A Mellin Space Approach to Scattering in de Sitter

Charlotte Sleight IAS

Mostly based on: 1906.12302, and 1907.01143 with M. Taronna

Cosmological Correlators

In Cosmology we measure spatial correlations at late times

These can be traced back to the space-like boundary of the inflationary quasi-de Sitter spacetime.

Challenge: Classify the effects of new degrees of freedom

The effects of particle exchanges are fixed by

Conformal Symmetry + Singularities

In the soft limit $|\mathbf{k}_I| \ll |\mathbf{k}_j|$, j = 1, 2, 3, 4

particles with $m \sim O\left(H\right)$ leave a distinct oscillatory signature

Hubble scale

Arkani-Hamed and Maldacena [hep-th] 1503.08043

Only recently has Conformal symmetry been harnessed to obtain the full exchange

Away from the soft limit the dependence on k_I is smooth

Arkani-Hamed and Maldacena [hep-th] 1503.08043; Arkani-Hamed, Baumann, Lee and Pimentel [hep-th] 1811.00024

... to tackle these cases we need to expand our toolkit

...in AdS we have a pretty good understanding!

This talk: Can we adapt techniques for AdS Witten diagrams to de Sitter?

...in AdS we have a pretty good understanding!

This talk: Can we adapt techniques for AdS Witten diagrams to de Sitter?

The **time-dependence** of the dS background makes them difficult to apply (at least directly) In dS typically use the **Schwinger-Keldysh (in-in) formalism** to compute fixed time correlators:

the bulk time integral follows the in-in contour:

Bridging the Gap between AdS and dS

The key is to adopt a Mellin-Barnes representation in momentum space:

External leg \longrightarrow one Mellin variable, s

Internal leg \longrightarrow two Mellin variables, u, \bar{u}

For example:

Bridging the Gap between AdS and dS

The key is to adopt a Mellin-Barnes representation in momentum space:

Bridging the Gap between AdS and dS

Propagators in dS are given by their counter-parts in EAdS up to a phase

Provides a framework to extend existing techniques for Witten diagrams to de Sitter!

Outline

1.

Starting point:

Contact Amplitudes: Strategy

1. Establish Mellin-Barnes representation in momentum space

2. Convert each external leg to a propagator in dS by multiplying with the appropriate phase:

3. Full contact diagram:

These rules hold for particles of any spin and any mass, but for now we shall focus on scalars...

AdS 3pt contact amplitude of generic scalars

The connection to the bulk is manifest!

Bulk-boundary propagator in Poincaré coordinates:

$$\mathrm{d}s^2 = R^2 \frac{\mathrm{d}z^2 + \mathrm{d}\mathbf{y}^2}{z^2}$$

Bulk integration is encoded in a Dirac delta function:

$$\delta\left(\frac{d}{2} - 2\left(s_1 + s_2 + s_3\right)\right) = \lim_{z_0 \to 0} \int_{z_0}^{\infty} \frac{dz}{z^{d+1}} z^{\sum_{j=1}^{3} \left(\frac{d}{2} - 2s_j\right)}$$

The sum of the Mellin variables is thus conserved: $s_1 + s_2 + s_3 = \frac{d}{4}$

dS 3pt contact amplitude of generic scalars

The overall phase for each branch is constant, since

$$\frac{d}{2} - 2\left(s_1 + s_2 + s_3\right) = 0 \qquad \longrightarrow \qquad \mp \frac{i\pi}{2} \left(-d + \sum_{j=1}^{3} \Delta_j\right)$$
(bulk integration)

The **full amplitude** is the sum:

n

dS 3pt contact amplitude of generic scalars

The overall phase for each branch is constant, since

$$\frac{d}{2} - 2\left(s_1 + s_2 + \ldots + s_n\right) = 0 \qquad \longrightarrow \qquad \mp \frac{i\pi}{2} \left(-d + \sum_{j=1}^{n} \Delta_j\right)$$
(bulk integration)

The **full amplitude** is the sum:

Exchange Amplitudes

3pt diagrams are the **basic building blocks** from which we construct 4pt exchanges

... we just need to figure out the rules to glue them together.

Exchange Amplitudes

3pt diagrams are the **basic building blocks** from which we construct 4pt exchanges

Through the Mellin-Barnes representation this can be adapted to dS!

Expand in complete basis of orthogonal Eigenfunctions of the AdS_{d+1} Laplacian

$$\left[R^2\nabla^2 + \left(\frac{d}{2} + i\nu\right)\left(\frac{d}{2} - i\nu\right) + J\right]\Omega_{\nu,J} = 0$$
 spectral spin parameter

bulk-to-bulk propagator for a spin-J field φ , generic mass $m^2R^2=-(\Delta_+\Delta_-+J)$:

The Spectral integral implements the Dirichlet boundary condition:

$$\lim_{z\to 0}\varphi\left(z,\mathbf{y}\right)=O_{\Delta_{+},J}\left(\mathbf{y}\right)z^{\Delta_{+}-J},$$

which is violated by a single harmonic function:

$$\Omega_{i\left(\frac{d}{2}-\Delta_{+}\right),J} \longrightarrow \lim_{z\to0} \varphi\left(z,\mathbf{y}\right) = O_{\Delta_{+},J}\left(\mathbf{y}\right)z^{\Delta_{+}-J} + O_{\Delta_{-},J}\left(\mathbf{y}\right)z^{\Delta_{-}-J}$$

shadow operator

Harmonic functions admit a "split representation":

Integrated product of bulk-boundary propagators

Exchange diagrams reduce to integrated products of 3pt diagrams

A Conformal Partial Wave is a linear combination of two conformal blocks:

$$\int d^{d}\mathbf{y} = \kappa_{\frac{d}{2}+i\nu,J} \underbrace{\begin{pmatrix} \mathbf{y}_{1} & \mathbf{y}_{3} & \mathbf{y}_{1} \\ \frac{d}{2}-i\nu,J \end{pmatrix}}_{\mathbf{y}_{2}} \underbrace{\begin{pmatrix} \mathbf{y}_{3} & \mathbf{y}_{1} & \mathbf{y}_{3} \\ \frac{d}{2}-i\nu,J \end{pmatrix}}_{\mathbf{y}_{4}} \underbrace{\begin{pmatrix} \mathbf{y}_{3} & \mathbf{y}_{1} & \mathbf{y}_{2} \\ \frac{d}{2}-i\nu,J \end{pmatrix}}_{\mathbf{y}_{4}} \underbrace{\begin{pmatrix} \mathbf{y}_{3} & \mathbf{y}_{1} & \mathbf{y}_{2} \\ \frac{d}{2}-i\nu,J \end{pmatrix}}_{\mathbf{y}_{4}}$$

When $\nu \in \mathbb{R}$ these correspond to contributions from Principal Series representations, which are non-unitary in AdS.

$$= 2 \int_{-\infty}^{\infty} d\nu \frac{1}{\left(\frac{d}{2} + i\nu\right)\left(\frac{d}{2} - i\nu\right) - \Delta_{+}\Delta_{-}} \xrightarrow{\kappa_{\frac{d}{2}} + i\nu, J} \xrightarrow{O_{\frac{d}{2}} + i\nu, J} y_{3} + \dots$$

For exchange Witten diagrams, contributions from **unitary representations** are encoded in poles at $\nu \in i\mathbb{R}$!

Example: four-point exchange for scalar fields

Original contour $\frac{d}{2}+i\nu=\Delta_{-}$ $\frac{d}{2}+i\nu=\Delta_{+}$ $\frac{d}{2}+i\nu=\Delta_{1}+\Delta_{2}$ $\frac{d}{2}+i\nu=\Delta_{1}+\Delta_{2}$ $\frac{d}{2}+i\nu=\Delta_{1}+\Delta_{2}+2$ $\frac{d}{2}+i\nu=\Delta_{1}+\Delta_{2}+2$

contour can only be closed on the **negative** imaginary axis

Two types of contributions:

As required by the boundary condition

$$\lim_{z \to 0} \varphi(z, \mathbf{y}) = O_{\Delta_{+}, 0}(\mathbf{y}) z^{\Delta_{+}}$$

$$\frac{d}{2} + i\nu = \Delta_+$$

$$\frac{d}{2}+i\nu=\Delta_1+\Delta_2+2n\,,\quad \frac{d}{2}+i\nu=\Delta_3+\Delta_4+2m\,,\quad n,\ m\ \in\mathbb{N}$$

Exchanged single particle state

Two-particle states bulk "contact" terms

In the view of extending to dS, we turn to the Mellin-Barnes representation in momentum space

In momentum space, Conformal Partial Waves factorise:

The **Mellin-Barnes representation** for the exchange is **inherited** from the 3pt factors:

Key point: At the level of the Mellin representation, the spectral integral can be lifted!

The factor $\delta_{AdS}(u, \bar{u})$ is an **entire function**:

$$\delta_{\text{AdS}}\left(u,\bar{u}\right) = \frac{1}{2}\sin\left(\pi\left(u + \frac{1}{2}\left(\Delta_{-} - \frac{d}{2}\right)\right)\right)\sin\left(\pi\left(\bar{u} + \frac{1}{2}\left(\Delta_{-} - \frac{d}{2}\right)\right)\right)$$

The factor $\delta_{AdS}(u, \bar{u})$ is an **entire function**:

$$\delta_{\text{AdS}}\left(u,\bar{u}\right) = \frac{1}{2}\sin\left(\pi\left(u + \frac{1}{2}\left(\Delta_{-} - \frac{d}{2}\right)\right)\right)\sin\left(\pi\left(\bar{u} + \frac{1}{2}\left(\Delta_{-} - \frac{d}{2}\right)\right)\right)$$

The poles in u, \bar{u} are associated to **states exchanged** in the direct channel!

Two types of poles contribute to the direct channel expansion in the limit $k_I \rightarrow 0$:

Exchanged single-particle state:

Bulk contact terms:

On type 1 poles the exchange factorises

Their residues generate non-analytic terms in k_I :

$$\sim \#\left(k_I^2\right)^{\Delta_+ - \frac{d}{2}} \left(1 + k_I^2 + \left(k_I^2\right)^2 + \ldots\right) + \text{analytic}$$
 Energy of exchanged single-particle state descendent contributions

Characteristic signal of a single particle exchange!

On type 1 poles the exchange factorises

Their residues generate **non-analytic** terms in k_I :

$$\sim \#\left(k_I^2\right)^{\Delta_+ - \frac{d}{2}} \left(1 + k_I^2 + \left(k_I^2\right)^2 + \ldots\right) + \text{analytic}$$
 Energy of exchanged single-particle state

Characteristic signal of a single particle exchange!

On type 1 poles the exchange factorises

Their residues generate **non-analytic** terms in k_I :

$$\sim \#\left(k_I^2\right)^{\Delta_+ - \frac{d}{2}} \left(1 + k_I^2 + \left(k_I^2\right)^2 + \ldots\right) + \text{analytic}$$
 article state descendent contributions

Energy of exchanged single-particle state

Characteristic signal of a single particle exchange! $\times = \text{zeros of } \delta_{AdS}(u, \bar{u})$

 $\delta_{\mathrm{AdS}}\left(u,\bar{u}\right)$ projects away the shadow contributions!

The type (2) poles encode bulk contact terms, which give only **analytic terms** in k_I ,

These comprise the EFT expansion of the exchange amplitude

Example: External conformally coupled scalars

$$= \frac{1}{k_1 k_2 k_3 k_4} \frac{1}{k_{12}^{d-2}} \left[\sum_{m=0}^{\infty} c_{mn} \left(\frac{k_{34}}{k_{12}} \right)^m \right] \left(\frac{k_I^2}{k_{12}^2} \right)^n$$

$$u + \bar{u} = -n$$

with
$$c_{mn} = \frac{(-1)^m}{2^{2n} m!} \frac{(d-3+2n+m)!}{\left(\frac{\frac{d}{2}+i\mu+m-1}{2}\right)_{n+1} \left(\frac{\frac{d}{2}-i\mu+m-1}{2}\right)_{n+1}}$$

$$m^2 R^2 = -\left(\frac{d}{2}+i\mu\right) \left(\frac{d}{2}-i\mu\right)$$

Four-point exchange of generic scalars

This form is fixed by a combination of Boundary Conditions and Conformal Symmetry!

Four-point exchange of generic scalars

This form is fixed by a combination of Boundary Conditions and Conformal Symmetry!

The corresponding exchange amplitude in de Sitter takes the same form

Contributions from each branch of the in-in contour are obtained by multiplying each leg with the appropriate phase:

Sum contributions from each branch of the in-in contour, keeping the two bulk points separated:

The exchanged single particle state is now signaled by two families of non-analytic terms

$$\sim \sin\left(\left(\frac{\Delta_1 + \Delta_2 + \Delta_+ - d}{2}\right)\pi\right) \sin\left(\left(\frac{\Delta_3 + \Delta_4 + \Delta_+ - d}{2}\right)\pi\right) \left(k_I^2\right)^{\Delta_+ - \frac{d}{2}} \left(1 + k_I^2 + \ldots\right) + \sin\left(\left(\frac{\Delta_1 + \Delta_2 + \Delta_- - d}{2}\right)\pi\right) \sin\left(\left(\frac{\Delta_3 + \Delta_4 + \Delta_- - d}{2}\right)\pi\right) \left(k_I^2\right)^{\Delta_- - \frac{d}{2}} \left(1 + k_I^2 + \ldots\right)$$

This reflects the boundary (late-time) behaviour of fields in dS:

$$\lim_{\eta \to 0} \varphi\left(\eta, \mathbf{k}\right) = O_{\Delta_{+}}\left(\mathbf{k}\right)\eta^{\Delta_{+}} + O_{\Delta_{-}}\left(\mathbf{k}\right)\eta^{\Delta_{-}}$$
 forbidden by Dirichlet b.c. in AdS

$$ds^{2} = R^{2} \frac{-d\eta^{2} + d\mathbf{y}^{2}}{\eta^{2}}$$
$$\eta = -e^{-t}$$

The sine factors originate from the constituent 3pt diagrams:

Mellin representation of dS exchanges

The exchanged single particle state is now signaled by two families of non-analytic terms

$$\sim \sin\left(\left(\frac{\Delta_1 + \Delta_2 + \Delta_+ - d}{2}\right)\pi\right) \sin\left(\left(\frac{\Delta_3 + \Delta_4 + \Delta_+ - d}{2}\right)\pi\right) \left(k_I^2\right)^{\Delta_+ - \frac{d}{2}} \left(1 + k_I^2 + \ldots\right) + \sin\left(\left(\frac{\Delta_1 + \Delta_2 + \Delta_- - d}{2}\right)\pi\right) \sin\left(\left(\frac{\Delta_3 + \Delta_4 + \Delta_- - d}{2}\right)\pi\right) \left(k_I^2\right)^{\Delta_- - \frac{d}{2}} \left(1 + k_I^2 + \ldots\right)$$

In de Sitter there are two types of exchanged particles:

- Light particles: $0 \le m/H < \frac{d}{2} \longrightarrow \frac{d}{2} < \Delta_+ \le d \longrightarrow \text{power law } \left(k_I^2\right)^{\Delta_\pm \frac{d}{2}}$
- Massive particles: $m/H \geq \frac{d}{2} \longrightarrow \Delta_{\pm} = \frac{d}{2} \pm i\nu, \, \nu \in \mathbb{R} \longrightarrow \text{oscillations } \left(k_I^2\right)^{\pm i\nu}$

$$(m^2 = H^2 \Delta_+ \Delta_-)$$

Mellin representation of dS exchanges

Conformal Partial Wave (1)

For an exchanged massive particle $m^2=H^2\left(\frac{d}{2}+i\nu\right)\left(\frac{d}{2}-i\nu\right)$ we have

$$\sim \sin\left(\left(\frac{\Delta_1 + \Delta_2 - \frac{d}{2} + i\nu}{2}\right)\pi\right) \sin\left(\left(\frac{\Delta_3 + \Delta_4 - \frac{d}{2} + i\nu}{2}\right)\pi\right) \left(k_I^2\right)^{i\nu} \left(1 + k_I^2 + \ldots\right) + \sin\left(\left(\frac{\Delta_1 + \Delta_2 - \frac{d}{2} - i\nu}{2}\right)\pi\right) \sin\left(\left(\frac{\Delta_3 + \Delta_4 - \frac{d}{2} - i\nu}{2}\right)\pi\right) \left(k_I^2\right)^{-i\nu} \left(1 + k_I^2 + \ldots\right)$$

$$\propto \sin \left[\delta \left(\mathbf{v}\right) + \mathbf{v} \log \left(k_I^2\right)\right] + \dots$$

Recovers and effortlessly generalises the analysis of

Arkani-Hamed and Maldacena [hep-th] 1503.08043!

Mellin representation of dS exchanges

The **EFT part** of the **dS exchange** is **equal** to that of the **AdS exchange**, up to a sine factor

$$\operatorname{Res}_{u+\bar{u}=-n} \left[\begin{array}{c|c} s_1 & s_2 & s_3 & s_4 \\ \hline & u, \bar{u} \\ \hline & (mR)^2 = \Delta_+ \Delta_- \end{array} \right] = \sin \left[\left(-d + \sum_{j=1}^4 \Delta_j \right) \frac{\pi}{2} \right] \operatorname{Res}_{u+\bar{u}=-n} \left[\begin{array}{c|c} s_1 & s_2 & s_3 \\ \hline & u, \bar{u} & s_2 \\ \hline & s_2 & s_4 \end{array} \right]$$

This is to be expected since the EFT expansion is a sum of contact terms, and we know that:

$$= \sin \left[\left(-d + \sum_{j=1}^{4} \Delta_j \right) \frac{\pi}{2} \right]$$

$$s_1$$

$$s_2$$

$$s_3$$

$$s_4$$

$$s_3$$

Conformal Symmetry + Boundary Conditions imply

3pt Witten diagrams are known for any triplet of spinning fields in position space

C.S. and M. Taronna [hep-th] 1603.00022 C.S. and M. Taronna [hep-th] 1702.08619

We just need to determine their Mellin-Barnes representation in momentum space!

The simplest case is a spin-J field exchanged between scalars

The constituent 3pt Witten diagrams in this case are proportional to a single conformal structure

$$\frac{\left(\frac{\mathbf{y}_{12} \cdot \boldsymbol{\xi}}{|\mathbf{y}_{12}|^2} - \frac{\mathbf{y}_{13} \cdot \boldsymbol{\xi}}{|\mathbf{y}_{13}|^2}\right)^J }{|\mathbf{y}_{12}|^{\Delta_1 + \Delta_2 - \Delta_3 + J} |\mathbf{y}_{23}|^{\Delta_2 + \Delta_3 - \Delta_1 - J} |\mathbf{y}_{31}|^{\Delta_1 + \Delta_3 - \Delta_2 - J}} \;, \quad \boldsymbol{\xi}^2 = 0$$

Spinning Witten diagrams can be obtained by acting with differential operators on a scalar seed

Spinning Witten diagrams can be obtained by acting with differential operators on a scalar seed

Their **Mellin-Barnes** representation is **inherited** from that of the scalar seed!

Spinning Witten diagrams can be obtained by acting with differential operators on a scalar seed

Their **Mellin-Barnes** representation is **inherited** from that of the scalar seed!

For the corresponding amplitude in **de Sitter** we have:

Conformal Partial Wave (1)

In the soft limit $k_I \rightarrow 0$ we have

The angular dependence arises from the contraction of tensor structures:

Conformal Partial Wave (1)

For an exchanged massive spin J particle, $\Delta_{\pm} = \frac{d}{2} \pm i\nu$, we have

$$+\sin\left(\left(\frac{\Delta_1+\Delta_2-\frac{d}{2}-i\nu+J}{2}\right)\pi\right)\sin\left(\left(\frac{\Delta_3+\Delta_4-\frac{d}{2}-i\nu+J}{2}\right)\pi\right)\left(k_I^2\right)^{-i\nu}\right]+\ldots$$

$$\propto C_J^{\left(\frac{d-2}{2}\right)}\left(\cos\theta\right)\,\sin\left[\delta\left(\frac{\nu}{\nu}\right)+\nu\log\left(k_I^2\right)\right]+\dots$$

$$d=3$$

$$P_J(\cos\theta)$$

Recovers and effortlessly generalises the analysis of

Arkani-Hamed and Maldacena [hep-th] 1503.08043!

Thank you!