1F1w/ - C/)\2F2/U/

o W is non-local due to long-living modes associated to 9, J;" = 0 and
9,5 =0.
e “Unintegrate” long-living modes [Crossley, PG, Liu '15; PG, Liu '18]
e’W[A17A2] :/D(p1D802 eishydro[A17991;A27902]

Y1, : long living modes
® Shydro local, satisfies several symmetries. Precisely recovers diffusion

in the saddle-point limit.
*see also [Haehl,Loganayagam,Rangamani '15; Jensen, Pinzani-Fokeeva,

Yarom '17;...]
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IR INSTABILITY

Action for chiral diffusion:

S= /dzx (— (Xf)tu — 4cOupy — 002 + éxlat(u2)> va + iTa(&X@a)2>

where = O, is the chemical potential, and

1
oy = §(g01 + ¢2) classical variable
Ya = (1 — @2, noise variable

At tree-level, this action recovers:

1
auJ“ = Xat,u - 4C8x,u - O'a>2(:u + EX,at(/l?) =0
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IR INSTABILITY

1
OuJV = xOrpp — 4cOxpr — o0 + Ex'ﬁtf =0

It is convenient to change coordinates to a frame co-moving with the
chiral front: x — x + %t. Upon rescaling various quantities:

Dept — 021 + Nox(p?) = 0

Scaling 0; ~ 02, the interaction \ is relevant! This has dramatic
consequences:

<Ji(w)Ji(_w)>ret ~oiw+ )\2(1'(,«))7% + )\4(/'(,‘))71 + ...

Correlation function grows with time!
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FAaTE IN THE IR
What is the fate of chiral diffusion in the IR?
To get a sense, consider higher-dimensional generalization:

J = —4C,u, - U@X,u, _/J‘ = —O'J_VJ_,U/

@ (2+ 1) — d: surface chiral metals

@ (3+1)— d: chiral magnetic effect with large background magnetic
field.

Upon rescaling various quantities:
Oepr — Ozpt+ A0 (p?) — 010 = 0

Rescaled coupling A is marginal in 2 + 1 and irrelevant in 3 + 1.
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FATE IN THE IR

Integrate out momentum shell e /A < |k| < A:

ox 1 A3

A A -2 _

o= o f d
The theory is marginally irrelevant in d = 2 and has a non-trivial fixed
pointate =2—d > 0!
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FATE IN THE IR

In 1 4 1 dimensions, the theory is equivalent to KPZ
(Kardar-Parisi-Zhang) universality class.

o Diffusive fluctuations around the chiral front at x + %t are in the
KPZ universality class.
@ Chiral diffusion flows to w = k + k%, z = % leading to the exact

scaling

wIiny
(NI

o(w) = <Ji(w)Ji(*W)>sym ~ T(;X/)wilﬁ
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Remarks
@ Infrared instability of chiral diffusion

@ Persists without momentum conservation

@ Relevant to edge physics
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@ Far from equilibrium: Floquet topological response

o

20 /34



NON-EQUILIBRIUM TOPOLOGY AND FLOQUET

SYSTEMS
Floquet systems have time-dependent periodic Hamiltonian

H(t+ T) = H(t), U(t)=Te ' JoH(s)ds

@ There is no strict notion of energy.

o Can define quasi-energies €, ~ £, + 2% Energy analog of Bloch
theory.

band
@ Numerous recent theoretical works
Reviews: [Harper,Roy,Rudner,Sondhi '19; Rudner,Lindner '19]

[Fruchart, "15]
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Dynamical generation of topology
e Circularly polarized light opens a gap [Oka,Aoki '09]

) FR02 il

%904

Experiments

[Wang,Steinberg, Jarillo-Herrero, Gedik '13]
[Rechtsman,Zeuner,Plotnik,Lumer,Nolte,Segev,Szameit '13]
[Jotzu,Messer,Desbuquois, Lebrat,Uehlinger, Greif,Esslinger '14]
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A CANONICAL MODEL: CHIRAL FLOQUET DRIVE
[Rudner, Lindner, Berg, Levin '12]
H(t) = =J) (c], gy&r + cleriam),  d(t)=1— 1«

reA

(OO @ (b)
Sastpassats

=
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| <=
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©) @ T Ky T/a

[Rudner et al., "12]

o Edge states [Fidkowski, Po, Potter, Vishwanath '16; Roy, Harper '16;
Po et al. '16; von Keyserlingk, Sondhi '16]
e Quantized topological invariants [Rudner et al. '12; ladecola, Hsieh

'17]
@ Quantized response: magnetization [Nathan et al. '16; Nathan et al.
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RECALL: STATIC TOPOLOGICAL PHASES

For time-independent Hamiltonians, H(t) = Hp, a successful approach to
many-body topological systems is that of topological field theory.

o Detect topological phases by coupling the system to background
gauge fields.

e Example: integrate out fermions in (2 4 1)-dimensions
Z[A] = /prqz)e_s[d’ﬂf;:A] — e_ efF[A]

@ Response action S is local, imaginary, and topological

Serf[A] = i4L / d3x5“”pA#8,,Ap, v = integer
T

Powerful to diagnose and predict new topological phases.

Works only when notion of ground state and gap are well-defined.
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Aim: Reproduce the success of time-independent approach to Floquet
systems.

o Effective field theory approach.

e Diagnostic tool of topological order.
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(GENERAL SETUP — SCHWINGER-KELDYSH APPROACH

For systems out of equilibrium, the natural starting point is the
Schwinger-Keldysh trace

eiW[A17A2] = Tr |:U(f_',7 tf; Al)po UT(tH tf; A2)i|

e Analog of Z[A,] for time-independent Hamiltonians.
@ po is an initial state
e U(tj, tr; A): unitary coupled to an external gauge field

» Two unitaries for forward and backward evolutions
» Two gauge fields A;, A, for forward and backward evolutions

t Ulty,ti,A) t

. >
Po o < ]
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GENERAL SETUP

el Al — [U(th te; A)poUT(t;, tr; Az)}

SK for Floquet topological systems:
@ Initial state: Infinite temperature Gibbs ensemble

@

_ _ 1
PO = TreaQ’ Q - Z(nf - §)
r

@ Real time contour: Integer multiple of Floquet period T

Uty ti, A
t (L.t ) o otr—ti=kT,
o 2 ]

Ut tioa) K = Integer

@ Background: Static background

— —

Ao =0, A(t, r) = A(r)
up to gauge fixing.

Note: gauge invariance under A; 5 — A1 + OA12 with A\; = Ay at

t = tj, tr.
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TOPOLOGICAL RESPONSE: CHIRAL FLOQUET DRIVE

! |
-

On a closed manifold:

WA _ L —o 2 if %(By—By)
WAL A T )NH[ S L oSei LB Bz]

where
° f% —integer
@ NN total number of lattice sites
o B, =A.(r)+ Ay(r + b1) — A(r + b1 + by) — Ay(r + by) flux
collected by a particle starting at r
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TOPOLOGICAL RESPONSE: CHIRAL FLOQUET DRIVE

For slowly varying background, leads to a spatial theta term:
WIALAY _ i S2) [ % [ d?r[Bi(r)- Ba()], B(r) = dA(r)
where

O(a) =0+ f(a), 6=0(a=0), f(a)=—-f(—a)

@ 6 is quantized due to flux quantization and a charge-conjugation
symmetry.

e From explicit evaluation:

6 =m, f(a):—wtanh%

o Independent of metric of the spatial manifold = topological term.
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TOPOLOGICAL RESPONSE: CHIRAL FLOQUET DRIVE

eWIALASl _ oi%2) [ 4 [ d2r(Bi(r)=Ba(r)]
©(«) independent of continuous deformations:
H(t,A) = Ho(t, A) + AHint(t)
Hp : chiral Floquet drive, Hi,: : many-body interaction
Independent of X\ as far as response remains local.
Sketch of the proof:
0 =i dtTrpe s (r ] =~ ()

e

J Tr[pR] =0
T A) Q@ (J'(r)) = Tr[pz]]

© EFT:

W= [ 4 [d®rO(a,r)(Bi(r) — Bx(r))

Hy(tA)+ Hin( 1)
S~

= gTV‘l/,- x [dtei9;0(a,r) =0
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TOPOLOGICAL RESPONSE: CHIRAL FLOQUET DRIVE

Numerical test of topological stability.
Open boundary conditions:

3
}Filled H = Ho(t, A) + Zwrc ¢+ Vo (-1)"cle

u w, € (—W, W) random, uniformly distributed

@ o RONT L
.5 = . =
0.4 — a=n/3 0.4, \ — a=n/6

0.3} 0.3 > a=n/2

0.2 0.2 S

0.1 0.1

W W
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5

Plot of ©(a) as a function of disorder strength
W, for various values of & when A = 0 (a) and A = 0.1(b).
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Remarks

@ Theta term can be related to quantized magnetization [Nathan et al.
'16; Nathan et al. '19]

@ Relation to chiral unitary index [Po et al. '16]

@ Formalism provides EFT approach to topological Floquet phases
(higher dimensions, geometric response, ...)
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@ Conclusions
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Summary

o Non-equilibrium EFT provides a very flexible tool to approach the low

energy sector of a wide variety of systems
@ IR instability of chiral hydrodynamics

e Topological response of driven (Floquet) systems

Future directions

@ Chiral diffusion: include energy conservation; estimate effect for
realistic systems (comparison to shot noise?)

@ Floquet: geometric response; constraints on ©(«)? time-ordering
sensitive topological response? Non-topological properties?

@ Other directions: open systems and novel constraints
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