Fine probes of quantum chaos

Márk Mezei (SCGP)

In collaboration with: Agón, Bao, Casini, Choi, Cotler, Hertzberg, Liu, Mueller, Sárosi, Stanford, van der Schee, Virrueta

University of Michigan HET Brown Bag Seminars, 10/23/2019

Quantum chaotic dynamics

Phenomena associated with chaotic dynamics:

Transport

Thermalization

Butterfly effect

Quantum chaotic dynamics

Phenomena associated with chaotic dynamics:

Thermalization

Butterfly effect

Ultimate goal: understand these phenomena and their relation in quantum systems

Goal of talk:

- Develop an effective field theory at long distances and at late times for each process
- Study their interplay
- Relate them to gravity through AdS/CFT

Quantum chaotic dynamics

Setup:

- Constituents: lattice QFT (HEP), spins/electrons (CMT), atoms (AMO), qubits (QI)
- Degrees of freedom interacting strongly through local **chaotic** Hamiltonian.
- In highly excited state, out of equilibrium at t = 0, in equilibrium for $t \to \infty$.
- Foundational question in statistical physics. Paradigm shift from ensembles to closed systems. Subject to intense current activity in HEP, CMT, QI, and **AMO experiments**.

Relation to gravity

Study the setup using holographic duality:

- A QFT settling to thermal equilibrium is dual to a collapsing black hole.
- No small parameters, holography is indispensible in understanding real time quantum dynamics.
- Entanglement plays a crucial role in thermalization.
 Geometric prescription for computing entanglement entropy.
 [Ryu, Takayanagi]
- Recent breakthroughs in quantum chaos at this intersection.
 [Shenker, Stanford; Kitaev]

Relation to gravity

Study the setup using holographic duality:

- A QFT settling to thermal equilibrium is dual to a collapsing black hole.
- No small parameters, holography is indispensible in understanding real time quantum dynamics.
- Entanglement plays a crucial role in thermalization.
 Geometric prescription for computing entanglement entropy.
 [Ryu, Takayanagi]
- Recent breakthroughs in quantum chaos at this intersection. [Shenker, Stanford; Kitaev]

It from Qubit:

- Holography teaches about quantum gravity through strongly interacting QFTs.
- Realization that entanglement is key to connectedness of spacetime.
- "Gravity is the hydrodynamics of entanglement"

We have an effective theory for describing conserved densities.

- Hydrodynamics applies universally for all chaotic systems. Generalized hydrodynamics for integrable systems.
- Navier-Stokes equations: $\partial_t v + (v \cdot \nabla)v \nu \nabla^2 v = -\nabla p$

We have an effective theory for describing conserved densities.

- Hydrodynamics applies universally for all chaotic systems. Generalized hydrodynamics for integrable systems.
- Navier-Stokes equations: $\partial_t v + (v \cdot \nabla)v \nu \nabla^2 v = -\nabla p$

Quantum system with many interacting degrees of freedom

Relativistic hydro from hep-th POV is an EFT based on systematic long distance, late time expansion. Fluid variables:

$$T_{ab} = (\rho + p)u_a u_b + p \eta_{ab} + \Pi_{ab}$$

For conformal fluids one transport coefficient at first order:

 $\Pi_{ab} = -2\eta\sigma_{ab} + \dots$

•

- Hydrodynamics follows from the conservation of T_{ab} . Solution determines $\langle T_{ab}\rangle$ out of equilibrium.

We have an effective theory for describing conserved densities.

- Fluid/gravity constructs black holes with bumpy horizons from fluid flows.
- Alternative history: String theorists discover hydrodynamics by studying AdS black holes.

We have an effective theory for describing conserved densities.

- Fluid/gravity constructs black holes with bumpy horizons from fluid flows.
- Alternative history: String theorists discover hydrodynamics by studying AdS black holes.
- Interested in more data than $\langle T_{ab}\rangle$: entanglement entropy, butterfly effect, etc.
- I want to follow the "alternative history" path to discover a hydrodynamic effective theory of entanglement dynamics and operator growth.
- Hydrodynamics applies universally for all chaotic systems, and there is evidence for the universality of the other effective theories.

Outline

Transport

- Hydro as an EFT
- Holography for real time dynamics

Thermalization

- Entanglement entropy as a probe
- Membrane theory is the EFT

Butterfly effect

- Butterfly effect, operator growth and OTOC
- Refinement of the chaos bound
- Towards an EFT

Summary and open questions

Outline

Transport

- Hydro as an EFT
- Holography for real time dynamics

Thermalization

- Entanglement entropy as a probe
- Membrane theory is the EFT

Butterfly effect

- Butterfly effect, operator growth and OTOC
- Refinement of the chaos bound
- Towards an EFT

Summary and open questions

Quantum thermalization and subsystems

Quantum thermalization

- Pure state with nonzero energy density: $|\psi(0)\rangle$ Unitary time evolution: $|\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle$
- $\rho(t) \equiv |\psi(t)\rangle \langle \psi(t)| \not\rightarrow \frac{e^{-\beta H}}{Z}$ cannot mean thermalization.

 $\rho(t)$ encodes all the information in $|\psi(0)\rangle$, but at late times in a very nonlocal way.

Quantum system with many interacting degrees of freedom

Fully isolated from environment

Quantum thermalization and subsystems

Quantum thermalization

- Pure state with nonzero energy density: $|\psi(0)\rangle$ Unitary time evolution: $|\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle$
- $\rho(t) \equiv |\psi(t)\rangle \langle \psi(t)| \not\rightarrow \frac{e^{-\beta H}}{Z}$ cannot mean thermalization.

 $\rho(t)$ encodes all the information in $|\psi(0)\rangle$, but at late times in a very nonlocal way.

• Consider subsystems: In a local system: $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_{\bar{A}}$ Reduced density matrix: $\rho_A = \operatorname{Tr}_{\bar{A}} |\psi\rangle \langle \psi|$

Quantum thermalization and subsystems

Quantum thermalization

- Pure state with nonzero energy density: $|\psi(0)\rangle$ Unitary time evolution: $|\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle$
- $\rho(t) \equiv |\psi(t)\rangle \langle \psi(t)| \not\rightarrow \frac{e^{-\beta H}}{Z}$ cannot mean thermalization.

 $\rho(t)$ encodes all the information in $|\psi(0)\rangle$, but at late times in a very nonlocal way.

• Consider subsystems: In a local system: $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_{\bar{A}}$ Reduced density matrix: $\rho_A = \operatorname{Tr}_{\bar{A}} |\psi\rangle \langle \psi|$

• Thermalization:
$$\rho_A(t) \rightarrow \rho_A^{(eq)}(\beta) = \text{Tr}_{\bar{A}} \frac{e^{-\beta H}}{Z}$$

For $t \to \infty$, in the thermodynamic limit $\overline{A} \to \infty$, with β determined by the energy density. **Entanglement is crucial in making this possible.**

Entanglement entropy

Entanglement entropy is a good diagnostic of thermalization, we **focus on this quantity**.

• Entanglement entropy:

$$S_A \equiv -\mathrm{Tr}_A \,\rho_A \log \rho_A$$

• In ground states of local Hamiltonians the entropy scales with the area:

$$S_A = \# \frac{\operatorname{area}(\Sigma)}{\delta^{d-2}} + \dots$$

• A generic state in the Hilbert space shows volume scaling.

$$S_A = s_{\rm th} \operatorname{vol}(A) + \dots$$

Entanglement entropy

Entanglement entropy is a good diagnostic of thermalization, we **focus on this quantity**.

• Entanglement entropy:

$$S_A \equiv -\mathrm{Tr}_A \,\rho_A \log \rho_A$$

• In ground states of local Hamiltonians the entropy scales with the area:

 $S_A = \# \frac{\operatorname{area}(\Sigma)}{\delta^{d-2}} + \dots$

• A generic state in the Hilbert space shows volume scaling.

 $S_A = s_{\rm th} \operatorname{vol}(A) + \dots$

• Purest setup is a quench: start with ground state of a local Hamiltonian, change the Hamiltonian suddenly, and let the system evolve. (No transport.)

Entanglement entropy

Entanglement entropy is a good diagnostic of thermalization, we **focus on this quantity**.

• Entanglement entropy:

$$S_A \equiv -\mathrm{Tr}_A \,\rho_A \log \rho_A$$

• In ground states of local Hamiltonians the entropy scales with the area:

 $S_A = \# \frac{\operatorname{area}(\Sigma)}{\delta^{d-2}} + \dots$

• A generic state in the Hilbert space shows volume scaling.

 $S_A = s_{\rm th} \operatorname{vol}(A) + \dots$

- Purest setup is a quench: start with ground state of a local Hamiltonian, change the Hamiltonian suddenly, and let the system evolve. (No transport.)
- Instead of following an operator (matrix), we follow a number.

$$\rho_A(t) \to \rho_A^{(eq)}(\beta) = \operatorname{Tr}_{\bar{A}} \frac{e^{-\beta H}}{Z}$$
$$S_A(t) \to S_A^{(eq)}(\beta) = s_{th}(\beta) \operatorname{vol}(A)$$

Captures the essence of thermalization.

Entanglement entropy in experiment

In cold atom experiments we can realize quenches and measure the entanglement of subsystems. [Kaufman et al.]

• The state of the total system is pure.

Entanglement entropy in experiment

In cold atom experiments we can realize quenches and measure the entanglement of subsystems. [Kaufman et al.]

- The state of the total system is pure.
- Sparsely entangled initial state.
- Volume law saturation. -

Entanglement entropy in experiment

In cold atom experiments we can realize quenches and measure the entanglement of subsystems. [Kaufman et al.]

- The state of the total system is pure.
- Sparsely entangled initial state.
- Volume law saturation.
- Linear growth at early times. • •

Universality classes of entropy dynamics

I propose that there are two universality classes of entropy dynamics at long distances and late times (in translationally invariant systems).

- 2d integrable models, RCFTs, d>2 free theories are described by the quasiparticle model.
- The holographic results can be reformulated in terms of a membrane theory, which then can be adopted to any chaotic system. Applies to holographic theories, random circuits, evidence for chaotic spin chains. [Jonay et al., MM₂]
- Is there something in between?
- Analogous to the dichotomy between generalized hydrodynamics applicable to integrable systems (giving ballistic transport) and hydrodynamics (describing diffusive transport).

Entropy in the hydrodynamic limit

 Qualitative picture of entanglement entropy at time t of a region of characteristic size R, R, t ≫ t_{loc}.
 [Cardy, Calabrese; Hartman, Maldacena; Liu, Suh]

Entropy in the hydrodynamic limit

- Qualitative picture of entanglement entropy at time t of a region of characteristic size R, R, t ≫ t_{loc}.
 [Cardy, Calabrese; Hartman, Maldacena; Liu, Suh]
- EE in free scalar theory for a disk, dots are data points, line is quasiparticle theory [Cotler, Hertzberg, MM, Mueller]

 EE in holographic theories for a disk, data collapse, solid line is membrane theory, deviation is controlled by 1/R [MM₁]

AdS/CFT and entanglement entropy

AdS/CFT is an exact equivalence between QG theories in AdS_{d+1} spacetimes and CFT_d 's.

E.g. $\mathcal{N} = 4$ Super Yang-Mills theory Type IIB string theory on $AdS_5 \times S^5$

- Strongly coupled CFT (hard) •
- Entanglement entropy of A•

- Semiclassical gravity (easy)
- Area of extremal surface ending on Σ [Ryu, Takayanagi; Hubeny, Rangamani, Takayanagi]

$$S_A = \frac{\text{extremal area}}{4G_N}$$

AdS/CFT and entanglement entropy

AdS/CFT is an exact equivalence between QG theories in AdS_{d+1} spacetimes and CFT_d 's.

• E.g. $\mathcal{N} = 4$ Super Yang-Mills theory Type IIB string theory on $AdS_5 \times S^5$

• Strongly coupled CFT (hard)

• Entanglement entropy of *A*

Semiclassical gravity (easy)

Area of extremal surface ending on Σ [Ryu, Takayanagi; Hubeny, Rangamani, Takayanagi]

$$S_A = \frac{\text{extremal area}}{4G_N}$$

Area law in the ground state

 Volume scaling at finite temperature

AdS/CFT and entanglement entropy

AdS/CFT is an exact equivalence between QG theories in AdS_{d+1} spacetimes and CFT_d 's.

- E.g. $\mathcal{N} = 4$ Super Yang-Mills theory Type IIB string theory on $AdS_5 \times S^5$
- Strongly coupled CFT (hard)
- Entanglement entropy of *A*

- Semiclassical gravity (easy)
- Area of extremal surface ending on Σ [Ryu, Takayanagi; Hubeny, Rangamani, Takayanagi]

$$S_A = \frac{\text{extremal area}}{4G_N}$$

Area law in the ground state

 Volume scaling at finite temperature

• Quench, thermalization

Black hole formation from collapse

Can reformulate holographic surface extremization in d+1 dimensions as membrane minimization in d dimensions in the limit $R, t \gg t_{\rm loc}$. [MM₂]

- Detailed understanding of HRT surfaces. The surface has three parts: [MM₁]
 - 1. Outside the horizon part gives (divergent) area law.
 - 2. Behind the horizon region.
 - 3. Behind the shell part gives entropy in the vacuum.

t

Can reformulate holographic surface extremization in d+1 dimensions as membrane minimization in d dimensions in the limit $R, t \gg t_{loc}$. [MM₂]

- Detailed understanding of HRT surfaces. The surface has three parts: [MM₁]
 - 1. Outside the horizon part gives (divergent) area law.
 - 2. Behind the horizon region.
 - 3. Behind the shell part gives entropy in the vacuum.
- Only the **2. part** contributes to the extensive part of the entropy.

$$S(t) = s_{\rm th} R^{d-1} \mathcal{S}_{\rm ext} \left(\frac{t}{R}\right) + \dots$$

t

Can reformulate holographic surface extremization in d+1 dimensions as membrane minimization in d dimensions in the limit $R, t \gg t_{loc}$. [MM₂]

• Only the **2. part** contributes to the extensive part of the entropy.

$$S(t) = s_{\rm th} R^{d-1} \mathcal{S}_{\rm ext} \left(\frac{t}{R}\right) + \dots$$

• Scaling limit: $x^{\mu} \rightarrow R x^{\mu}$, $z \rightarrow z$ Area functional independent of the derivatives of z. Solve algebraic EOM, plug back into action to derive membrane theory.

$$S[A] = s_{\rm th} \int d^{d-1} \xi \,\sqrt{\gamma} \,\frac{\mathcal{E}(v)}{\sqrt{1-v^2}}$$

Can reformulate holographic surface extremization in d+1 dimensions as membrane minimization in d dimensions in the limit $R, t \gg t_{loc}$. [MM₂]

• Only the **2. part** contributes to the extensive part of the entropy.

$$S(t) = s_{\rm th} R^{d-1} \mathcal{S}_{\rm ext} \left(\frac{t}{R}\right) + \dots$$

Scaling limit: x^μ → R x^μ, z → z
 Area functional independent of the derivatives of z. Solve algebraic EOM, plug back into action to derive membrane theory.

Can reformulate holographic surface extremization in d+1 dimensions as membrane minimization in d dimensions in the limit $R, t \gg t_{loc}$. [MM₂]

• Only the **2. part** contributes to the extensive part of the entropy.

$$S(t) = s_{\rm th} R^{d-1} \mathcal{S}_{\rm ext} \left(\frac{t}{R}\right) + \dots$$

Scaling limit: $x^{\mu} \to R x^{\mu}$, $z \to z$ Area functional independent of the derivatives of z. Solve algebraic EOM, plug back into action to derive membrane theory.

Can reformulate holographic surface extremization in d+1 dimensions as membrane minimization in d dimensions in the limit $R, t \gg t_{loc}$. [MM₂]

• Membrane theory:

$$S[A] = s_{\rm th} \int d^{d-1}\xi \,\sqrt{\gamma} \,\frac{\mathcal{E}(v)}{\sqrt{1-v^2}}$$

Membrane is projection of HRT to boundary along constant infalling time. It is independent of quench details.

Can reformulate holographic surface extremization in d+1 dimensions as membrane minimization in d dimensions in the limit $R, t \gg t_{loc}$. [MM₂]

• Membrane theory:

$$S[A] = s_{\rm th} \int d^{d-1}\xi \,\sqrt{\gamma} \,\frac{\mathcal{E}(v)}{\sqrt{1-v^2}}$$

Membrane is projection of HRT to boundary along constant infalling time. It is independent of quench details.

• Using the NEC, can prove the following properties of $\mathcal{E}(v)$. $\mathcal{E}(v)$ can be thought of as a transport coefficient.

Can reformulate holographic surface extremization in d+1 dimensions as membrane minimization in d dimensions in the limit $R, t \gg t_{loc}$. [MM₂]

• Membrane theory:

$$S[A] = s_{\rm th} \int d^{d-1}\xi \,\sqrt{\gamma} \,\frac{\mathcal{E}(v)}{\sqrt{1-v^2}}$$

Membrane is projection of HRT to boundary along constant infalling time. It is independent of quench details.

• Using the NEC, can prove the following properties of $\mathcal{E}(v)$. $\mathcal{E}(v)$ can be thought of as a transport coefficient.

The same description of entanglement dynamics arises in CMT.

• Random quantum circuit model for the evolving wave function.

Membrane theory of entanglement dynamics

The same description of entanglement dynamics arises in CMT.

• Random quantum circuit model for the evolving wave function.

Membrane theory of entanglement dynamics

The same description of entanglement dynamics arises in CMT.

• Random quantum circuit model for the evolving wave function.

• Minimal cut computes the entropy. [Nahum, Ruhman, Vijay, Haah]

Minimal membrane phenomenology of entropy dynamics. [Jonay, Huse, Nahum]

Membrane theory of entanglement dynamics

The same description of entanglement dynamics arises in CMT.

• Random quantum circuit model for the evolving wave function.

• Minimal cut computes the entropy. [Nahum, Ruhman, Vijay, Haah]

Minimal membrane phenomenology of entropy dynamics. [Jonay, Huse, Nahum]

- Evidence in chaotic spin chains.
- Remarkable unification of CMT and HEP approaches: Membrane description of EE growth in quenches.

Applications

EE growth for spherical regions in the hydrodynamic limit is analytically solvable. [MM₁; MM₂]

• Representative membrane shapes.

Applications

EE growth for spherical regions in the hydrodynamic limit is analytically solvable. [MM₁; MM₂]

• Representative membrane shapes.

• Comparing numerical results for finite R and membrane theory predictions:

Extensions

The membrane theory is robust, can be generalized away from quenches. [MM, Virrueta]

• Fluid/gravity black brane dual to an inhomogenous state in local thermal equilibrium. To subleading order, we get the membrane coupled to hydrodynamics:

$$S = \int d\operatorname{Area} s_{\mathrm{th}}(x) \frac{\mathcal{E}(v)}{\sqrt{1 - v^2}} \left[1 + \mathcal{F}_1(v) \left((\mathcal{A} \cdot n)(n \cdot u) - (\mathcal{A} \cdot u) \right) + \mathcal{F}_2(v) \sigma_{ab} n^a n^b + \dots \right]$$
$$v(x) \equiv \frac{(n \cdot u(x))}{\sqrt{1 + (n \cdot u(x))^2}}$$

Extensions

The membrane theory is robust, can be generalized away from quenches. [MM, Virrueta]

• Fluid/gravity black brane dual to an inhomogenous state in local thermal equilibrium. To subleading order, we get the membrane coupled to hydrodynamics:

$$S = \int d\operatorname{Area} \, s_{\mathrm{th}}(x) \frac{\mathcal{E}(v)}{\sqrt{1 - v^2}} \left[1 + \mathcal{F}_1(v) \left((\mathcal{A} \cdot n)(n \cdot u) - (\mathcal{A} \cdot u) \right) + \mathcal{F}_2(v) \sigma_{ab} n^a n^b + \dots \right]$$
$$(x) \equiv \frac{(n \cdot u(x))}{\sqrt{1 + (n \cdot u(x))^2}}$$

- Adaptable to other setups, can incorporate β/R and $1/\lambda$ corrections without change in the structure of the membrane theory. 1/N corrections would be most interesting.
- New language opens a rich arena of applications in holographic EE.

v

- ➢ Informs tensor network approaches to bulk reconstruction. [Swingle, Harlow et al.]
- "Entropy cone" inequalities generalized to time dependent settings. [Hayden, Headrick, Maloney; Bao et al.; Bao, MM]
- Bit threads reformulation. [Freedman, Headrick; Agon, MM]
- Numerical explorations, black holes (often) saturate entanglement entropy the fastest. [MM, van der Schee]

Extensions

The membrane theory is robust, can be generalized away from quenches. [MM, Virrueta]

• Fluid/gravity black brane dual to an inhomogenous state in local thermal equilibrium. To subleading order, we get the membrane coupled to hydrodynamics:

$$S = \int d\operatorname{Area} \, s_{\mathrm{th}}(x) \frac{\mathcal{E}(v)}{\sqrt{1 - v^2}} \left[1 + \mathcal{F}_1(v) \left((\mathcal{A} \cdot n)(n \cdot u) - (\mathcal{A} \cdot u) \right) + \mathcal{F}_2(v) \sigma_{ab} n^a n^b + \dots \right]$$
$$(x) \equiv \frac{(n \cdot u(x))}{\sqrt{1 + (n \cdot u(x))^2}}$$

- Adaptable to other setups, can incorporate β/R and $1/\lambda$ corrections without change in the structure of the membrane theory. 1/N corrections would be most interesting.
- New language opens a rich arena of applications in holographic EE.

v

- Informs tensor network approaches to bulk reconstruction. [Swingle, Harlow et al.]
- "Entropy cone" inequalities generalized to time dependent settings. [Hayden, Headrick, Maloney; Bao et al.; Bao, MM]
- Bit threads reformulation. [Freedman, Headrick; Agon, MM]
- Numerical explorations, black holes (often) saturate entanglement entropy the fastest. [MM, van der Schee]
- Membrane theory is versatile, has connections to operator growth and hydrodynamics, and has all the features to be a universal theory.

Features of the thermalization:

- Conserved densities described by hydro.
- State of the entire system cannot become thermal.
 Small subsystem thermalize by becoming entangled with the rest of the system.

 $S_A(t) \rightarrow S_A^{(eq)}(\beta) = s_{th}(\beta) \operatorname{vol}(A)$ Captures the essence of thermalization.

Goal: Find effective theory (akin to hydro) of entanglement dynamics.

- Insight into thermalization in isolated chaotic quantum systems.
- Alternative history method: Discovered membrane theory by studying AdS black holes, has structure applicable to all chaotic theories.
- In the future conduct further tests, give general derivation. Elucidate connections to other manifestations of chaotic dynamics.

Outline

Transport

- Hydro as an EFT
- Holography for real time dynamics

Thermalization

- Entanglement entropy as a probe
- Membrane theory is the EFT

Butterfly effect

- Butterfly effect, operator growth and OTOC
- Refinement of the chaos bound
- Towards an EFT

Summary and open questions

Butterfly effect in many-body systems: [Larkin, Ovchinnikov; Shenker, Stanford; Kitaev]

• In classical physics butterfly effect is sensitivity to initial data:

 $\delta q(t) = \delta q_0 \, e^{\lambda_L \, t}$

• Quantum many-body context: simple operators (few-body) evolve into complex ones (many-body), one particle can have effect later in entire system.

Butterfly effect in many-body systems: [Larkin, Ovchinnikov; Shenker, Stanford; Kitaev]

• In classical physics butterfly effect is sensitivity to initial data:

- Quantum many-body context: simple operators (few-body) evolve into complex ones (many-body), one particle can have effect later in entire system.
- Chaotic spin chain: $H = -\sum_{i} (Z_i Z_{i+1} 1.05X_i + 0.5Z_i)$
- Time evolution of operators: $Z_1(t) = Z_1 it \ [H, Z_1] \frac{t^2}{2!} \ [H, [H, Z_1]] + \dots$

Butterfly effect in many-body systems: [Larkin, Ovchinnikov; Shenker, Stanford; Kitaev]

• In classical physics butterfly effect is sensitivity to initial data:

- Quantum many-body context: simple operators (few-body) evolve into complex ones (many-body), one particle can have effect later in entire system.
- Chaotic spin chain: $H = -\sum_{i} (Z_i Z_{i+1} 1.05X_i + 0.5Z_i)$
- Time evolution of operators: $Z_1(t) = Z_1 it \ [H, Z_1] \frac{t^2}{Z_1} \ [H, [H, Z_1]] + \dots$

Butterfly effect in many-body systems: [Larkin, Ovchinnikov; Shenker, Stanford; Kitaev]

• In classical physics butterfly effect is sensitivity to initial data:

 $\delta q(t) = \delta q_0 \, e^{\lambda_L \, t}$

• Quantum many-body context: simple operators (few-body) evolve into complex ones (many-body), one particle can have effect later in entire system.

 Y_1

- Chaotic spin chain: $H = -\sum_{i} (Z_i Z_{i+1} 1.05X_i + 0.5Z_i)$
- Time evolution of operators: $Z_1(t) = Z_1 it \ [H, Z_1] \frac{t^2}{2!} \ [H, [H, Z_1]] + \dots$

Butterfly effect in many-body systems: [Larkin, Ovchinnikov; Shenker, Stanford; Kitaev]

• In classical physics butterfly effect is sensitivity to initial data:

- Quantum many-body context: simple operators (few-body) evolve into complex ones (many-body), one particle can have effect later in entire system.
- Chaotic spin chain: $H = -\sum_{i} (Z_i Z_{i+1} 1.05X_i + 0.5Z_i)$
- Time evolution of operators: $Z_1(t) = Z_1 it \ [H, Z_1] \frac{t^2}{2!} \ [H, [H, Z_1]] + \dots$

$$Z_1$$

$$Y_1$$

$$X_1 \quad Z_1 \quad X_1 Z_2$$

Butterfly effect in many-body systems: [Larkin, Ovchinnikov; Shenker, Stanford; Kitaev]

• In classical physics butterfly effect is sensitivity to initial data:

- Quantum many-body context: simple operators (few-body) evolve into complex ones (many-body), one particle can have effect later in entire system.
- Chaotic spin chain: $H = -\sum_{i} (Z_i Z_{i+1} 1.05X_i + 0.5Z_i)$
- Time evolution of operators: $Z_1(t) = Z_1 it [H, Z_1] \frac{t^2}{2!} [H, [H, Z_1]] + ...$

$$\begin{array}{c} \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Butterfly effect in many-body systems: [Larkin, Ovchinnikov; Shenker, Stanford; Kitaev]

• In classical physics butterfly effect is sensitivity to initial data:

- Quantum many-body context: simple operators (few-body) evolve into complex ones (many-body), one particle can have effect later in entire system.
- Chaotic spin chain: $H = -\sum_{i} (Z_i Z_{i+1} 1.05X_i + 0.5Z_i)$
- Time evolution of operators: $Z_1(t) = Z_1 it [H, Z_1] \frac{t^2}{2!} [H, [H, Z_1]] + ...$

Butterfly effect in many-body systems: [Larkin, Ovchinnikov; Shenker, Stanford; Kitaev]

• In classical physics butterfly effect is sensitivity to initial data:

 $\delta q(t) = \delta q_0 \, e^{\lambda_L \, t}$

- Quantum many-body context: simple operators (few-body) evolve into complex ones (many-body), one particle can have effect later in entire system.
- Chaotic spin chain: $H = -\sum_{i} (Z_i Z_{i+1} 1.05X_i + 0.5Z_i)$
- Time evolution of operators: $Z_1(t) = Z_1 it [H, Z_1] \frac{t^2}{2!} [H, [H, Z_1]] + ...$

$$\begin{array}{c} 1(v) = Z_{1} & vv \left[\Pi, Z_{1}\right] & 2! \\ & Z_{1} \\ & Y_{1} \\ & X_{1} & Z_{1} & X_{1}Z_{2} \\ & Y_{1} & X_{1}Y_{2} & Y_{1}Z_{2} \\ & X_{1} & Z_{1} & X_{1}X_{2} & X_{1}Z_{2} & Y_{1}Y_{2} & Z_{1}Z_{2} & X_{1}X_{2}Z_{3} \\ & & \cdot \end{array}$$

• Diagnostic is OTOC:

$$C(t,x) = -\frac{\langle [W(t,x), V(0)]^2 \rangle}{\langle V^2 \rangle \langle W^2 \rangle}$$

In its expansion both TO and OTO terms.

Effective size of an operator in a thermal state:

 Chaotic time evolution makes simple local operators complex. Size can be probed by the OTOC: [Roberts, Susskind, Stanford]

$$C(t,x) = -\frac{\langle [W(t,x), V(0)]^2 \rangle}{\langle V^2 \rangle \langle W^2 \rangle}$$

Effective size of an operator in a thermal state:

 Chaotic time evolution makes simple local operators complex. Size can be probed by the OTOC: [Roberts, Susskind, Stanford]

$$C(t,x) = -\frac{\langle [W(t,x), V(0)]^2 \rangle}{\langle V^2 \rangle \langle W^2 \rangle}$$

• Chaos bound: [Maldacena, Shenker, Stanford]

$$C(t,x) = \frac{\#}{N^2} \exp(\lambda_L t) + \dots \quad \beta \ll t \ll t_{\rm scr}$$
$$\lambda_L \le \frac{2\pi}{\beta}$$

Effective size of an operator in a thermal state:

 Chaotic time evolution makes simple local operators complex. Size can be probed by the OTOC: [Roberts, Susskind, Stanford]

$$C(t,x) = -\frac{\langle [W(t,x), V(0)]^2 \rangle}{\langle V^2 \rangle \langle W^2 \rangle}$$

- Chaos bound: [Maldacena, Shenker, Stanford] $C(t,x) = \frac{\#}{N^2} \exp(\lambda_L t) + \dots \quad \beta \ll t \ll t_{\text{scr}}$ $\lambda_L \le \frac{2\pi}{\beta}$
- Refinement: [Kemani, Huse, Nahum; Xu, Swingle; Mezei, Sárosi]

$$C(t, x = vt) = \frac{\#}{N^2} \exp\left(\lambda(v) t\right) + \dots$$

Effective size of an operator in a thermal state:

 Chaotic time evolution makes simple local operators complex. Size can be probed by the OTOC: [Roberts, Susskind, Stanford]

$$C(t,x) = -\frac{\langle [W(t,x), V(0)]^2 \rangle}{\langle V^2 \rangle \langle W^2 \rangle}$$

- Chaos bound: [Maldacena, Shenker, Stanford] $C(t,x) = \frac{\#}{N^2} \exp(\lambda_L t) + \dots \quad \beta \ll t \ll t_{\text{scr}}$ $\lambda_L \le \frac{2\pi}{\beta}$
- Refinement: [Kemani, Huse, Nahum; Xu, Swingle; Mezei, Sárosi]

$$C(t, x = vt) = \frac{\#}{N^2} \exp(\lambda(v) t) + \dots$$
$$\lambda(v) \le \frac{2\pi}{\beta} \left(1 - \frac{|v|}{v_B}\right)$$

Generic behavior velocity dependence (SYK-like models, 2d CFT, higher-d CFT in hyperbolic space):

Effective size of an operator in a thermal state:

• In all examples we have:

$$C(t,x) \approx \frac{\#}{N^2} \int d\nu \, \frac{\exp\left[(j(\nu) - 1)t - (i\nu + d/2 - 1)x\right]}{\sin\left(\frac{\pi j(\nu)}{2}\right)}$$

where $j(\nu)$ is the leading Regge trajectory (pomeron).

- For $\beta \ll t \ll t_{\rm scr}$, evaluate using saddle point:

Effective size of an operator in a thermal state:

• In all examples we have:

$$C(t,x) \approx \frac{\#}{N^2} \int d\nu \, \frac{\exp\left[(j(\nu) - 1) \, t - (i\nu + d/2 - 1) \, x\right]}{\sin\left(\frac{\pi j(\nu)}{2}\right)}$$

where $j(\nu)$ is the leading Regge trajectory (pomeron).

• For $\beta \ll t \ll t_{
m scr}$, evaluate using saddle point:

- For $v < v_*$, $\lambda(v)$ is the Legendre transform of $j(\nu)$. For $v \ge v_*$ stress tensor dominates, and chaos is maximal.
- How do we write a pomeron EFT? How is it related to the Schwarzian EFT of the SYK model? [Kitaev, Suh] What happens around $t \sim t_{\rm scr}$? [von Keyserlingk et al.; Xu, Swingle]

Interplay with entanglement dynamics

Hints at deep relation between operator growth and EE dynamics:

• v_B is special point in both $\lambda(v)$ and $\mathcal{E}(v)$, but relation between the two "transport coefficients" beyond this is unknown. (v_B also makes appearance in pole-skipping. [Grozdanov et al.])

Interplay with entanglement dynamics

 $\lambda(\mathbf{v})$

0.4

0.6

Hints at deep relation between operator growth and EE dynamics:

• v_B is special point in both $\lambda(v)$ and $\mathcal{E}(v)$, but relation between the two "transport coefficients" beyond this is unknown. (v_B also makes appearance in pole-skipping. [Grozdanov et al.])

Interplay with entanglement dynamics

Hints at deep relation between operator growth and EE dynamics:

• v_B is special point in both $\lambda(v)$ and $\mathcal{E}(v)$, but relation between the two "transport coefficients" beyond this is unknown. (v_B also makes appearance in pole-skipping. [Grozdanov et al.])

 Can use the emergent light cone to put tight bounds on the entropy. The membrane theory obeys these bounds. [MM, Stanford; Jonay, Huse, Nahum]

$$\mathcal{E}_{\max}(v) = v_E + \left(1 - \frac{v_E}{v_B}\right)|v| \qquad (|v| \le v_B)$$

Outline

Transport

- Hydro as an EFT
- Holography for real time dynamics

Thermalization

- Entanglement entropy as a probe
- Membrane theory is the EFT

Butterfly effect

- Butterfly effect, operator growth and OTOC
- Refinement of the chaos bound
- Towards an EFT

Summary and open questions

Phenomena associated with chaotic dynamics:

• Hydrodynamics is the EFT for transport, serves as target

Phenomena associated with chaotic dynamics:

- Hydrodynamics is the EFT for transport, serves as target
- Universality classes of thermalization: Quasiparticle model vs Membrane theory
- Derived the membrane theory of entanglement dynamics from holography, evidence for universality, rich applications

Phenomena associated with chaotic dynamics:

- Hydrodynamics is the EFT for transport, serves as target
- Universality classes of thermalization: Quasiparticle model vs Membrane theory
- Derived the membrane theory of entanglement dynamics from holography, evidence for universality, rich applications

Operator growth probed by OTOC, refined bound on chaos

Phenomena associated with chaotic dynamics:

- Hydrodynamics is the EFT for transport, serves as target
- Universality classes of thermalization: Quasiparticle model vs Membrane theory
- Derived the membrane theory of entanglement dynamics from holography, evidence for universality, rich applications

Operator growth probed by OTOC, refined bound on chaos

- Uncovered interplay between these phenomena:
 - Data of EE dynamics to chaotic correlators, membrane theory obeys general bounds, entanglement wedge argument
 - Membrane couples to hydrodynamics

Open questions and outlook for gravity

Open questions and some hints

What does the membrane theory imply for holographic RG?
 Hint: The metric inside the horizon does not seems to be organized by scale.

Open questions and outlook for gravity

Open questions and some hints

What does the membrane theory imply for holographic RG?
 Hint: The metric inside the horizon does not seems to be organized by scale.

Implications for tensor network approaches?
 "Gravity is the hydrodynamics of entanglement"?
 Hint: Found a quantitative tensor network-like description, after partially solving the EOMs.

Open questions and outlook for gravity

Open questions and some hints

What does the membrane theory imply for holographic RG?
 Hint: The metric inside the horizon does not seems to be organized by scale.

Implications for tensor network approaches?
 "Gravity is the hydrodynamics of entanglement"?
 Hint: Found a quantitative tensor network-like description, after partially solving the EOMs.

 Meaning of saturation of refined chaos bound? Hint: Boosting enhances chaos, stringy near-extremal rotating BHs likely give near-maximal growth, Schwarzian universality.

Backup slides
Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs, subsequently travel freely at the speed of light isotropically.

- Leads to linear growth with $v_E = 1$ in 2d.
- Higher dimensions: entanglement spreading depends on entanglement pattern on the light cone μ[L_Σ].
 Contribution from each light cone has to be added.
 [Casini, Liu, MM]

Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs, subsequently travel freely at the speed of light isotropically.

- Leads to linear growth with $v_E = 1$ in 2d.
- Higher dimensions: entanglement spreading depends on entanglement pattern on the light cone μ[L_Σ].
 Contribution from each light cone has to be added.
 [Casini, Liu, MM]

2t

Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs, subsequently travel freely at the speed of light isotropically.

- Leads to linear growth with $v_E = 1$ in 2d.
- Higher dimensions: entanglement spreading depends on entanglement pattern on the light cone μ[L_Σ].
 Contribution from each light cone has to be added.
 [Casini, Liu, MM]

Bound on the entanglement speed from SSA:

$$v_E \le v_E^{(\text{EPR})} = \frac{\Gamma(\frac{d-1}{2})}{\sqrt{\pi}\Gamma(\frac{d}{2})} < v_E^{(\text{SBH})}$$

Slower than holography.

2t

Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs, subsequently travel freely at the speed of light isotropically.

- Leads to linear growth with $v_E = 1$ in 2d.
- Higher dimensions: entanglement spreading depends on entanglement pattern on the light cone μ[L_Σ].
 Contribution from each light cone has to be added.
 [Casini, Liu, MM]

Bound on the entanglement speed from SSA:

$$v_E \le v_E^{(\text{EPR})} = \frac{\Gamma(\frac{d-1}{2})}{\sqrt{\pi}\Gamma(\frac{d}{2})} < v_E^{(\text{SBH})}$$

Slower than holography.

- In strongly coupled systems, entanglement grows faster than what's possible for free particles streaming at the speed of light!
- Consider the effect of interactions: tensor network picture emerging from scattering particles is natural. [Hartman, Maldacena; Casini, Liu, MM]

In a free theory for Gaussian states we can use the correlation matrix to compute EE.

• Time evolution of a Gaussian initial state is Gaussian (with time dependent complex kernel).

In a free theory for Gaussian states we can use the correlation matrix to compute EE.

- Time evolution of a Gaussian initial state is Gaussian (with time dependent complex kernel).
- Correlation matrix determines all correlation functions due to Wick's theorem:

$$\chi_I = \begin{pmatrix} \phi_i \\ \pi_i \end{pmatrix}, \qquad [\chi_I, \chi_J] = i J_{IJ}$$
$$\Gamma_{IJ} = \frac{1}{2} \langle \psi | \{ \chi_I, \chi_J \} | \psi \rangle$$

In a free theory for Gaussian states we can use the correlation matrix to compute EE.

- Time evolution of a Gaussian initial state is Gaussian (with time dependent complex kernel).
- Correlation matrix determines all correlation functions due to Wick's theorem:

$$\chi_I = \begin{pmatrix} \phi_i \\ \pi_i \end{pmatrix}, \qquad [\chi_I, \chi_J] = i J_I,$$
$$\Gamma_{IJ} = \frac{1}{2} \langle \psi | \{\chi_I, \chi_J\} | \psi \rangle$$

 The symplectic eigenvalues of the correlation matrix give the eigenvalues of the reduced density matrix:

$$\begin{split} \tilde{\chi} &= S\chi \,, \qquad SJS^T = J \,, \\ \tilde{\Gamma} &= S\Gamma S^T = \begin{pmatrix} \operatorname{diag}\left(\gamma_k\right) & 0 \\ 0 & \operatorname{diag}\left(\gamma_k\right) \end{pmatrix} \end{split}$$

In a free theory for Gaussian states we can use the correlation matrix to compute EE.

- Time evolution of a Gaussian initial state is Gaussian (with time dependent complex kernel).
- Correlation matrix determines all correlation functions due to Wick's theorem:

$$\chi_I = \begin{pmatrix} \phi_i \\ \pi_i \end{pmatrix}, \qquad [\chi_I, \chi_J] = i J_I,$$
$$\Gamma_{IJ} = \frac{1}{2} \langle \psi | \{ \chi_I, \chi_J \} | \psi \rangle$$

• The symplectic eigenvalues of the correlation matrix give the eigenvalues of the reduced density matrix:

$$\begin{split} \tilde{\chi} &= S\chi \,, \qquad SJS^T = J \,, \\ \tilde{\Gamma} &= S\Gamma S^T = \begin{pmatrix} \operatorname{diag}\left(\gamma_k\right) & 0 \\ 0 & \operatorname{diag}\left(\gamma_k\right) \end{pmatrix} \end{split}$$

 Numerical results for 3d boundary state quench for scalar field. [Cotler, Hertzberg, MM, Mueller]

Tensor networks and holography

The analogy between minimal cuts and the RT surface computing entanglement entropy has inspired toy models of holography. u = -3

• AdS/MERA analogy [Swingle]

Tensor networks and holography

The analogy between minimal cuts and the RT surface computing entanglement entropy has inspired toy models of holography. u = -3

• AdS/MERA analogy [Swingle]

• Time dependent generalization is elusive. I found a quantitative tensor network-like description, after partially solving the equations of motion.

Realization of slogan: "Gravity is the hydrodynamics of entanglement"

Entropy cone

Entanglement entropy in static holographic states obeys inequalities, that are not true in general in QM.

• The best known one is the monogamy of mutual information. [Hayden, Headrick, Maloney] It can be proven using the same steps as in the proof of SSA.

 $S(AB) + S(BC) + S(AC) \geq S(A) + S(B) + S(C) + S(ABC)$

Entropy cone

Entanglement entropy in static holographic states obeys inequalities, that are not true in general in QM.

• The best known one is the monogamy of mutual information. [Hayden, Headrick, Maloney] It can be proven using the same steps as in the proof of SSA.

 $S(AB) + S(BC) + S(AC) \geq S(A) + S(B) + S(C) + S(ABC)$

The inclusion-exclusion proof method can be used to derive many-party inequalities.
 [Bao et al.] Holography is not essential, only need that the entropy is proportional to a partionable geometric minimization problem.

Entropy cone

Entanglement entropy in static holographic states obeys inequalities, that are not true in general in QM.

• The best known one is the monogamy of mutual information. [Hayden, Headrick, Maloney] It can be proven using the same steps as in the proof of SSA.

 $S(AB) + S(BC) + S(AC) \ge S(A) + S(B) + S(C) + S(ABC)$

- The inclusion-exclusion proof method can be used to derive many-party inequalities.
 [Bao et al.] Holography is not essential, only need that the entropy is proportional to a partionable geometric minimization problem.
- HRT is an extremization of codimension-2 surface, no proof (or counterexample) is known for many-party inequalities. Inclusion-exclusion applies to the membrane theory, hence proof for time dependent states (large regions, late times). [Bao, MM]

Bit threads

The Ryu-Takayanagi prescription can be reformulated in the language of bit threads. [Freedman, Headrick]

[Freedman, Headrick] • Maximize $\int_A \sqrt{h} n_\mu w^\mu$

Constraints: $\nabla_{\mu}w^{\mu} = 0$, $1 - |w^{\mu}| \ge 0$

• Covariant generalization to HRT [Headrick, Hubeny]

Bit threads

The Ryu-Takayanagi prescription can be reformulated in the language of bit threads. [Freedman, Headrick]

• Maximize $\int_A \sqrt{h} n_\mu w^\mu$

Constraints: $\nabla_{\mu}w^{\mu} = 0$, $1 - |w^{\mu}| \ge 0$

- Covariant generalization to HRT [Headrick, Hubeny]
- Membrane theory can also be similarly reformulated without reference to holography. Only one constraint changes [Agon, MM]

 $\nabla_{\mu}w^{\mu} = 0, \quad H(w_t) - |\vec{w}| \ge 0$

 $H(w_t)$ is the Legendre transform of $\mathcal{E}(v)$:

 $H(w_t) \equiv \mathcal{E}(v) - v \,\mathcal{E}'(v), \quad w_t \equiv -\mathcal{E}'(v)$

Bit threads

The Ryu-Takayanagi prescription can be reformulated in the language of bit threads. [Freedman, Headrick]

• Maximize $\int_A \sqrt{h} n_\mu w^\mu$

Constraints: $\nabla_{\mu}w^{\mu} = 0$, $1 - |w^{\mu}| \ge 0$

- Covariant generalization to HRT [Headrick, Hubeny]
- Membrane theory can also be similarly reformulated without reference to holography. Only one constraint changes [Agon, MM]

$$abla_{\mu} w^{\mu} = 0, \quad H(w_t) - |\vec{w}| \ge 0$$

 $H(w_t)$ is the Legendre transform of $\mathcal{E}(v)$:

 $H(w_t) \equiv \mathcal{E}(v) - v \,\mathcal{E}'(v), \quad w_t \equiv -\mathcal{E}'(v)$

- The map that reconstructs the HRT surface from the minimal membrane can be used to push the membrane theory bit thread into the bulk.
- Membrane theory is versatile, has connections to operator growth and hydrodynamics, and has all the features to be a universal theory.

Entanglement entropy obeys inequalities, natural to consider bounds in the quench setup.

• $v_E \leq 1$ can be proven using Lorentz invariance and the SSA inequality, [Casini, Liu, MM] or the monotonicity of relative entropy. [Afkhami-Jeddi, Hartman]

Entanglement entropy obeys inequalities, natural to consider bounds in the quench setup.

- $v_E \leq 1$ can be proven using Lorentz invariance and the SSA inequality, [Casini, Liu, MM] or the monotonicity of relative entropy. [Afkhami-Jeddi, Hartman]
- Monotonicity of (thermal) relative entropy for subsystems combined with emergent v_B light cones at finite temperature in chaotic systems:

 $S[A(t)] \le S[A'(t')] + s_{\rm th} \left(V[A(t)] - V[A'(t')] \right)$

Gives bound for all times. Can be combined with another proposed inequality. [MM, Stanford]

Entanglement entropy obeys inequalities, natural to consider bounds in the quench setup.

- $v_E \leq 1$ can be proven using Lorentz invariance and the SSA inequality, [Casini, Liu, MM] or the monotonicity of relative entropy. [Afkhami-Jeddi, Hartman]
- Monotonicity of (thermal) relative entropy for subsystems combined with emergent v_B light cones at finite temperature in chaotic systems:

$$S[A(t)] \le S[A'(t')] + s_{\rm th} \left(V[A(t)] - V[A'(t')] \right)$$

Gives bound for all times. Can be combined with another proposed inequality. [MM, Stanford]

Consequences:

$$v_E \le v_B \,, \quad t_S \ge \frac{R_{\text{insc}}}{v_B}$$

A(t)

In holography, for spheres saturation is often as fast as possible. [Liu, Suh; MM, Stanford; MM₁]

Entanglement entropy obeys inequalities, natural to consider bounds in the quench setup.

- $v_E \leq 1$ can be proven using Lorentz invariance and the SSA inequality, [Casini, Liu, MM] or the monotonicity of relative entropy. [Afkhami-Jeddi, Hartman]
- Monotonicity of (thermal) relative entropy for subsystems combined with emergent v_B light cones at finite temperature in chaotic systems:

$$S[A(t)] \le S[A'(t')] + s_{\rm th} \left(V[A(t)] - V[A'(t')] \right)$$

Gives bound for all times. Can be combined with another proposed inequality. [MM, Stanford]

Consequences:

$$v_E \le v_B \,, \quad t_S \ge \frac{R_{
m insc}}{v_B}$$

In holography, for spheres saturation is often as fast as possible. [Liu, Suh; MM, Stanford; MM₁]

• Membrane theory proof: there exists a maximal membrane tension compatible with the general properties discussed before.

$$\mathcal{E}_{\max}(v) = v_E + \left(1 - \frac{v_E}{v_B}\right)|v| \qquad (|v| \le v_B)$$

The resulting minimal membrane is a combination of a cylinder and the cone saturating the combined inequalities. $[MM_2]$

