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Non-equilibrium physics displays a huge variety of phenomena in nature.
These range from heavy ion collisions to black holes dynamics, from driven
systems to non-equilibrium steady states, etc.

Many open questions: thermalization, information paradox, turbulence, ...

What is a suitable framework which captures systematically these
phenomena?
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Goal: encode low-energy description of non-equilibrium systems into
effective field theories, independent of microscopic details.

Direct applications include:

Systematic computation of hydrodynamic fluctuations. E.g. long-time
tails, renormalization of transport. Current methods (e.g. stochastic
hydro) are not systematic.

[Boon, “Molecular hydrodynamics,” ’91]

Topological response of periodically driven systems, which are
inherently far from equilibrium.

[Nathan et al., ’16]
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Chiral diffusion in 1+1

Quantum systems in local thermal equilibrium → hydrodynamics

At sufficiently low energy, the only degrees of freedom are conserved
charges. Example: U(1) charge, momentum, ...

We will be interested in systems with anomalously non-conserved U(1)
current with chiral anomaly:

∂µJ
µ = cεµνFµν

c = ν
4π : anomaly coefficient, Fµν = ∂µAν − ∂νAµ.
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Chiral diffusion in 1+1

Quantum systems in local thermal equilibrium → hydrodynamics

At sufficiently low energy, the only degrees of freedom are conserved
charges. Example: U(1) charge, momentum, ...

We will be interested in systems with anomalously non-conserved U(1)
current with chiral anomaly:

∂µJ
µ = cεµνFµν

c = ν
4π : anomaly coefficient, Fµν = ∂µAν − ∂νAµ.

Neglect energy-momentum conservation

Local equilibrium: ρ = e−
1
T

(H−µ(t,x)Q)
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Chiral diffusion in 1+1

ρ = e−
1
T

(H−µ(t,x)Q)

∂µJ
µ = cεµνFµν

Jt = n(µ) = χµ+
1

2
χ′µ2 + · · · , Jx = −4cµ− σ∂xµ

−4cµ required by second law [Son,Surowka ’09].

Chiral diffusion:

χ∂tµ− 4c∂xµ− σ∂2
xµ+

1

2
χ′∂tµ

2 = 0
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Motivations I

Edge of quantum Hall systems [Kane,Fisher ’95; Ma,Feldman ’19]

Surface chiral metals [Balents,Fisher ’95; Sur,Lee ’13]

Chiral magnetic effect [Vilenkin ’80; Son,Spivak ’13; Yamamoto ’15]

~J ∝ µ~B
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Motivations II
Hydrodynamic long time tails:

Change qualitatively correlation functions at late time.
[Alder,Wainwright ’70;Kovtun,Yaffe ’03;Chen-Lin,Delacretaz,Hartnoll
’18]

[Boon, “Molecular hydrodynamics,” ’91]

Momentum conservation causes more violent effects leading to
anomalous scaling [Forster,Nelson,Stephen ’74] . E.g. d = 2:

η ∼
(

log
1

ω

) 1
2

Breakdown of hydrodynamics! [Schepper,Beyeren ’74]
Result of the interplay between thermal fluctuations and interactions
of collective modes
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I will show:

Chiral diffusion breaks down in the IR

It persists even without momentum conservation!

It furnishes a novel mechanism to flow to a non-trivial IR fixed point.
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EFT of chiral diffusion
Consider a quantum system in a thermal state ρ0 = e−βH/Tr(e−βH)
with

∂µJ
µ = cεµνFµν

Background sources: A1µ,A2µ

e iW [A1,A2] = Tr
[
U(A1)ρ0U

†(A2)
]

=

∫
ρ0

Dψ1Dψ2e
iS[ψ1,A1]−iS[ψ2,A2]

Anomalous conservation of Jµ1 and Jµ2 implies the Ward identity

W [A1µ+∂µλ1,A2µ+∂µλ2] = W [A1µ,A2µ]+c

∫
λ1F1µν−c

∫
λ2F2µν
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EFT of chiral diffusion

W [A1µ + ∂µλ1,A2µ + ∂µλ2] = W [A1µ,A2µ] + c

∫
λ1F1µν − c

∫
λ2F2µν

W is non-local due to long-living modes associated to ∂µJ
µ
1 = 0 and

∂µJ
µ
2 = 0.

“Unintegrate” long-living modes [Crossley, PG, Liu ’15; PG, Liu ’18]

e iW [A1,A2] =

∫
Dϕ1Dϕ2 e

iShydro[A1,ϕ1;A2,ϕ2]

ϕ1, ϕ2 : long living modes

Shydro local, satisfies several symmetries. Precisely recovers diffusion
in the saddle-point limit.

*see also [Haehl,Loganayagam,Rangamani ’15; Jensen, Pinzani-Fokeeva,
Yarom ’17;. . . ]
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IR instability

Action for chiral diffusion:

S =

∫
d2x

(
−
(
χ∂tµ− 4c∂xµ− σ∂2

xµ+
1

2
χ′∂t(µ

2)

)
ϕa + iTσ(∂xϕa)2

)
where µ = ∂tϕr is the chemical potential, and

ϕr =
1

2
(ϕ1 + ϕ2) classical variable

ϕa = ϕ1 − ϕ2, noise variable

At tree-level, this action recovers:

∂µJ
µ = χ∂tµ− 4c∂xµ− σ∂2

xµ+
1

2
χ′∂t(µ

2) = 0
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IR instability

∂µJ
µ = χ∂tµ− 4c∂xµ− σ∂2

xµ+
1

2
χ′∂tµ

2 = 0

It is convenient to change coordinates to a frame co-moving with the
chiral front: x → x + 4a

χ t. Upon rescaling various quantities:

∂tµ− ∂2
xµ+ λ∂x(µ2) = 0

Scaling ∂t ∼ ∂2
x , the interaction λ is relevant! This has dramatic

consequences:

〈J i (ω)J i (−ω)〉ret ∼ σiω + λ2(iω)−
1
2 + λ4(iω)−1 + · · ·

Correlation function grows with time!
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Fate in the IR

What is the fate of chiral diffusion in the IR?

To get a sense, consider higher-dimensional generalization:

Jx = −4cµ− σ∂xµ, J⊥ = −σ⊥∇⊥µ

(2 + 1)− d : surface chiral metals

(3 + 1)− d : chiral magnetic effect with large background magnetic
field.

Upon rescaling various quantities:

∂tµ− ∂2
xµ+ λ∂x(µ2)− σ⊥∂2

⊥µ = 0

Rescaled coupling λ is marginal in 2 + 1 and irrelevant in 3 + 1.
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Fate in the IR

Integrate out momentum shell e−lΛ < |k | < Λ:

∂λ

∂l
=

1

2
ελ− λ3

2π
, ε = 2− d

The theory is marginally irrelevant in d = 2 and has a non-trivial fixed
point at ε = 2− d > 0!
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Fate in the IR
In 1 + 1 dimensions, the theory is equivalent to KPZ
(Kardar-Parisi-Zhang) universality class.

Diffusive fluctuations around the chiral front at x + 4c
χ t are in the

KPZ universality class.

Chiral diffusion flows to ω = k + kz , z = 3
2 , leading to the exact

scaling

σ(ω) = 〈J i (ω)J i (−ω)〉sym ∼
T

2
3 (cχ′)

4
3

χ

1

ω1/3
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Remarks
1 Infrared instability of chiral diffusion

2 Persists without momentum conservation

3 Relevant to edge physics
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Non-equilibrium topology and Floquet
systems
Floquet systems have time-dependent periodic Hamiltonian

H(t + T ) = H(t), U(t) = T e−i
∫ t

0 H(s)ds

There is no strict notion of energy.

Can define quasi-energies εn ∼ εn + 2π
T . Energy analog of Bloch

theory.

[Fruchart, ’15]

Numerous recent theoretical works
Reviews: [Harper,Roy,Rudner,Sondhi ’19; Rudner,Lindner ’19]
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Dynamical generation of topology

Circularly polarized light opens a gap [Oka,Aoki ’09]

Time periodic magnetic field [Lindner,Refael,Galitski ’11]

Experiments
[Wang,Steinberg,Jarillo-Herrero,Gedik ’13]
[Rechtsman,Zeuner,Plotnik,Lumer,Nolte,Segev,Szameit ’13]
[Jotzu,Messer,Desbuquois,Lebrat,Uehlinger,Greif,Esslinger ’14]
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A canonical model: chiral Floquet drive
[Rudner, Lindner, Berg, Levin ’12]

H(t) = −J
∑
r∈A

(c†r+d(t)cr + c†r cr+d(t)), d(t) = ↑ → ↓ ←

[Rudner et al., ’12]

Edge states [Fidkowski, Po, Potter, Vishwanath ’16; Roy, Harper ’16;
Po et al. ’16; von Keyserlingk, Sondhi ’16]
Quantized topological invariants [Rudner et al. ’12; Iadecola, Hsieh
’17]
Quantized response: magnetization [Nathan et al. ’16; Nathan et al.
’19]
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Recall: Static topological phases

For time-independent Hamiltonians, H(t) = H0, a successful approach to
many-body topological systems is that of topological field theory.

Detect topological phases by coupling the system to background
gauge fields.

Example: integrate out fermions in (2 + 1)-dimensions

Z [A] =

∫
DψDψ̄e−S[ψ,ψ̄,A] = e−Seff[A]

Response action Seff is local, imaginary, and topological

Seff[A] = i
ν

4π

∫
d3xεµνρAµ∂νAρ, ν = integer

Powerful to diagnose and predict new topological phases.

Works only when notion of ground state and gap are well-defined.
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Aim: Reproduce the success of time-independent approach to Floquet
systems.

Effective field theory approach.

Diagnostic tool of topological order.
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General setup – Schwinger-Keldysh approach

For systems out of equilibrium, the natural starting point is the
Schwinger-Keldysh trace

e iW [A1,A2] = Tr
[
U(ti , tf ;A1)ρ0U

†(ti , tf ;A2)
]

Analog of Z [Aµ] for time-independent Hamiltonians.

ρ0 is an initial state

U(ti , tf ;A): unitary coupled to an external gauge field
I Two unitaries for forward and backward evolutions
I Two gauge fields A1,A2 for forward and backward evolutions
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General setup

e iW [A1,A2] = Tr
[
U(ti , tf ;A1)ρ0U

†(ti , tf ;A2)
]

SK for Floquet topological systems:

Initial state: Infinite temperature Gibbs ensemble

ρ0 =
eαQ

TreαQ
, Q =

∑
r

(nr − 1
2 )

Real time contour: Integer multiple of Floquet period T

Background: Static background

A0 = 0, ~A(t, ~r) = ~A(~r)

up to gauge fixing.
Note: gauge invariance under A1,2 → A1,2 + ∂λ1,2 with λ1 = λ2 at
t = ti , tf .
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Topological response: chiral Floquet drive

On a closed manifold:

e iW [A1,A2] =
1

2 cosh(α2 )N

∏
r

[
e−

α
2 + e

α
2 e i

∫
dt
T

(B1r−B2r )
]

where∫
dt
T =integer

N total number of lattice sites

Br = Ax(r) + Ay (r + b1)− Ax(r + b1 + b2)− Ay (r + b2) flux
collected by a particle starting at r
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Topological response: chiral Floquet drive

For slowly varying background, leads to a spatial theta term:

e iW [A1,A2] = e i
Θ(α)

2π

∫
dt
T

∫
d2r [B1(r)−B2(r)], B(r) = d ~A(r)

where

Θ(α) = θ + f (α), θ = Θ(α = 0), f (α) = −f (−α)

θ is quantized due to flux quantization and a charge-conjugation
symmetry.

From explicit evaluation:

θ = π, f (α) = −π tanh
α

2

Independent of metric of the spatial manifold ⇒ topological term.
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Topological response: chiral Floquet drive

e iW [A1,A2] = e i
Θ(α)

2π

∫
dt
T

∫
d2r [B1(r)−B2(r)]

Θ(α) independent of continuous deformations:

H(t,A) = H0(t,A) + λHint(t)

H0 : chiral Floquet drive, Hint : many-body interaction

Independent of λ as far as response remains local.

Sketch of the proof:

1 δW
δA1i (r) = −i

∫
dtTr[ρ0J

i (r , t)] ≡ −i〈J i (r)〉

2 〈J i (r)〉 = Tr[ρ δH0

δAi
] = 0

3 EFT:
W = 1

2π

∫
dt
T

∫
d2rΘ(α, r)(B1(r)− B2(r))

⇒ δW
δA1i
∝
∫
dtεij∂jΘ(α, r) = 0
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Topological response: chiral Floquet drive
Numerical test of topological stability.
Open boundary conditions:

H = H0(t,A) +
∑
r

wrc
†
r cr + V0

∑
r

(−1)ηr c†r cr

wr ∈ (−W ,W ) random, uniformly distributed
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Remarks
1 Theta term can be related to quantized magnetization [Nathan et al.

’16; Nathan et al. ’19]

2 Relation to chiral unitary index [Po et al. ’16]

3 Formalism provides EFT approach to topological Floquet phases
(higher dimensions, geometric response, ...)
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Summary
Non-equilibrium EFT provides a very flexible tool to approach the low
energy sector of a wide variety of systems

IR instability of chiral hydrodynamics

Topological response of driven (Floquet) systems

Future directions
1 Chiral diffusion: include energy conservation; estimate effect for

realistic systems (comparison to shot noise?)

2 Floquet: geometric response; constraints on Θ(α)? time-ordering
sensitive topological response? Non-topological properties?

3 Other directions: open systems and novel constraints
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