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Quantum chaotic dynamics

Phenomena associated with chaotic dynamics:

Transport Thermalization

Butterfly effect
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Quantum chaotic dynamics

Phenomena associated with chaotic dynamics:

Transport Thermalization Butterfly effect
Ultimate goal: understand these phenomena and their relation in quantum systems

Goal of talk:

* Develop an effective field theory at long distances and at late times for each process
e Study their interplay

* Relate them to gravity through AdS/CFT



Quantum chaotic dynamics

Setup:

* Constituents: lattice QFT (HEP), spins/electrons (CMT),

atoms (AMO), qubits (Ql) Quantum system
with many
* Degrees of freedom interacting strongly through local interacting degrees
chaotic Hamiltonian. of freedom

* In highly excited state, out of equilibriumat t =0,
in equilibrium for ¢ — oo.

Fully isolated from

* Foundational question in statistical physics. Paradigm shift ,
environment

from ensembles to closed systems. Subject to intense
current activity in HEP, CMT, Ql, and AMO experiments.



Relation to gravity

Study the setup using holographic duality:

* A QFT settling to thermal equilibrium is dual to a collapsing
black hole.

* No small parameters, holography is indispensible in
understanding real time quantum dynamics.

* Entanglement plays a crucial role in thermalization.
Geometric prescription for computing entanglement entropy.
[Ryu, Takayanagi]

* Recent breakthroughs in quantum chaos at this intersection.
[Shenker, Stanford; Kitaev]




Relation to gravity

Study the setup using holographic duality:
* A QFT settling to thermal equilibrium is dual to a collapsing

uantum system
black hole. ]
e o with many
* No small parameters, holography is indispensible in : :
: : . interacting degrees
understanding real time quantum dynamics.
: : . of freedom
* Entanglement plays a crucial role in thermalization.
Geometric prescription for computing entanglement entropy.
* Recent breakthroughs in quantum chaos at this intersection. I I
It from Qubit:
* Holography teaches about quantum gravity through strongly

interacting QFTs.

* Realization that entanglement is key to connectedness of
spacetime.

e “Gravity is the hydrodynamics of entanglement”



Hydrodynamics

We have an effective theory for describing conserved densities.

* Hydrodynamics applies universally for all chaotic systems.
Generalized hydrodynamics for integrable systems.

* Navier-Stokes equations: 9v + (v V)v —vV?v = —Vp
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Hydrodynamics

We have an effective theory for describing conserved densities.

* Hydrodynamics applies universally for all chaotic systems.
Generalized hydrodynamics for integrable systems.

* Navier-Stokes equations: 9v + (v V)v —vV?v = —Vp

e Relativistic hydro from hep-th POV is an EFT based on
systematic long distance, late time expansion. Fluid variables: I I

Tab — (P + p)Uan + P Nab + Hab
For conformal fluids one transport coefficient at first order:

Moy = —2n04p + - .. t

* Hydrodynamics follows from the conservation of 7}, . Solution
determines (T,;) out of equilibrium.




Hydrodynamics

We have an effective theory for describing conserved densities.

* Fluid/gravity constructs black holes with bumpy horizons
from fluid flows.

e Alternative history: String theorists discover hydrodynamics
by studying AdS black holes.




Hydrodynamics

We have an effective theory for describing conserved densities.

Fluid/gravity constructs black holes with bumpy horizons

from fluid flows.
Quantum system

* Alternative history: String theorists discover hydrodynamics : With UEIh/
by studying AdS black holes. interacting degrees
of freedom

* Interested in more data than (7};): entanglement entropy,
butterfly effect, etc.

* | want to follow the “alternative history” path to discover a I I
hydrodynamic effective theory of entanglement dynamics
and operator growth. /
* Hydrodynamics applies universally for all chaotic systems,

and there is evidence for the universality of the other
effective theories.



Outline

Transport
* Hydro as an EFT
* Holography for real time dynamics

Thermalization
* Entanglement entropy as a probe
 Membrane theory is the EFT

Butterfly effect

* Butterfly effect, operator growth and OTOC
* Refinement of the chaos bound

* Towards an EFT

Summary and open questions
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Thermalization
* Entanglement entropy as a probe
 Membrane theory is the EFT




Quantum thermalization and subsystems

Quantum thermalization
* Pure state with nonzero energy density: [1/(0))
Unitary time evolution: |1 (t)) = e~ “Ht}2(0))
e PH
o p(t) = ()W ()] A ~ cannot mean thermalization.

p(t) encodes all the information in [¢(0)), but at late times in a
very nonlocal way.

Fully isolated from
environment
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Quantum thermalization

Pure state with nonzero energy density: [1(0))
Unitary time evolution: |1 (t)) = e~ “Ht}2(0))
o
p(t) = |v()){(w(t)| & 7 cannot mean thermalization.

p(t) encodes all the information in [¢(0)), but at late times in a
very nonlocal way.

Consider subsystems:
In a local system: H = Ha Q H
Reduced density matrix: pa = Tr 3 [1) (¢|

Fully isolated from
environment




Quantum thermalization and subsystems

Quantum thermalization

Pure state with nonzero energy density: 11(0))
Unitary time evolution: |1 (t)) = e~ “Ht}2(0))
o
p(t) = |v()){(w(t)| & 7 cannot mean thermalization.

p(t) encodes all the information in [¢(0)), but at late times in a
very nonlocal way.

Consider subsystems:

In a local system: H = Ha Q H

Reduced density matrix: pa = Tr 3 [1) (¢|

—BH

Z

€

Thermalization: pa(t) — PEEQ) (6) =Tr;

For t — oo, in the thermodynamic limit A — oo, with 3
determined by the energy density. Entanglement is crucial in

making this possible.

Fully isolated from
environment




Entanglement entropy

Entanglement entropy is a good diagnostic of thermalization,
we focus on this quantity.
Entanglement entropy:
Sa=-Trapalogpa
In ground states of local Hamiltonians the entropy scales
with the area:
Sa = # %_(22) +...

A generic state in the Hilbert space shows volume scaling. )3
_ Typical
Sa = s vol(4) + ... A point inside
unentangled
< with outside

Y

Typical
point inside
entangled
with outside
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Entanglement entropy

Entanglement entropy is a good diagnostic of thermalization,
we focus on this quantity.
* Entanglement entropy:
Sa=-Trapalogpa
* In ground states of local Hamiltonians the entropy scales

with the area:
area(.
Sa=# 5d—_(2) +

* A generic state in the Hilbert space shows volume scaling.

_ Typical
Sa = stnvol(A) + ... A point inside
e Purest setup is a quench: start with ground state of a local unentangled
Hamiltonian, change the Hamiltonian suddenly, and let the R with outside

system evolve. (No transport.)

Typical
point inside
entangled
with outside




Entanglement entropy

Entanglement entropy is a good diagnostic of thermalization,
we focus on this quantity.
* Entanglement entropy:
Sa=—-Trapalogpa
* |In ground states of local Hamiltonians the entropy scales

with the area:
area(.
Sa=# 5d—_(2) +

* A generic state in the Hilbert space shows volume scaling.

Typical

Sl = e voll{Al) o o A p»(;?nt inside
e Purest setup is a quench: start with ground state of a local unentangled

Hamiltonian, change the Hamiltonian suddenly, and let the « with outside

system evolve. (No transport.)
* Instead of following an operator (matrix), we follow a t

number.

e PH

palt) = pi?(8) =Trz —
Sa(t) = SV (B) = sen(B) vol(A)

Captures the essence of thermalization.

Typical
point inside
entangled
with outside




In cold atom experiments we can realize quenches and measure the entanglement of

subsystems.

Entanglement entropy in experiment

* The state of the total system is pure.

Renyi entropy: S,

Renyi entropy: S,
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Entanglement entropy in experiment

In cold atom experiments we can realize quenches and measure the entanglement of
subsystems.

The state of the total system is pure.

Sparsely entangled initial state.
Volume law saturation.
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Entanglement entropy in experiment

In cold atom experiments we can realize quenches and measure the entanglement of

subsystems.

* The state of the total system is pure.

* Sparsely entangled initial state.
* Volume law saturation.

e Linear growth at early times. = = - -
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Universality classes of entropy dynamics

| propose that there are two universality classes of entropy dynamics at
long distances and late times (in translationally invariant systems).

e 2dintegrable models, RCFTs, d>2 free theories are described by the
quasiparticle model.

* The holographic results can be reformulated in terms of a
membrane theory, which then can be adopted to any chaotic
system. Applies to holographic theories, random circuits, evidence
for chaotic spin chains.

* Isthere something in between?

 Analogous to the dichotomy between generalized hydrodynamics
applicable to integrable systems (giving ballistic transport) and
hydrodynamics (describing diffusive transport).



Entropy in the hydrodynamic limit
Sa(t)
- ' A Sa = sgnvol(A) + ...
e Qualitative picture of entanglement 1 1
entropy at time t of a region of
characteristic size R, R, t > tioc .

Sq = UEESthAgt-l—...

: : S
t1oc K R tS ~ R t

One-point functions
reach thermal value at | | Saturation takes t;, ~ R

tloc ~ similarly to (¢(R) ¢(0))



Entropy in the hydrodynamic limit

Qualitative picture of entanglement
entropy at time t of a region of
characteristic size R, R, t > tioc .
[Cardy, Calabrese; Hartman,
Maldacena; Liu, Suh]

EE in free scalar theory for a disk, dots
are data points, line is quasiparticle
theory [Cotler, Hertzberg, MM,
Mueller]

EE in holographic theories for a disk,
data collapse, solid line is membrane
theory, deviation is controlled by 1/R
[MM,]

Sal(t)

t

Sa = sgnvol(A) + ...

Sa Z’UEESthAgt—I—...

> 1

tloc < R

Boundary State Quench (3 = 10) in 2+1 Dimensions
00, RMax = 1200, NR = 1200, LMax = 300)
T T T T




AdS/CFT and entanglement entropy

AdS/CFT is an exact equivalence between QG theories in AdS,,, spacetimes and CFT,’s.
e E.g. N =4 Super Yang-Mills theory ™= Type |IB string theory on AdSs x S°

|
 Strongly coupled CFT (hard) == Semiclassical gravity (easy)

Area of extremal surface ending on X

* Entanglement entropy of A

extremal area
4G N

Sa =



AdS/CFT and entanglement entropy

AdS/CFT is an exact equivalence between QG theories in AdS,,, spacetimes and CFT,’s.
E.g. N =4 Super Yang-Mills theory

Strongly coupled CFT (hard)

Entanglement entropy of A

» Area law in the ground state

» Volume scaling at finite
temperature

S

Type |IB string theory on AdSs x S°

Semiclassical gravity (easy)

Area of extremal surface ending on X

extremal area

AG N
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AdS/CFT and entanglement entropy

AdS/CFT is an exact equivalence between QG theories in AdS,,, spacetimes and CFT,’s.
e E.g. N =4 Super Yang-Mills theory ™= Type |IB string theory on AdSs x S°

|
 Strongly coupled CFT (hard) == Semiclassical gravity (easy)

Area of extremal surface ending on X

* Entanglement entropy of A

extremal area
4G N

A
» Area law in the ground state UV\\J{
IL
A l t

Sa =

» Volume scaling at finite

temperature ‘ ’

I
* Quench, thermalization == Black hole formation from collapse




Membrane theory of entanglement dynamics

Can reformulate holographic surface extremization in d+1 dimensions as membrane

minimization in d dimensions in the limit R,t > tioc. A

* Detailed understanding of HRT surfaces. The surface has
three parts: . v
1. Outside the horizon part gives (divergent) area law. l
2. Behind the horizon region. IR "

3. Behind the shell part gives entropy in the vacuum.

Vaidya quench




Membrane theory of entanglement dynamics

Can reformulate holographic surface extremization in d+1 dimensions as membrane
minimization in d dimensions in the limit R,t > tioc.

A
* Detailed understanding of HRT surfaces. The surface has
three parts: ° . v
1. Outside the horizon part gives (divergent) area law. l
2. Behind the horizon region. IR
3. Behind the shell part gives entropy in the vacuum. 4
* Only the 2. part contributes to the extensive part of the entropy. __ | |
S(t) = 5en RV 1 Sext (%) + ...

Vaidya quench




Membrane theory of entanglement dynamics

Can reformulate holographic surface extremization in d+1 dimensions as membrane
minimization in d dimensions in the limit R,t > tioc.

* Only the 2. part contributes to the extensive part of the entropy.

t
S(t> — SthRd_l‘Sext (E) + ...

e Scalinglimit: =/ - Rx¥, z— 2z
Area functional independent of the derivatives of z. Solve algebraic EOM, plug back
into action to derive membrane theory.

Vaidya quench

pd




Membrane theory of entanglement dynamics

Can reformulate holographic surface extremization in d+1 dimensions as membrane
minimization in d dimensions in the limit R, ¢ > tioc. [MM.]

* Only the 2. part contributes to the extensive part of the entropy.

t
S(t) = SthRd_lgeXt (E) “F o
e Scalinglimit: =/ - Rx¥, z— 2z
Area functional independent of the derivatives of z. Solve algebraic EOM, plug back
into action to derive membrane theory.

Vaidya quench




Membrane theory of entanglement dynamics

Can reformulate holographic surface extremization in d+1 dimensions as membrane
minimization in d dimensions in the limit R, ¢ > tioc. [MM.]

* Only the 2. part contributes to the extensive part of the entropy.

t
S(t) = 5en B S (E) .
e Scalinglimit: =/ - Rx¥, z— 2z

Area functional independent of the derivatives of z. Solve algebraic EOM, plug back

into action to derive membrane theory. Horizon ~ boundary

£ (v) '

S[A] = sth/dd—lg ﬁﬁ A

Vaidya quench

Shell
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Membrane theory of entanglement dynamics

Can reformulate holographic surface extremization in d+1 dimensions as membrane

|t R7t >> tloc q

m
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constant infalling time. It is independent of quench details.
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Using the NEC, can prove the following properties of £(v) .

£(v) can be thought of as a transport coefficient.

Membrane
constant infalling time. It is independent of quench details.




Membrane theory of entanglement dynamics

Can reformulate holographic surface extremization in d+1 dimensions as membrane

|t R7t >> tloc q
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Using the NEC, can prove the following properties of £(v) .
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Membrane theory of entanglement dynamics

The same description of entanglement dynamics arises in CMT.
 Random guantum circuit model for the evolving wave function.
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Membrane theory of entanglement dynamics

The same description of entanglement dynamics arises in CMT.
 Random guantum circuit model for the evolving wave function.
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Membrane theory of entanglement dynamics

The same description of entanglement dynamics arises in CMT.
 Random guantum circuit model for the evolving wave function.
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* Minimal cut computes the entropy. [Nahum, Ruhman, Vijay, Haah]
\W4
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Coarse graining
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. e S = Sth/ dt" E(v) v
I 0

Minimal membrane phenomenology of entropy dynamics. [Jonay, Huse, Nahum]



Membrane theory of entanglement dynamics

The same description of entanglement dynamics arises in CMT.
 Random guantum circuit model for the evolving wave function.

[
[ (At)) am i ey | |
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[ gy
[
* Minimal cut computes the entropy. [Nahum, Ruhman, Vijay, Haah]
\W4
A : A
Coarse graining
[ — I >
[
I t t
. e S = Sth/ dt" E(v) v
I 0

Minimal membrane phenomenology of entropy dynamics. [Jonay, Huse, Nahum]
* Evidence in chaotic spin chains.

* Remarkable unification of CMT and HEP approaches: Membrane description of EE
growth in quenches.



Applications

EE growth for spherical regions in the hydrodynamic limit is analytically solvable.
* Representative membrane shapes.
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Applications

EE growth for spherical regions in the hydrodynamic limit is analytically solvable. [MM.; MM, ]
* Representative membrane shapes.

T \

WA VARV

* Comparing numerical results for finite R and membrane theory predictions:

S(t) / 8(c0) S(T) / S(eo)
1.0- g '
0.8}
0.61
0.4}
0.2

0.0 i
-0.2°¢ : 02 04 06 08 10 1.2




Extensions

The membrane theory is robust, can be generalized away from quenches.

* Fluid/gravity black brane dual to an inhomogenous state in local thermal equilibrium.
To subleading order, we get the membrane coupled to hydrodynamics:

E(v)

N [1+ Fi(v) (A-n)(n-u) — (A-u)) + Fa(v)oann® + ...

S = /dArea Sth(T)

(n - u())
V1t (n-u(z)?

v(z) =




Extensions

The membrane theory is robust, can be generalized away from quenches.

* Fluid/gravity black brane dual to an inhomogenous state in local thermal equilibrium.
To subleading order, we get the membrane coupled to hydrodynamics:

E(v)
S = /dArea Sth(x)\/l—_irlﬂ [1
(n - u(z))
V1+(n-u(z))?
 Adaptable to other setups, can incorporate /R and 1/ corrections without change
in the structure of the membrane theory. 1/N corrections would be most interesting.

v(z) =

* New language opens a rich arena of applications in holographic EE.
» Informs tensor network approaches to bulk reconstruction.
» “Entropy cone” inequalities generalized to time dependent settings.

> Bit threads reformulation.

» Numerical explorations, black holes (often) saturate entanglement entropy the
fastest.

+ Fi(0) (A-n)(n-u) — (A1) + Fa(v)oepn®n® + . ..



Extensions

The membrane theory is robust, can be generalized away from quenches.

* Fluid/gravity black brane dual to an inhomogenous state in local thermal equilibrium.
To subleading order, we get the membrane coupled to hydrodynamics:

E(v)
S = /dArea Sth(x)\/l—_irlﬂ [1
(n - u(z))
V14 (n-u(@))?
 Adaptable to other setups, can incorporate /R and 1/ corrections without change
in the structure of the membrane theory. 1/N corrections would be most interesting.

v(z) =

* New language opens a rich arena of applications in holographic EE.
» Informs tensor network approaches to bulk reconstruction.
» “Entropy cone” inequalities generalized to time dependent settings.

> Bit threads reformulation.

» Numerical explorations, black holes (often) saturate entanglement entropy the
fastest.

« Membrane theory is versatile, has connections to operator growth and
hydrodynamics, and has all the features to be a universal theory.

+ Fi(0) (A-n)(n-u) — (A1) + Fa(v)oepn®n® + . ..



Summary

Features of the thermalization:

D )
* Conserved densities described by hydro. ¢
e State of the entire system cannot become thermal. —_—
Small subsystem thermalize by becoming entangled

with the rest of the system.

Sa(t) = SEV(B) = s (B) vol(A)
Captures the essence of thermalization.

Goal: Find effective theory (akin to hydro) of ’
entanglement dynamics. * It
* Insight into thermalization in isolated chaotic
quantum systems.
e Alternative history method: Discovered membrane
theory by studying AdS black holes, has structure

applicable to all chaotic theories. S(T) / S(e0)
* In the future conduct further tests, give general [ — —
derivation. Elucidate connections to other 0.8 -
manifestations of chaotic dynamics. 0.6 \ /
os N
0.2 v
T/R

0.2 0.4 0.6 0.8 1.0 1.2
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Butterfly effect
* Butterfly effect, operator growth and OTOC

* Refinement of the chaos bound
* Towards an EFT




Butterfly effect, operator growth and OTOC

Butterfly effect in many-body systems:
* In classical physics butterfly effect is sensitivity to initial data:

dq(t) = dgo et

* Quantum many-body context: simple operators (few-body) evolve into complex ones
(many-body), one particle can have effect later in entire system.



Butterfly effect, operator growth and OTOC

Butterfly effect in many-body systems:
* In classical physics butterfly effect is sensitivity to initial data:

dq(t) = dgo et

* Quantum many-body context: simple operators (few-body) evolve into complex ones
(many-body), one particle can have effect later in entire system.
e Chaotic spin chain: H = — Z (Z;Z;11 — 1.05X; + 0.57;)
i
t2

 Time evolution of operators: Z1(t) = Z1 — it [H, Z1] — o H, [H,Z1]] + ...
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Butterfly effect in many-body systems:
* In classical physics butterfly effect is sensitivity to initial data:

dq(t) = dgo et

* Quantum many-body context: simple operators (few-body) evolve into complex ones
(many-body), one particle can have effect later in entire system.
e Chaotic spin chain: H = — Z (Z;Z;11 — 1.05X; + 0.57;)
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Butterfly effect in many-body systems:
* In classical physics butterfly effect is sensitivity to initial data:

dq(t) = dgo et

* Quantum many-body context: simple operators (few-body) evolve into complex ones
(many-body), one particle can have effect later in entire system.
e Chaotic spin chain: H = — Z (Z;Z;11 — 1.05X; + 0.57;)
i
t2
« Time evolution of operators: Z1(t) = Z; — it [H, Z1| — o H, [H,Z]| + ...
i
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Butterfly effect, operator growth and OTOC

Butterfly effect in many-body systems:
* In classical physics butterfly effect is sensitivity to initial data:

dq(t) = dgo et

* Quantum many-body context: simple operators (few-body) evolve into complex ones
(many-body), one particle can have effect later in entire system.
e Chaotic spin chain: H = — Z (Z;Z;11 — 1.05X; + 0.57;)
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Butterfly effect, operator growth and OTOC

Butterfly effect in many-body systems:
* In classical physics butterfly effect is sensitivity to initial data:

dq(t) = dgo et

Quantum many-body context: simple operators (few-body) evolve into complex ones
(many-body), one particle can have effect later in entire system.
Chaotic spin chain: H = — Z (Z;Z;11 — 1.05X; + 0.57;)

7

t2
 Time evolution of operators: Z1(t) = Z1 — it [H, Z1] — o H, [H,Z1]] + ...
Z
Y;
X, Zi X1Zs

Yi XbYe Y12,
X1 7217 X1 Xo X2y V1Yo Z1Zy X1XoZj

Diagnostic is OTOC:

(W (t ), V(0)])
(V2)(W2)

C(t,x) = —

In its expansion both TO and OTO terms.



Chaotic operator growth

Effective size of an operator in a thermal state:

Chaotic time evolution makes simple local operators

complex. Size can be probed by the OTOC:
[Roberts, Susskind, Stanford]

(W, =), V(0)*)
(V2)(W?)

C(t,z) = —

Defines vp.

XL



Chaotic operator growth

Effective size of an operator in a thermal state:
* Chaotic time evolution makes simple local operators t

complex. Size can be probed by the OTOC: Defines vp.

[Roberts, Susskind, Stanford]

(W, =), V(0)*)
(V2)(W?)

* Chaos bound: [Maldacena, Shenker, Stanford]

C(t,z) = —

Ct,r) === exp(Apt)+... <t << tser




Chaotic operator growth

Effective size of an operator in a thermal state:

* Chaotic time evolution makes simple local operators t
complex. Size can be probed by the OTOC: v | Defines v,

[Roberts, Susskind, Stanford]
(Wt z),V(0)]*)

C'(t = —
&) V3 (W)
* Chaos bound: [Maldacena, Shenker, Stanford]
C(t,x) = % exp(Apt)+... Bt < tser
2T
A < F

* Refinement: [Kemani, Huse, Nahum; Xu, Swingle;
Mezei, Sarosi]

C(t,z =vt) = % exp (A (v)t) + ...



Chaotic operator growth

Effective size of an operator in a thermal state:
e Chaotic time evolution makes simple local operators ¢
complex. Size can be probed by the OTOC: v | Defines vs.

(W (t, ), V(0)]?)

6 ==y

* Chaos bound:

C(t,x) = % exp(Apt)+... [t <ty

27
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e Refinement;: AV)

AL <

C(t,x =ovt) = % exp (A (v)t) + ...

Generic behavior velocity dependence (SYK-like models, X
2d CFT, higher-d CFT in hyperbolic space): N

v
.* ‘)V
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Effective size of an operator in a thermal state:
* Inall examples we have:

# [ ewll) - (v+d/2=1)a]
Ct,z) = Nz dv o (%(W)

where j(v) is the leading Regge trajectory (pomeron).

* For 0 <t < tscr, evaluate using saddle point:
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Chaotic operator growth

Effective size of an operator in a thermal state:
* Inall examples we have:

# [ ewll) - (v+d/2=1)a]
Ct,z) = Nz dv o (%(W)

where j(v) is the leading Regge trajectory (pomeron).

* For 0 <t < tscr, evaluate using saddle point:

Saddle
XPOI(‘
Saddle A(v)
* For v < v,, \(v) is the Legendre transform of j(v).
For v > v, stress tensor dominates, and chaos is maximal.
* How do we write a pomeron EFT? N

How is it related to the Schwarzian EFT of the SYK model?

What happens around ¢ ~ t4. ?



Interplay with entanglement dynamics

A(v)

Hints at deep relation between operator growth and EE dynamics:

* vp is special point in both A(v) and &£(v), but relation between the
two “transport coefficients” beyond this is unknown. ( B also makes
appearance in pole-skipping. )
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* vp is special point in both A(v) and &£(v), but relation between the
two “transport coefficients” beyond this is unknown. ( B also makes
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* Size of operator from entanglement wedge reconstruction:

RW(t)] R[W (2), R[W (2),
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Interplay with entanglement dynamics

Hints at deep relation between operator growth and EE dynamics:

* vp is special point in both A(v) and &£(v), but relation between the
two “transport coefficients” beyond this is unknown. ( B also makes
appearance in pole-skipping. )

* Size of operator from entanglement wedge reconstruction:

RIW (¢)] RIW (¢)] RIW (¢)]
@/ w
= _
Gives an explanation of the relation: »

* Can use the emergent light cone to put tight bounds on the entropy.
The membrane theory obeys these bounds.

Eu(®) = v+ (1= 22 ) ol (Jo] < vn)

UB

A(v)
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Summary

Phenomena associated with chaotic dynamics:
\ * Hydrodynamics is the EFT for transport, serves as target
3 i F * Universality classes of thermalization:
Quasiparticle model vs Membrane theory
e :‘5%'1 * Derived the membrane theory of entanglement dynamics
e from holography, evidence for universality, rich applications
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Summary

Phenomena associated with chaotic dynamics:

Hydrodynamics is the EFT for transport, serves as target
Universality classes of thermalization:

Quasiparticle model vs Membrane theory

Derived the membrane theory of entanglement dynamics
from holography, evidence for universality, rich applications

P L\ S(T)/S()
‘ % 7] R ~
;T A%g 0.8
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1r 1 0.4+

0.2F

Renyi entropy: S,

‘£¢¢¢o )
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mmmmm 02 0 ‘IO 1.2

Operator growth probed by OTOC, reflned bound on chaos
A(v)

A

\k
N
AN
N

ANy
Uncovered interplay between these phenomena:

» Data of EE dynamics to chaotic correlators, membrane
theory obeys general bounds, entanglement wedge
argument

» Membrane couples to hydrodynamics




Open questions and outlook for gravity

Open questions and some hints
* What does the membrane theory imply for holographic RG?
Hint: The metric inside the horizon does not seems to be organized by scale.
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Open questions and outlook for gravity

Open questions and some hints
* What does the membrane theory imply for holographic RG?
Hint: The metric inside the horizon does not seems to be organized by scale.
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Organized by RG scale

Equally important at
the longest scales

* Implications for tensor network approaches?
“Gravity is the hydrodynamics of entanglement”?
Hint: Found a quantitative tensor network-like description, after partially solving the EOMs.

* Meaning of saturation of refined chaos bound?
Hint: Boosting enhances chaos, stringy near-extremal rotating BHs likely give near-maximal

growth, Schwarzian universality.






Quasiparticle model

Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs,
subsequently travel freely at the speed of light isotropically.

e Leads to linear growth with v = 1in 2d.

* Higher dimensions: entanglement spreading depends
on entanglement pattern on the light cone u[Ly].
Contribution from each light cone has to be added.
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Quasiparticle model

Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs,
subsequently travel freely at the speed of light isotropically.

e Leads to linear growth with v = 1in 2d.

* Higher dimensions: entanglement spreading depends
on entanglement pattern on the light cone u[Ly].
Contribution from each light cone has to be added.

Bound on the entanglement speed from SSA: @

(é=L
UESUSEEPR) _ (%57) <U(E§BH) {

val(3)
Slower than holography.
* | Instrongly coupled systems, entanglement grows

faster than what’s possible for free particles streaming
at the speed of light!

* Consider the effect of interactions: tensor network picture
emerging from scattering particles is natural.
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use the correlation matrix to compute EE.

 Time evolution of a Gaussian initial
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Free field theory and the quasiparticle model

In a free theory for Gaussian states we can Strip
use the correlation matrix to compute EE. . et v Lt e S

 Time evolution of a Gaussian initial
state is Gaussian (with time dependent
complex kernel).

e Correlation matrix determines all
correlation functions due to Wick’s

theorem:
XI — (iz) ) [XI? XJ]:iJIJ
1
Pry = 5Whxs, xa ) Sphere
* The symplectic eigenvalues of the ‘ o e 50

correlation matrix give the eigenvalues
of the reduced density matrix:

=Sy, SJST =17,

- diag (&) 0 )
[ = STST = .
( 0 diag (vx)

 Numerical results for 3d boundary state
quench for scalar field.
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The analogy between minimal cuts and the RT surface computing entanglement entropy
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Tensor networks and holography

The analogy between minimal cuts and the RT surface computing entanglement entropy
has inspired toy models of holography. ' - '

 AdS/MERA analogy

=
B>

u=—2 P

¢ 0 0 0 0 b 0 D) ’ |. L I B B R Yu=0

A(l4)

Time dependent generalization is elusive. | found a quantitative tensor network-like
description, after partially solving the equations of motion.
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Realization of slogan: “Gravity is the hydrodynamics of entanglement”




Entropy cone

Entanglement entropy in static holographic states obeys inequalities, that are not true in
general in QM.

 The best known one is the monogamy of mutual information.
It can be proven using the same steps as in the proof of SSA.

S(AB) + S(BC) + S(AC) > S(A) + S(B) + S(C) + S(ABC)
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Entropy cone

Entanglement entropy in static holographic states obeys inequalities, that are not true in
general in QM.

The best known one is the monogamy of mutual information.
It can be proven using the same steps as in the proof of SSA.

S(AB) + S(BC) + S(AC) > S(A) + S(B) + S(C) + S(ABC)

The inclusion-exclusion proof method can be used to derive many-party inequalities.

Holography is not essential, only need that the entropy is proportional to a
partionable geometric minimization problem.

HRT is an extremization of codimension-2 surface, no proof (or counterexample) is

known for many-party inequalities. Inclusion-exclusion applies to the membrane
theory, hence proof for time dependent states (large regions, late times).
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Bit threads

The Ryu-Takayanagi prescription can be reformulated in the language of bit threads.

*  Maximize / Vhn,w!
A
Constraints: V,w" =0, 1—|w"|>0

 Covariant generalization to HRT

* Membrane theory can also be similarly reformulated without reference to holography.
Only one constraint changes

Vu’w“:O, H(wt)—|’lﬁ|20
H (wy) is the Legendre transform of £(v):
H(w) =EW) —v&'(v), w=-E(v)

 The map that reconstructs the HRT surface from the minimal membrane can be used
to push the membrane theory bit thread into the bulk.

* Membrane theory is versatile, has connections to operator growth and
hydrodynamics, and has all the features to be a universal theory.
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Bounds

Entanglement entropy obeys inequalities, natural to consider bounds in the quench setup.

e v <1 can be proven using Lorentz invariance and the SSA inequality, |[Casini, Liu,
VIM | or the monotonicity of relative entropy. [Afkhami-Jeddi, Hartman|

* Monotonicity of (thermal) relative entropy for
subsystems combined with emergent vg light
cones at finite temperature in chaotic systems:

SIA(8)] < S[A'(X)] + sen (VA®)] = VIA' (X))

Gives bound for all times. Can be combined
with another proposed inequality. [IVIIV], Stanford]

* Consequences:

insc

vg Svp, lg 2
VB
In holography, for spheres saturation is often as fast as possible. [Liu, Suh; MM,

Stanford; MM, ]
* Membrane theory proof: there exists a maximal membrane tension compatible with
the general properties discussed before.
VE

Eua(®) = v+ (1= 22 ) ol (Jo] < vn)

The resulting minimal membrane is a combination of a cylinder and the cone
saturating the combined inequalities. [VIM,]



