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Boundary Correlators in de Sitter
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Cosmological Correlators

In Cosmology we measure spatial correlations at late times
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Correlations

380,000 years —+ _
d in the CMB
End of Inflation | Correlations on the
(re-heating) Boundary of (quasi-)dS

These can be traced back to the space-like boundary of the inflationary quasi-de Sitter spacetime.

Challenge: Classify the effects of new degrees of freedom




Boundary Correlators in de Sitter

The effects of particle exchanges are fixed by

Conformal Symmetry + Singularities

Conformal boundary
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m, J

time

Arkani-Hamed and Maldacena [hep-th] 1503.08043



Boundary Correlators in de Sitter

In the soft limit k| < k;|, j7=1,2,3,4

ky

particles with m ~ O (H) leave a distinct oscillatory signature

k1 k2 k3 k4

k; ~ sin [5 (m) + m log k;] Pj (cos8)

m, J mass spin k[ _ ’kl‘

Arkani-Hamed and Maldacena [hep-th] 1503.08043



Boundary Correlators in de Sitter

Only recently has Conformal symmetry been harnessed to obtain the full exchange

m, J

Away from the soft limit the dependence on k; is smooth

4pt
function
A Sln 5 + — log kI
¥ v /‘\/\/\_\ W
m, J Particle
production
K ky EFT
ko ks
» ki

Arkani-Hamed and Maldacena [hep-th] 1503.08043; Arkani-Hamed, Baumann, Lee and Pimentel [hep-th] 1811.00024



Boundary Correlators in de Sitter

LA SV

External Spins? Beyond tree level?

... to tackle these cases we need to expand our toolkit



Boundary Correlators in de Sitter

...in AdS we have a pretty good understanding!

)7 ©)

This talk: Can we adapt techniques for AdS Witten diagrams to de Sitter?



Boundary Correlators in de Sitter

...in AdS we have a pretty good understanding!

This talk: Can we adapt techniques for AdS Witten diagrams to de Sitter?

The time-dependence of the dS background makes them difficult to apply (at least directly)

In dS typically use the Schwinger-Keldysh (in-in) formalism to compute fixed time correlators:

the bulk time integral
follows the in-in contour:

Conformal

boundary ? ;

— branch

A + branch

7




Bridging the Gap between AdS and dS

The key is to adopt a Mellin-Barnes representation in momentum space:

m internal o — /ioo dsq N ds,, duy du, o Ay, dtiyy,
legs Y Cino 2T 21y 2w 2™ 21y 2
external legs internal legs

External leg — one Mellin variable, s

Internal leg — two Mellin variables, wu, u

For example:




Bridging the Gap between AdS and dS

The key is to adopt a Mellin-Barnes representation in momentum space:

S1

T 200 _ _
m internal ~ _ / dsy ds, duy duy duy, di,

Cieo 2mi 2mi 2mi 2mi 2mi 2

legs

B /zoo dSl dSn du1 dﬂl dum dfam Ul,. U1

m internal o 2mi 2mi 2mi 2mi 2w 2mi :
legs U, Um



Bridging the Gap between AdS and dS

Propagators in dS are given by their counter-parts in EAdS up to a phase

u, U
A—HA’ J
“ g — exp £ (u—1u)wi , m*R* = AL A_+J
™,
dS bulk-bulk EAdS Harmonic function
propagator
S
S
AT
A, J
— exp[:l:(s—i—%(A—%))m} , m*R* = A(d—A)+J
dS bulk-boundary EAdS bulk-boundary
propagator propagator

Provides a framework to extend existing techniques for Witten diagrams to de Sitter!
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Contact Amplitudes



Contact Amplitudes

Starting point:



Contact Amplitudes: Strategy

1. Establish Mellin-Barnes representation in momentum space

S1
/I\ I )\
S3 S92

2. Convert each external leg to a propagator in dS by multiplying with the appropriate phase:

s1 Sy 83 S1 s1 S2 83 51

3 3
1l = +1exp —Wiz (Sj + % (Aj — ‘21))] )\ v = —texp |+ (Sj + % (A(,,- — g))] )\
j=1 ’ J=1

S3 S9 : S3 52

time-ordered

(+) branch anti-time-ordered

(-) branch

S1 S9 S3 S1 52 53 S1 So S3

3. Full contact diagram:

These rules hold for particles of any spin and any mass, but for now we shall focus on scalars...



Contact Amplitudes

AdS 3pt contact amplitude of generic scalars

3 ' ' k‘ —28j—|—’iVj
X (5(% —(81-|—82—|—83)) HF (SJ—F%)F(S]— %) (?7)

g=1
bulk integration external legs m3R? = A; (A; — d)
d
Aj = 5 —|— ’LI/J

Bulk-boundary propagator
in Poincaré coordinates:

T  . 4 2 Y 100 ds i, o . k —2s+iv

Modified Bessel function
of the second kind

dz? 4 dy?

2 2
ds* = R =

Bulk integration is encoded in a Dirac delta function:

d . > dz i(%_23j>
) (§ — 2 (51 + So9 + 83)) = Zlolgo 3 Zd—i—l »i=1

=~ &

k» The sum of the Mellin variables is thus conserved: si + s2 + s3 = —



Contact Amplitudes

S1 592 S3

+ branch (sj+2(A;,— 4

3
=1

J

= t+iexp [:Fm'

. 3
%—2(31+82+33):O — $%T (d+ZAJ~>

(bulk integration)

The full amplitude is the sum:

S1 52 S3

interference factor



Contact Amplitudes

S1 S2 S3 Sn

n

n
+ branch — +iexp [;m'é (s; + 1

J=1

The overall phase for each branch is constant, since l

n
g—2(81—|—82—|—...—'—8n):0 E— :FZ;T(d—l—éAj)
(bulk integration)

The full amplitude is the sum:

S1 S2 S3 Sn S1 S2 S3 Sn

+ BEENE

j=1

1 1 | |
| | .
interference factor



Exchange Amplitudes

3pt diagrams are the basic building blocks from which we construct

4dpt exchanges

VY

... we just need to figure out the rules to glue them together.




Exchange Amplitudes

3pt diagrams are the basic building blocks from which we construct

4dpt exchanges

Through the Mellin-Barnes representation this can be adapted to dS!



Harmonic Analysis in EAdSg.+1

Expand in complete basis of orthogonal Eigenfunctions of the AdSqy.+1 Laplacian

T A

_ spectral spin
AdS radius parameter

bulk-to-bulk propagator for a spin-J field ¥, generic mass m*R? = — (AL A_ +J):
A_|_—|—A_:d, A+ZA_

Contact terms

(harmonic functions of spin < J)

The Spectral integral implements the Dirichlet boundary condition:

lim ¢ (2,y) = Oa, . (¥) ZA+_J,

z—0

which is violated by a single harmonic function: /Shadow operator

Vya_n,yy — lime(zy)=0a, )27 +0a s(y)2

z—0

A_—J



Harmonic Analysis in EAdSg.+1

Harmonic functions admit a “split representation”:

. d Integrated product of
g = /d Y bulk-boundary propagators

Exchange diagrams reduce to integrated products of 3pt diagrams

Yy

“Conformal Partial Wave” <«— (1, ;

e.g. Costa, Goncalves and Penedones [hep-th] 1404.5625



Harmonic Analysis in EAdSq.1

A Conformal Partial Wave is a linear combination of two conformal blocks:

Y1 ys yi1 ys
O%—HV,J O% —v,J
—— R%—Hu,!] —|— K/%—il/,J
y2 ya y2 ya

When v € R these correspond to contributions from Principal Series representations,

which are non-unitary in AdS.

Y1 y3
Ad 2/00 ] 1 N Odviv,s N
= v dLiv,J
d . d . 2 ’
o (5 + w) (5 — w) — AL A
Y2 Y4

For exchange Witten diagrams, contributions from unitary representations

are encoded in poles at v € iR !



Harmonic Analysis in EAdSg.+1

Example: four-point exchange for scalar fields iImM
y y ® §+iy:A, »
' ’ Re[v
m. — 2/00 dy 1 Hg—i—in > O%—Hyo < y Original contour >
o (gHW)(§—iv) —AA T )
. l 1 | Y2 Y4 KA ) g+iV:A1+A2
- +iv=A7A3+ Ay

2

® ®

d g+’LV:A1+A2+2
§+iU=A3+A4+2

Two types of contributions: s required by the
boundary condition

lim ¢ (2,y) = Oa, o (y) 227
z—0

d e

: d d .
@ §_|_ZV:A+ @ §—|—ZV:A1+A2+2’I’L, §+ZV:A3+A4+2m, n,mEN

contour can only be closed
on the negative imaginary axis

Two-particle states

Exchanged single particle state bulk “contact" terms




Harmonic Analysis in EAdSg.+1

In the view of extending to dS, we turn to the Mellin-Barnes representation in momentum space

In momentum space, Conformal Partial Waves factorise:

y
d q v Fourier transform
/ d"y >

The Mellin-Barnes representation for the exchange is inherited from the 3pt factors:

Key point: At the level of the Mellin representation, the spectral integral can be lifted!



Mellin representation of AdS exchanges

S1 53

S1 S3
A-i—v 0 _ _ AJH 0 —
_ U X U
> T < cosec (7 (u + )) daas (u, ) >—4 X »AT<
S9 S4

S9 S4

The factor daqs (u, %) is an entire function:

Sads () = 3 sin (m (u+ 5 (A~ 4)))sin (r (a+ § (A=~ §))



Mellin representation of AdS exchanges

S1 S3 1 S3

— cosec (7 (u + ﬂ))I dads (u, )

Conformal Partial Wave @

The factor daqs (u, %) is an entire function:

1
dads (u,u) = §Sin (T (u+ 3 (A —

NI

))) s ( (3 + 4 (A -

(VI8

)))

The poles in u, u are associated to states exchanged in the direct channel!

Two types of poles contribute to the direct channel expansion in the limit k7 — 0:

kr <1 kr > 1
L
N [ [ ® -|-5
/‘ A
Exchanged single-particle state: @ P
\- O | [ [ [ ] _z'_u
2
A
Bulk contactterms: (2):-- e o o o | e .
U+u=—"n ut+u=14+n

integration contour

u or u
m2R2 = —A+A_
d
Ai — == iu



Mellin representation of AdS exchanges

On type @ poles the exchange factorises

S3

Their residues generate non-analytic terms in k; : cpw (1)

~ # (k%)AJF_% (1 + k2 + (k?)Q + .. ) + analytic

T

Energy of exchanged single-particle state

Characteristic signal of a single particle exchange!

kr <1 kr > 1 U Or U
L
e o o ( } o o ( ] —|——
2 m2R2:—A+A_
®\ -3 -2 -1 0
o o o o o o o —%
2
A
@ e o O o o o o o o
Uu+u=-—-n ut+u=1+n

integration contour



Mellin representation of AdS exchanges

On type @ poles the exchange factorises

i S1 S3
= daqs (u, ) 20 Su X U —-
| e “
Their residues generate non-analytic terms in k; : cpw (1)
~ # (k%)AJF_% (1 + k2 + (k?)2 + .. ) + analytic

T

Energy of exchanged single-particle state

Characteristic signal of a single particle exchange!

kr <1
W) (1R ()4 ) - f ¢ o o
Note: CPWs generate two families of non-analytic terms G)\ s 2 a o
(k%)A+_% (1+k§+(k§)2+...> «— - 0 o o
@ e o O [ ( o
u+u=-—-n

integration contour

k> 1 U Or u
L

_|__
2 m2R2 = —A+A_

d .
Ay = 2 +p

L
2
o o o
ut+u=1+n



Mellin representation of AdS exchanges

On type @ poles the exchange factorises

S1 S3

S3

A0
5 S4
|
Their residues generate non-analytic terms in k; : cpw (1)
2\ A+r—4 2 22 :
~ # (k) 1+ ki + (k7)” +...) + analytic
Energy of exchanged single-particle state
Characteristic signal of a single particle exchange! Jaas (u, @)
kr <1 kr > 1 U Or u
NnNA-—F /. 2 22 > - - \) L
(/{1) (\1+'7‘1+<]11) JF) — c A . : “+? m2R% = —ALA_
f Ay = g + i
Note: CPWs generate two families of non-analytic terms (1) 5 2 a1 o
\ .
(k2)°* 2(1+k§+(k¢§)2+...> “«— .+ 0 o o o —%
A
@ e o O [ ( o o [ o
u+uU=-—n ut+u=14+n

integration contour



Mellin representation of AdS exchanges

The type (@) poles encode bulk contact terms, which give only analytic terms in #;,

S1

Resu—i—ﬂ:—n

—> Coefficient admits expansion in 1/m2
m = mass of exchanged particle

These comprise the EFT expansion of the exchange amplitude

Example: External conformally coupled scalars

C pr—
mn 2214 | ((21—|—w-i—m—1) (g—w+m—1>
2 n+1 2 n+1

] [ [ ] [ ] [ ] ]
u+uUu=-—-n u+u=14+n

kr <1 kr > 1 u or u
A, 0 _ 1 1 - k34 " k% " ¢ o o ® () [ ® —I—%
 kikoksky k252 LLZ:O Fmm (k:12> ] (k%z) 1 2 m?R? = —ALA_
Ai = g :Eiu
u+u=—n
@ 3 2 a4 0
. —-1)" d—3+4+2n+m)! \ -
Wlth — ( ) ( ) o o o o [ ) [ ) () _%
@ -

integration contour



Mellin representation of AdS exchanges

Four-point exchange of generic scalars

S1 S3

Ay, 0
u,u< = COSGC( (u-l—u 5AdS >—‘ ——<

On-shell particle exchange (CPW)

This form is fixed by a combination of and Conformal Symmetry!



Mellin representation of (A)dS exchanges

Four-point exchange of generic scalars

S1 S3 S1 S3

AL, 0 _ _ AL, 0 _

— u X U
T cosec (7 (u + u)? dads (u, @) >—A X vﬂ<
EFT
So S4 I32 S4 :
On-shell particle exchange (CPW)
This form is fixed by a combination of and Conformal Symmetry!

The corresponding exchange amplitude in de Sitter takes the same form

S1 S92 S3 S4

S1 S3

_ _ AL, 0 _

= cosec (7 (u + u)) dqs (u, u) u X U

A0
u, U ' '
EFT S
(mR)* = AL A_ | 52 4|

On-shell particle exchange (CPW)

An entire function which now implements
the early-time boundary condition (Bunch Davies)



Mellin representation of (A)dS exchanges

S1 53
AL, 0 _
U X u
A0
S9 S4

Contributions from each branch of the in-in contour are obtained by multiplying each leg with the appropriate phase:

(mR)> = ALA_ 52 54



Mellin representation of dS exchanges

S1 52 S3 S4

S1 S3
_ _ A0 _
= cosec (7 (u + u)) dqs (u, u) U X Up—o
u, U : | .
C:) S92 S4
l |

Conformal Partial Wave @

The exchanged single particle state is now signaled by two families of non-analytic terms

d
~ sin ((A1+A22+A+_d> 7T> sin ((AiﬁA‘l;A*—d) 7r) (k%)AJF_Q (1+k7+...)

C:) + sin ((A1+A2;A_d) 7T> sin ((ASJFAA‘;A_d) 7'(') (k:?)A__

d
2

(1+k7+...)

This reflects the boundary (late-time) behaviour of fields in dS: ) ;
42 — 12 —dn* + dy

n?
lim ¢ (n,k) = Oa, (K)n2+ +04a_ (K)n™-
n—0 @ (k) - () ) forbidden by —t

& Dirichlet b.c. in AdS e
The sine factors originate from the constituent 3pt diagrams:

S1 52 S3 S1

AN\ A A4

. Aj+Ag+A4 —
= sm(( Lt Satos d) 7'(') Ay

S3



Mellin representation of dS exchanges

S1 S3
_ _ A0 _
= cosec (7 (u + u)) dqs (u, u) u X U
u, U ' : >
(mR)? = ALA_ @ S92 Sy
l |

Conformal Partial Wave @

The exchanged single particle state is now signaled by two families of non-analytic terms

d
~ sin ((A“LAQ;A*d) 7T> sin ((AiﬁASLA*d) 7r) (k%)AJF_Q (1+k7+...)

C:) + sin ((AHFAZ;A_d) 7T) sin ((ASJFAA‘;A_d) 7'(') (k:?)A__

d
2(1+ki+...)

In de Sitter there are two types of exchanged particles:

d

o Light particles: 0 <m/H <2 — 4<a <d — powerlaw (/7)

d : .
. m/H>% — A= ;fivveR —  oscillations

(m2 = H2A+A_>



Mellin representation of dS exchanges

S1 89 53 S4 51 53
B ~ AL, 0 _
w — cosec (7 (u + u)) das (u, ) %u X u%
_ l | 270
u, U
(mR)* = Ay A_ ® | 52 o :

Conformal Partial Wave @

m? = H? (¢ +iv) (¢ —iv) we have

o sin [ (v) + viog (k7)] +...

/\M Recovers and effortlessly generalises the analysis of

Arkani-Hamed and Maldacena [hep-th] 1503.08043!



Mellin representation of dS exchanges

S1 S3
_ _ A0 _
= cosec (7 (u + u)) dqs (u, u) u X U
u, U ' : >
(mR)? = ALA_ @ S92 Sy
l |

Conformal Partial Wave @

The EFT part of the dS exchange is equal to that of the AdS exchange, up to a sine factor

- S1 S9 S3 S4 - B S1 53 7
4
AL, 0
. v +>
u, U J=1
(mR)* = Ay A_ i 52 S4 i

This is to be expected since the EFT expansion is a sum of contact terms, and we know that:

S1  S2 S3 S4

= sin




Particles with spin



Particles with spin

Conformal Symmetry + imply

S1 S92 S3 S4

(mR)? = AL A_+J

On-shell particle exchange (CPW)

3pt Witten diagrams are known for any triplet of spinning fields in position space

C.S. and M. Taronna [hep-th] 1603.00022
C.S. and M. Taronna [hep-th] 1702.08619

yi1

We just need to determine their Mellin-Barnes representation in momentum space!



Particles with spin

The simplest case is a spin-J field exchanged between scalars

S1 S92 53 S4

v = cosec (u + 1) das (u, 0)

EFT

(mR)? = AL A_+J

On-shell particle exchange (CPW)

The constituent 3pt Witten diagrams in this case are proportional to a single conformal structure

Y1

J
(Y12 - € B Y13°§>
yi2]? [yus)?

. I 52 — O
0 |y12|R1H A2 Rst [ygg[ B2t s mAi yg [ArtAs =R =)
y2 Y3 T

Polarization




Particles with spin

Spinning Witten diagrams can be obtained by acting with differential operators on a scalar seed

y1 Y1

Differential operator
in the boundary co-ordinates Shifted scaling dimensions




Particles with spin

Spinning Witten diagrams can be obtained by acting with differential operators on a scalar seed

S1

Differential operator
in the boundary momenta Shifted scaling dimensions

Their Mellin-Barnes representation is inherited from that of the scalar seed!



Particles with spin

Spinning Witten diagrams can be obtained by acting with differential operators on a scalar seed

Differential operator
in the boundary momenta Shifted scaling dimensions

Their Mellin-Barnes representation is inherited from that of the scalar seed!

For the corresponding amplitude in de Sitter we have:

A1, 0
—sin| | J— d+ZA

since Ay — Ay +J '

in the scalar seed

S

Recall: “; = exp [t (s+2(A—2))mi



Particles with spin

S1 52 S3 S4

‘ v = cosec (7 (u + u)) das (u, u)

®

(mR)> = A A_+J

Conformal Partial Wave @

In the soft limit k; — 0 we have

Gegenbauer
polynomial
k1 k2 é k3 k4 ¢
a—2 o . B A, —2a
v v NCS 5 )(COS 0) lSHl (<A1+A2+2A++J d) 7_‘_) sin ((A3+A4—|—2A+—|—J d) 7_(_) (k%) +—3

! i ((Bet2tmt) ) ((e22etpotemt) ) ()8

The angular dependence arises from
the contraction of tensor structures:

S1

S1 S92 S3

Ay, 0 3 .
= si J—d Al =
Sin (—ijl j 5




Particles with spin

S1 S92 S3 S4
S1 S3

= cosec (7 (u + u)) dqs (u, u) u X U
- ! | AT

@ S9 S4

Conformal Partial Wave @

For an exchanged spin J particle, Ay = g +iv, we have .

d—2 , ArtAy—% iy _ AgtAs—L vt iv
Ncg p )(Cosg)lsm(( i 22+ +J)7r>sm(< i 22+ il )7‘(’) (k%)

; i i |
@ L sin (<A1+A2—22 —u/—i—J) 7T> sin ((A3+A4—22 —zu—i—J) 7_[_) (k%)—zu ] _|_ o

d—2

x 057) (cos ) sin [§ (v) + vlog (k7)] + ...

d:3l

Py (cos 6) Recovers and effortlessly generalises the analysis of

Arkani-Hamed and Maldacena [hep-th] 1503.08043!



= cosec (u + ) dqs (u, @)

Il |
EFT Boundary g
conditions g,
l

On-shell particle exchange (CPW)

Thank you!



