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The space of  
effective field theories



How do we build a quantum field theory?


• Write down a Lagrangian, built out of operators      , with couplings    :


 and then just quantize it.


• Is this guaranteed to create a consistent EFT? No! Not all couplings     are allowed

• Certain signs of couplings violate infrared physics principles:


• Unitarity

• Causality

• Analyticity

• Examples:


• Einstein-Maxwell theory

• Higher-curvature gravity (    ,      terms)

• Massive gravity

•          and       couplings

• Higher-point couplings

• Conformal galileon

•   -theorem in  


The space of EFTs
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How do we build a quantum field theory?


• Write down a Lagrangian, built out of operators      , with couplings    :


 and then just quantize it.


• Is this guaranteed to create a consistent EFT? No! Not all couplings     are allowed

• Certain signs of couplings violate infrared physics principles:


• Unitarity

• Causality

• Analyticity

• Examples:


• Einstein-Maxwell theory

• Higher-curvature gravity (    ,      terms)

• Massive gravity

•          and       couplings

• Higher-point couplings

• Standard Model EFT

•   -theorem
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The Swampland Program

space of low-energy actions 

space of 

IR-consistent EFTs



In addition to IR constraints, a top-down approach:

• Build consistent vacua in quantum gravity

• Map out the space of possible low-energy EFTs that result

• Not tractable to do this exhaustively 

• String landscape vs. swampland


Is it possible that the full landscape can be delineated from the swampland 
using IR consistency alone? 


space of low-energy actions 

space of 

IR-consistent EFTs

string landscape 

The Swampland Program



Black hole kinematics  
and the WGC



The Weak Gravity Conjecture

• An ultraviolet consistency condition for quantum gravity.


• Statement: For any          gauge theory coupled consistently with quantum

 gravity, there must exist in the spectrum a state with charge     and mass

 such that 


• Thus, “gravity is the weakest force”.
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The Weak Gravity Conjecture

• An ultraviolet consistency condition for quantum gravity.


• Statement: For any          gauge theory coupled consistently with quantum

 gravity, there must exist in the spectrum a state with charge     and mass

 such that 


• Thus, “gravity is the weakest force”.
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Original justification:


A black hole of charge     and mass

can only decay into states satisfying


Extremal BH decay        WGC


Why BH decay? BH remnant pathologies
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Arkani-Hamed et al. [hep-th/0601001]



Charged black hole in            spacetime dimensions:

electric charge    , magnetic charge    , mass     , angular momentum     

measured asymptotically (ADM quantities)


Natural units:


Extremality parameter:                                           

                                                                                                         extremal 

                                                                                                         Schwarzschild


Dyon parameter:                                                                              electric

                                                                                                         magnetic                                                                              


Spin parameter:                                                                               nonspinning RN

                                                                                                         neutral Kerr 
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• Consider a dyonic, spinning black 
hole with parameters           
decaying to lighter states    with 
parameters                      , where 
the angular momenta are  
(including both spin and orbital)


• Charge conservation:


(m, q, eq, a)

(m1, q1, eq1, a1)

(m2, q2, eq2, a2)
...

(m, q, eq, a)

(mi, qi, eqi, ai)
i

ji = 8⇡miai/
2

P
i(qi, eqi) = (q, eq)

• Decay products need some kinetic energy, so energy conservation gives:


• Spins might be misaligned, so angular momentum conservation gives:


P
i mi < m

J = aM 
P

i ji

Black hole decay kinematics



↵

z ez

• Unitless ratios:


• Physical KN black holes form spheroid:


⇣2 = z2 + ez2 + (↵24/m4)  1

w = (z, ez,↵)

z = q/m

ez = eq/m
↵ = am�2 = J/8⇡

Black hole decay kinematics



↵

z ez

zi = qi/mi

ezi = eqi/mi

↵i = aim�2 = ji/8⇡�i

�i = mi/m

• Unitless ratios:


• Decay requires                 ,                                   ,                                


w = (z, ez,↵)
wi = (zi, ezi,↵i)

P
i �i < 1

P
i(�izi,�iezi) = (z, ez) ↵ 

P
i �i↵i

Black hole decay kinematics
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z ez

zi = qi/mi

ezi = eqi/mi

↵i = aim�2 = ji/8⇡�i

�i = mi/m

• Unitless ratios:


• Decay requires                 ,                                   ,                      


•      must either inside 

     convex hull of      or 

     between hull and

               plane             


w = (z, ez,↵)
wi = (zi, ezi,↵i)

P
i �i < 1

P
i(�izi,�iezi) = (z, ez) ↵ 

P
i �i↵i

w
wi

↵ = 0

Black hole decay kinematics



classical GRUV completionQFT states

smaller
black holes

large
black holes

lPl 1/⇤

1

m

⇣

The Weak Gravity Conjecture

Corrections to Einstein and Maxwell equations induced by       change the 
extremal values of                         (or    in the spinning case). 

• If            , then black holes themselves provide WGC states. 

• If            , then spinning charged black holes can decay directly to other 

spinning, charged black holes that are nearly at rest.


�L
z 2 [0, 1 +�z] ⇣

�z > 0
�⇣ > 0



Positivity from  
infrared consistency



Positivity from scattering amplitudes

• Take forward scattering amplitude of four-point EFT operator with      
derivatives, e.g.,         : 


• Contour integral around origin to extract Wilson coefficient:

A = �s2n

4n
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Positivity from scattering amplitudes

• Take forward scattering amplitude of four-point EFT operator with      
derivatives, e.g.,         : 


• Contour integral around origin to extract Wilson coefficient:


• Connection to causality: If          , perturbative signals are superluminal in 
nonzero classical backgrounds.


A = �s2n

4n
(@�)4

� < 0

� > 0

' '

�̄ �̄

Adams et al. [hep-th/0602178]



Graviton scattering

• Ideally, we would like to bound the leading four-derivative Einstein-Maxwell 
theory using analyticity of scattering.


                                                    , where                      and:


• Obstruction: on-shell graviton exchange leads to  -channel singularity, 


• We will come back to four-derivative action later. For now, we move to higher-
derivative actions that can be bounded from forward dispersion relation 
arguments. More derivatives        higher power in          contour cancels 
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• Instead, let us take a gravitational EFT where the first operators start at                        

                  .


• Consistent as an EFT: At tree level,                terms will not contribute to two- 
or three-point couplings in the graviton.


• Possible motivation: type II string theory


• In four dimensions, there are two independent operators:


where 


Graviton scattering

O(R4
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Graviton scattering

• In four dimensions, there are two independent operators:


• Forward graviton-graviton scattering amplitude:


where


• Analyticity and unitarity require


• Can also reach this conclusion by demanding subluminality of gravitons in 
various backgrounds. 


�L =
c

2⇤6
(Rµ⌫⇢�R

µ⌫⇢�)2 +
ec

2⇤6
(Rµ⌫⇢�

eRµ⌫⇢�)2

A(s) =
162s4

⇤6
(c cos2 ✓ + ec sin2 ✓)

✏1 = cos ✓1✏+ + sin ✓1✏⇥

✏2 = cos ✓2✏+ + sin ✓2✏⇥
✓ = ✓1 � ✓2

c > 0, ec > 0 Bellazzini, Cheung, GR [1509.00851]

Gruzinov, Kleban [hep-th/0612015]



(Riemann)4 corrections 
to black holes

Arkani-Hamed, GR [19XX.XXXXX]



Deforming the RN solution

• When          , we can use a spherically-symmetric ansatz:


• Use spherical symmetry to invert the Ricci tensor in terms of the metric 
coefficients


• Solve the perturbed Einstein equations to obtain corrected black hole solution:


J = 0

Kats, Motl, Padi [hep-th/0606100]; Cheung, Liu, GR [1801.08546]

ds2 = �f(r)dt2 + dr2/g(r) + r2d⌦2
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715⇤6r14
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Corrections to extremality

• As shown in                                                                        , deforming the black 
hole solution by higher-derivative operators changes the physical range of 
black hole charge-to-mass ratios (with no naked singularities): 


    where


• For the                  correction, we find:


�z = � g(rH, 1)

@zg(r, z)|r!rH
z!1

= � f(rH, 1)

@zf(r, z)|r!rH
z!1

Kats, Motl, Padi [hep-th/0606100]; Cheung, Liu, GR [1801.08546]
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Corrections to extremality

• For the spinning black hole, we no longer have spherical symmetry, so solving 
the higher-derivative Einstein equations is an open problem.


• However,                                   derived the general relation between the 
extremality shift and on-shell shift in the action:


    Physical region of extremality parameter:


• This follows from three facts:

• The shift in the Wald entropy of a BH, induced by       , equals its shift in 

Euclidean action

• In the extremal limit, the entropy correction for BH with fixed charges is 

dominated by shift in horizon area

• Shift in horizon coordinate and extremality shift are closely related (as we 

will see in detail later)
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Corrections to extremality
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Corrections to extremality
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Terms of  
indefinite sign

Arkani-Hamed, GR [19XX.XXXXX]



F 4, R2F 2, R4

Lower-order terms

• What about terms lower order in derivatives?


• For concreteness, and connection to the question of four-point amplitudes, 
we’ll consider four-point operators among the graviton and photon:


Forward amplitudes:


                      can bound             cannot bound             can bound


• If      operators dominate, they give


• If      operators dominate, they give 


• Intermediate regime: Can          operators of indefinite sign ever spoil positivity 
of      ?


⇠ p4, ⇠ p6, ⇠ p8
⇠ s2, ⇠ stu ! 0, ⇠ s4

F 4

R4
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�z > 0

Cheung, Liu, GR [1801.08546, 1903.09156]
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LUV =
R
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• Example completion: massive scalar coupled to      and     


• Integrate out    :
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Correction to extremality

• Can compute       either by solving the higher-derivative Einstein-Maxwell 
equations or using the on-shell action-integration method. Results agree.


• We find:
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• Can compute       either by solving the higher-derivative Einstein-Maxwell 
equations or using the on-shell action-integration method. Results agree.


• We find:


• Manifestly positive for black holes of arbitrary    (electric, dyonic, magnetic)
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BTZ black holes  
and the WGC

Arkani-Hamed, GR [19XX.XXXXX]



BTZ black holes

In 2+1 dimensions, let’s consider charged BTZ black holes:


• Action:


• Charged black holes in the presence of a CC


• Metric:


 where

 


• Gauge field                       , charge 


• Mass            interior to reference radius 
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BTZ black holes

In 2+1 dimensions, let’s consider charged BTZ black holes:


• Extremality: For fixed   ,     is bounded from below: 


 (cf.            when           )


• When                      , the two horizons coincide at                  . 

 We will take the reference radius to satisfy                 .


• Extremality parameter:


• In 3D, no propagating gravitons        no long-range gravitational force

                                         usual formulation of WGC does not apply 


q m
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3D Einstein-Maxwell EFT

• In            spacetime dimensions,                  identically

can field-redefine all appearances of            as polynomials in  


• In 3D, all traces, e.g.,                         , can be written entirely as powers of the 
Lorentz scalar


• Let us take as our EFT action:            


 for some

              


• 3D generalization of the Euler-Heisenberg action

D = 3 Cµ⌫⇢� = 0
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�L = cn(F
2)n
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Corrected BTZ solution

• Solving the nonlinearly perturbed Einstein-Maxwell equations, the metric is:


• Correction to extremality parameter: physical black holes (with no naked 
singularity) satisfy                       , where
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Dualization and scalar EFT

• To find a 3D version of the WGC for BTZ black holes, we need to bound 


• In 3D, can simplify the action by dualizing the photon to a scalar:

 

• Gauge invariance has become shift symmetry of scalar


• We have                       and 


• Example of a P(X) theory (where                  )


• To bound     from analyticity, we must consider   -to-   scattering of   s
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• To bound     from analyticity, we must consider   -to-   scattering of   s
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• To bound     from analyticity, we must consider   -to-   scattering of   s


• For even   , set:


 and continue in  


• Dispersion relation gives:
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• To bound     from analyticity, we must consider   -to-   scattering of   s


• For odd   , set:


 and continue in                                                              fixed

pi = p1, i odd, I 2 {1, . . . , n� 1}
pi = p2, i even, I 2 {1, . . . , n� 1}

pi+n = �pi, i 2 {1, . . . , n}
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• To bound     from analyticity, we must consider   -to-   scattering of   s


• For odd   , dispersion relation gives:


Bounds on P(X) theory
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• To bound     from analyticity, we must consider   -to-   scattering of   s


• As shown in                                                                 , analyticity of the forward 
amplitude at complex momenta requires


• Generalization of well known positivity of          coefficient
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Four-derivative, 
dyonic and spinning

Cheung, Liu, GR [1903.09156, 1801.08546]



For the purposes of this proof, we assume:


1. There exist quantum fields     at a mass scale       satisfying

                                                              ,


where      is the scale at which QFT breaks down.

In general,     can be much smaller than the Planck scale.
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Assumptions

A final tool: self-consistency of black hole thermodynamics




For the purposes of this proof, we assume:


1. There exist quantum fields     at a mass scale       satisfying

                                                              ,


where      is the scale at which QFT breaks down.

In general,     can be much smaller than the Planck scale.


2. The fields     couple to photons and gravitons so that the higher-
dimension operators are generated at tree level, e.g.,

so:


                  QFT effect        Quantum gravity “slop”

Couplings like this are common in string theory: dilaton and moduli are 
massless in supersymmetric limit, and acquire masses if SUSY is 
broken.
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For the purposes of this proof, we assume:


1. There exist quantum fields     at a mass scale       satisfying

                                                              ,


where      is the scale at which QFT breaks down.

In general,     can be much smaller than the Planck scale.


2. The fields     couple to photons and gravitons so that the higher-
dimension operators are generated at tree level, e.g.,

so:


                  QFT effect        Quantum gravity “slop”

Couplings like this are common in string theory: dilaton and moduli are 
massless in supersymmetric limit, and acquire masses if SUSY is 
broken.


3. We will consider black holes with charge and spin chosen such that 
they are thermodynamically stable in the path integral.    
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A final tool: self-consistency of black hole thermodynamics




Heat capacity at constant    :


Temperature:


Black hole’s angular velocity:


Isothermal moment of inertia:


Thermodynamic stability of partition function in grand canonical ensemble

requires              and 
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Heat capacity at constant    :


Temperature:


Black hole’s angular velocity:


Isothermal moment of inertia:


Thermodynamic stability of partition function in grand canonical ensemble
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Thermodynamic stability



Heat capacity at constant    :


Temperature:


Black hole’s angular velocity:


Isothermal moment of inertia:


For our KN black hole, this becomes the requirement:


When          , require                , i.e.,


When          , require                      , i.e.,
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We want to compute      , the shift in Wald entropy for a black hole with 
fixed              (as measured at infinity), in theory    vs.


For now, work in grand canonical ensemble: fixed 


Inverse temperature     defines periodicity in Euclidean time for the 
Euclidean path integral,


 


where

             is the Euclidean action


     (spacetime integral of Wick-rotated Lagrangian)

                                             is the Gibbs free energy 

             are integration variables for the metric and gauge field
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We want to compute      , the shift in Wald entropy for a black hole with 
fixed              (as measured at infinity), in theory    vs.


For now, work in grand canonical ensemble: fixed 


Inverse temperature     defines periodicity in Euclidean time for the 
Euclidean path integral,


 


where

             is the Euclidean action


     (spacetime integral of Wick-rotated Lagrangian)

                                   is the Gibbs free energy 

             are integration variables for the metric and gauge field


   


G = M � TS � ⌦J � �Q

I = I +�I
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e��G = Z =
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d[ĝ]d[Â]e�I[ĝ,Â]

Euclidean path integral

Gibbons, Hawking (1976)



Z
d[ĝ]d[Â]d[�̂] e�IUV[ĝ,Â,�̂] =

Z
d[ĝ]d[Â] e�I[ĝ,Â]

We want to compute      , the shift in Wald entropy for a black hole with 
fixed              (as measured at infinity), in theory    vs.


For now, work in grand canonical ensemble: fixed 


Ultraviolet completion: introduce integration variable     for the heavy fields

that are integrated out when we go from UV to IR: 


We define the vev of     to be zero in flat space.


For the on-shell black hole in the     theory,          , since equations of 
motion dictate
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We can evaluate the Euclidean action at any field configuration we wish, 
including one that does not satisfy the classical equations of motion.


In particular, let’s evaluate        at          , which turns off all the higher-
dimension operators in       , so we have the simple mathematical fact:


where     is the Euclidean action for pure Einstein-Maxwell theory.


This observation will allow us to compare the two black hole entropies in  

    and     via an argument that only involves working in a single theory.
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Following                              , we have:


by the definition of the Gibbs free energy. Throughout,     denotes shifts to 
first order in the    .


Euclidean action identity

Reall, Santos [1901.11535]
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Following                              , we have:


But we can reparameterize: 


by first law  
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Following                              , we have:


But we can reparameterize: 


 


Smarr relation              then implies:                                            


where right-hand side is evaluated on the Kerr-Newman solution.
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Putting our thermodynamic argument together, we have the string of 
(in)equalities relating the Euclidean actions of an Einstein-Maxwell and 
perturbed Kerr-Newman black hole:

                                     

Free energy inequality
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(in)equalities relating the Euclidean actions of an Einstein-Maxwell and 
perturbed Kerr-Newman black hole:

                                     

if the saddle-point of the solution is a local minimum 

(will justify shortly) 

Free energy inequality



Putting our thermodynamic argument together, we have the string of 
(in)equalities relating the Euclidean actions of an Einstein-Maxwell and 
perturbed Kerr-Newman black hole:
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Putting our thermodynamic argument together, we have the string of 
(in)equalities relating the Euclidean actions of an Einstein-Maxwell and 
perturbed Kerr-Newman black hole:

                                     


Accords with our intuition that integrating out extra massive QFT degrees of 
freedom should increase the black hole’s entropy.
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Putting our thermodynamic argument together, we have the string of 
(in)equalities relating the Euclidean actions of an Einstein-Maxwell and 
perturbed Kerr-Newman black hole:

                                     


Since     is a Killing vector for Kerr-Newman, the on-shell Euclidean action is    

                                          , where the right-hand side is evaluated on the 
Lorentzian Kerr-Newman solution.
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Putting our thermodynamic argument together, we have the string of 
(in)equalities relating the Euclidean actions of an Einstein-Maxwell and 
perturbed Kerr-Newman black hole:
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• We needed the saddle point, corresponding to the classical solution, to 
be a local minimum. Equivalently, we needed the Euclidean action to be 
stable under small off-shell perturbations.


• What about conformal saddle-point instabilities? These have been shown 
to be gauge artifacts: one can decompose the metric and integrate over 
these unphysical instabilities separately in the path integral.


• The Euclidean Schwarzschild black hole is known to have a bona fide 
instability.                             


• However, for Kerr-Newman black holes, this instability is always 
connected with thermodynamic instabilities in the partition function 
(negative specific heat or negative isothermal moment of inertia)


• Hence, we enforce our thermodynamic stability condition,                         , 
which will ensure that our              argument is valid.


Minimization of the Euclidean action

Gross, Perry, Yaffe (1982)

Prestidge [hep-th/9907163]; Reall [hep-th/0104071]; Monteiro, Santos [0812.1767]; Monteiro, Perry, Santos [0909.3256]
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Gibbons, Hawking, Perry (1978);
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We will then use the              condition to obtain a family a positivity 
bounds on combinations of the    .


The electric, nonspinning case was considered in                                  .


We will generalize to black holes that are spinning and dyonically-charged, 
parameterized by                 , or equivalently,              .


Define: 

Let’s return to the four-derivative corrections to Einstein-Maxwell theory:


Four-derivative EM effective action
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Consider a general field redefinition of the metric:

 


This has the effect of shifting the action,


which has the net effect of shifting the higher-dimension operator 
coefficients:  
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Field redefinition invariance



There are four combinations of higher-dimension operator coefficients that 
are invariant under this transformation:


The entropy shift,                                         , will automatically be field-
redefinition invariant, since the transformation is proportional to the Einstein 
equations. Hence, it is built out of                     .             
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EFT bounds         

Cheung, Liu, GR [1903.09156]



Rotating dyonic black hole entropy shift:


Consistency of black hole entropy demands that 


for all 

                                      and


A 3-parameter family of consistency bounds on all corrections to Einstein-Maxwell theory 
generated by tree-level QFT
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16⇡2(2µ2 � 1)(⌫2 � 3)(3⌫2 � 1)[1� ⇠ � ⌫2(1 + ⇠)]2
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�S(⇠, µ, ⌫) > 0

0 < ⇠ <
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2(1 + ⌫2)
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EFT bounds



Numerical tests indicate that the strongest bounds come from the nonspinning case.

That is, the            case implies the full family of bounds: 

 


for all                    and


Two-parameter family of bounds, convex bound space.

�S(⇠, µ, 0) =
32⇡2

52⇠(1 + ⇠)
⇥
�
(1� ⇠)2[µ2d0 + (1� µ2)d9] + 10⇠(1 + ⇠)d3

+ µ(1� ⇠)[µ(1� ⇠)� 1� 4⇠]d6
 

> 0

�1  µ  1 0 < ⇠ <
1

2

⌫ = 0

EFT bounds



Let us explore consequences of our family of EFT bounds:


Bounding       :

Consequences of EFT bounds

�S(0, 1, 0) =) d0 > 0

�S(0, 0, 0) =) d9 > 0

d0,9



Let us explore consequences of our family of EFT bounds:


Bounding       :


If only       terms are present, these bounds become


which follow from analyticity of four-photon scattering  

d0,9

F 4

2d7 + d8 > 0

d8 > 0

Adams et al. [hep-th/0602178]; 

 Cheung, GR [1407.7865]

Consequences of EFT bounds



Let us explore consequences of our family of EFT bounds:


Bounding       :


Excluded regions:
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Consequences of EFT bounds



Let us explore consequences of our family of EFT bounds:


Bounding     :


An argument for positivity of      from unitarity was given in 

d3

�S( 12 , 0, 0) > 0 =) d3/d9 > �1/30

7�S( 12 , 1, 0) + 5�S( 12 ,�1, 0) > 0 =) d3/d0 > �1/30

d3 Cheung, GR [1608.02942]
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Let us explore consequences of our family of EFT bounds:


Bounding     :


Excluded regions:
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Let us explore consequences of our family of EFT bounds:


Bounding     :


Marginalize over                   to obtain the optimal bounds:


For SUSY theories,           .


If        are generated by some QFT states at scale      , then                    . 

A similar conclusion follows from causality. 


d6

�S(0, µ, 0)


2(d9�

p
d0d9), 4d9  d0

�d0/2, 4d9 > d0

�
< d6 < 2(d9+

p
d0d9)

d6 = 0

d0,9
Camanho et al. [1407.5597]

Consequences of EFT bounds

|d6| 6& 1/m2
�m�



⇠

µ

0

1
2

1

�1 1

0

scalar

p
se
u
d
os
ca
la
r

te
ns
or

Let us explore consequences of our family of EFT bounds:


Bounding     :


Excluded regions:
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UV examples

Cheung, Liu, GR [1903.09156]



Scalar completion:


Wilson coefficients:


Entropy bound:


L = L� 1

2
rµ�rµ�� 1

2
m2

��
2 + �

�
a�1R+ bFµ⌫F

µ⌫
�

d1,...,8 =
1

2m2
�

⇥ (a2, 0, 0, 2ab, 0, 0, b2, 0)

(d0, d3, d6, d9) =
2b2

m2
�

⇥ (1, 0, 0, 0)

�S(⇠, µ, 0) =
64⇡2(1� ⇠)2b2µ2

52m2
�⇠(1 + ⇠)

> 0

Example completions



Pseudoscalar completion:


Wilson coefficients:


Entropy bound:


L = L� 1

2
rµ�rµ�� 1

2
m2

��
2 + b�Fµ⌫

eFµ⌫

d1,...,8 =
b2

m2
�

⇥ (0, 0, 0, 0, 0, 0,�1, 2)

(d0, d3, d6, d9) =
2b2

m2
�

⇥ (0, 0, 0, 1)

�S(⇠, µ, 0) =
64⇡2(1� ⇠)2b2(1� µ2)

52m2
�⇠(1 + ⇠)

> 0

Example completions



Tensor completion:


                                                                   where


where the Fierz-Pauli action is   


Wilson coefficients:


Entropy bound:


L = L+ LFP + b�µ⌫Tµ⌫ Tµ⌫ = Fµ⇢F
⇢

⌫ � 1

4
gµ⌫F⇢�F
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LFP =� 1

2
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�rµ�
µ⌫r⌫�

⇢
⇢ +

1

2
r⇢�

µ
µr⇢�⌫

⌫

� 1

2
m2

�(�µ⌫�
µ⌫ � �µ

µ�
⌫
⌫)

�S(⇠, µ, 0) =
16⇡2(1� ⇠)2b2

52m2
�⇠(1 + ⇠)

> 0
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Summary of example completions:
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The low-energy action of the heterotic string is:


If we somehow pin the dilaton to zero and then compactify down to           ,

we have Wilson coefficients:


Entropy bound:


L =L+
↵0e��/

p
2

162
(R2 � 4Rµ⌫R

µ⌫ +Rµ⌫⇢�R
µ⌫⇢�)

� 3↵02e��/
p
2

64
(Fµ⌫F

µ⌫F⇢�F
⇢� � 4Fµ⌫F

⌫⇢F⇢�F
�µ)

Gross, Sloan (1987)

D = 4

d1,...,8 =
↵0

64
⇥ (4,�16, 4, 0, 0, 0,�3, 12)

(d0, d3, d6, d9) =
↵0

16
⇥ (3, 1, 0, 3)

�S(⇠, µ, 0) =
2⇡2↵0

52⇠(1 + ⇠)
(3 + 4⇠ + 13⇠2) > 0

Heterotic string



Weak Gravity Conjecture

Cheung, Liu, GR [1903.09156, 1801.08546]



Again define the extremality parameter:        


• New allowed range is                        , where   


• At fixed                 , the Boyer-Lindquist coordinate of the horizon shifts by:


• In the extremal limit,                 , so        is dominated by the shift in area:


• We can relate         and       by computing

    so we obtain: 


⇣ =

p
a2 + q2 + eq2

m
=

p
1� ⇠2
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16⇡2m2
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[⇠�S(⇠, µ, ⌫)]

�S ! 16⇡2
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Our extremality shift relation


plus our entropy bound  


for all                    and 


together imply that


                                                  for all                 , 


In particular,              so:


                Consistency of black hole entropy proves the Weak Gravity Conjecture.


�⇣(µ, ⌫) = +
2

16⇡2m2
lim
⇠!0

[⇠�S(⇠, µ, ⌫)]

�S(⇠, µ, ⌫) > 0

0 < ⇠ <
1� 3⌫2

2(1 + ⌫2)
�1  µ  1

�⇣(µ, ⌫) > 0 ⌫ 2 [0, 1/
p
3)µ 2 [�1, 1]

Self-sufficient black hole decay

�z > 0



↵

z ez

• Extremal black holes in barrel-shaped region with                        (required for 
thermodynamic stability) can decay to other black holes nearly at rest.


• Black holes with spin are kinematically allowed to decay to nonrotating dyonic 
ones via emission of gravitons.


• However, the fact that black holes can decay to other black holes at rest 
points to a principle of black hole self-sufficiency.


|a|/m < 1/
p
3

Self-sufficient black hole decay



• In this talk, we went beyond the leading-order modifications to the electric 
black hole, to see how the WGC and positivity bounds from analyticity/
causality are connected in greater generality.


• We found that the quartic Riemann operators, which are positive by 
analyticity, give positive corrections to the extremality condition for all 
charged, spinning black holes.


• Investigated competing effects of                       operators


• Analyticity of multi-particle scattering for P(X) theory gives a version of the 
WGC for BTZ black holes in 2+1 dimensions.


• Applied the              condition to bound the four-derivative (                   )               
corrections to dyonic, spinning black holes. Proved and generalized the 
WGC for tree-level completions of four-derivative operators.

Discussion

R4, F 2R2, F 4

�S > 0 R2, RF 2, F 4


