

Future of Mobility: Disruptive Technologies Create New Realities November 2023

99 Years serving clients (founded in 1924)

Manufacturing & distribution clients

39,000 Professionals worldwide

3,500+ Professionals in U.S. With dedicated Japanese practice

Mobility Intelligence Center

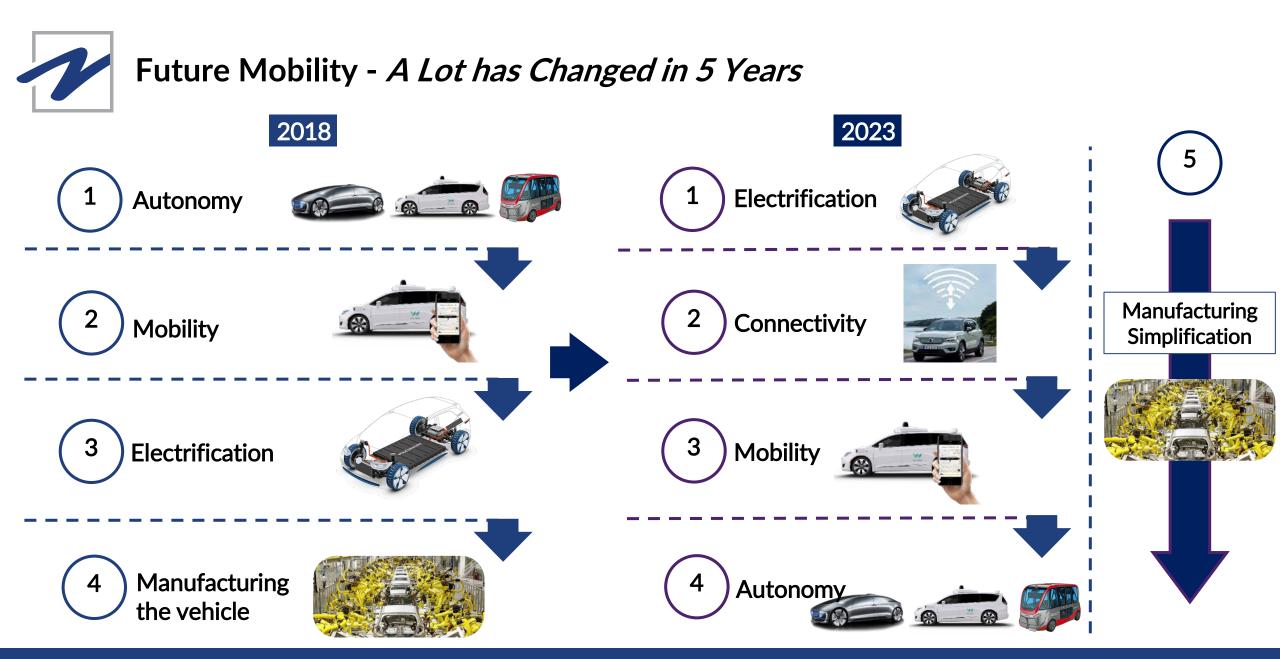
Research on Critical Information for Mobility Technologies to OEMs, Suppliers and New Entrants

Comprehensive Services for our Clients

Strategy Consulting

- Strategic planning
- o Market research and analytics
- Product commercialization
- o Business development strategies
- Sales channel strategies
- Supplier-Customer Relationship Analytics
- Transaction Advisory Services financial, commercial, operational, IT due diligence
- Merger Integration
- Restructuring Services
- Operations and Supply Chain Consulting
- Risk Advisory and Accounting Services
- Valuation
- Information Technology Consulting
- Cyber Security
- Human Capital
- Audit and Accounting
- Tax Compliance and Consulting
- Government & Infrastructure
- Wealth Management
- Life Insurance
- Investment Banking (PM Corporate Finance)
- Real Estate (Plante Moran CRESA)

plante moran


Automotive Market Overview

plante moran |

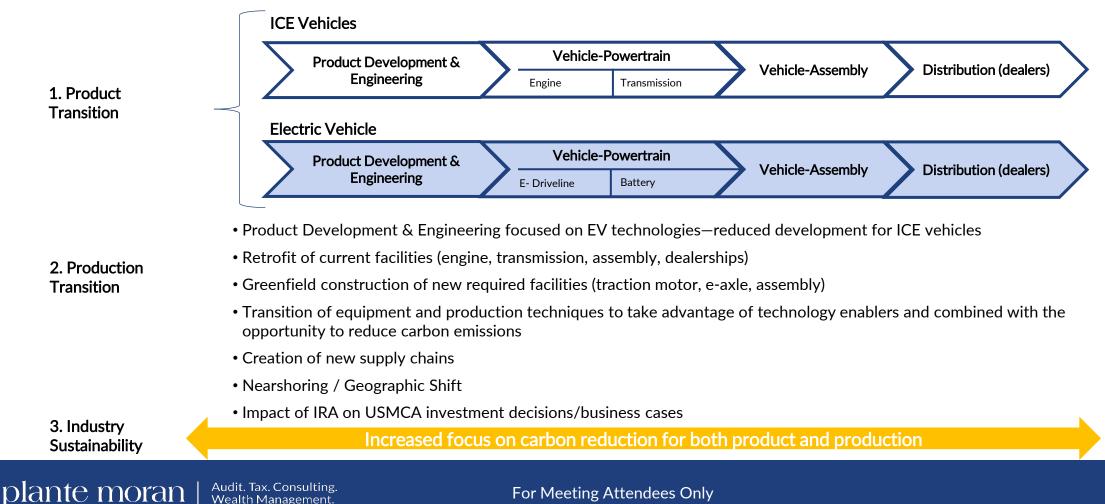
Audit. Tax. Consulting. Wealth Management.

For Meeting Attendees Only

3

plante moran | Au

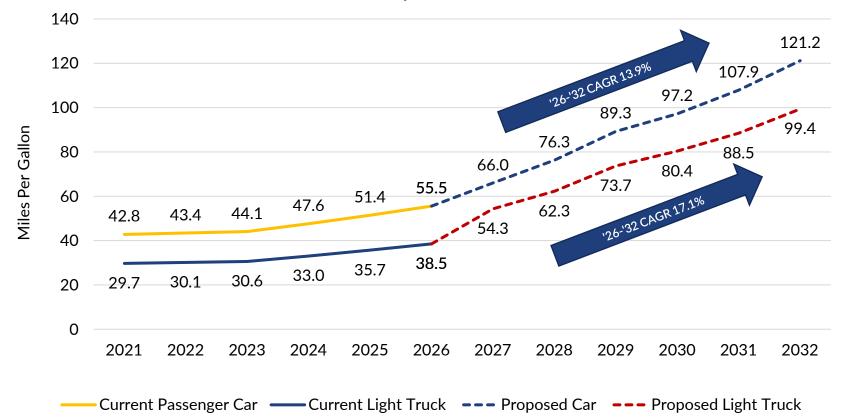
Audit. Tax. Consulting. Wealth Management.


For Meeting Attendees Only

Automotive Manufacturing Value Chain Transition Across Automotive Industry

Wealth Management.

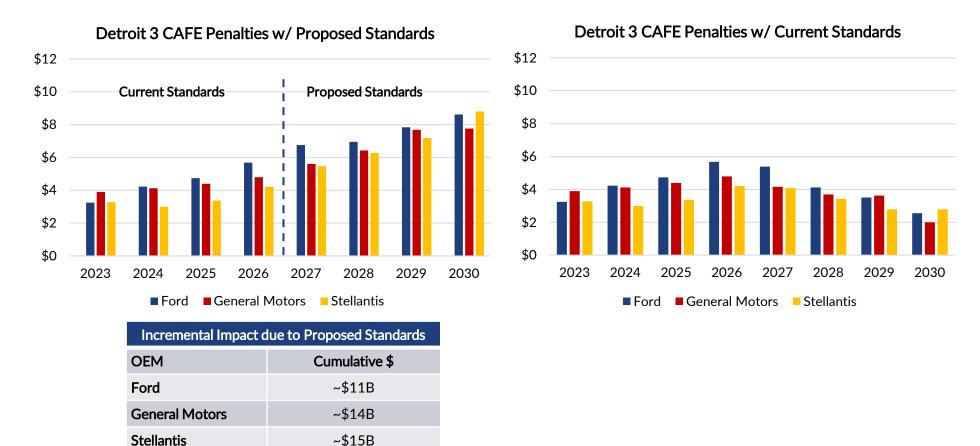
To make the transition to electric vehicles the automotive industry has to change both product and production approaches and do so in a "smart" and sustainable way


For Meeting Attendees Only

5

Proposed CAFE Standards

Accelerated industry shift towards electrified vehicles driven by new Administration's strengthened policies related to fuel economy, EV purchasing incentives, infrastructure, and continued industry cost reductions

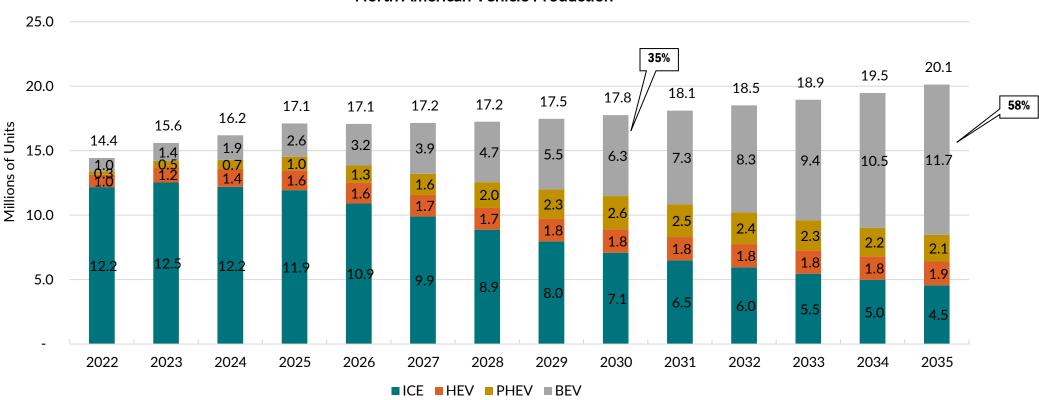

Current and Proposed CAFE Standards

plante moran | Audit. Tax. Consulting. Wealth Management.

For Meeting Attendees Only

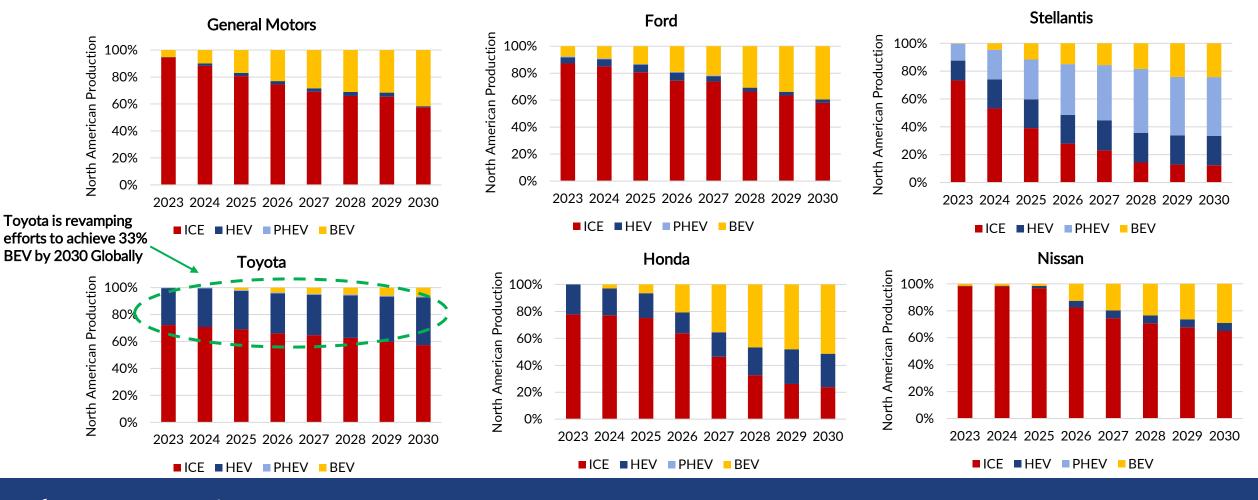
VOEM CAFE Calculation—Detroit 3 OEMs *Baseline Penalties*

The Detroit 3 OEMs (GM, Ford, Stellantis), due to concentration of large sized vehicle production, will be subject to CAFE penalties. The CAFE penalty forecast analysis illustrated below incorporates proposed CAFE standards through MY2030, as well as using current standards through MY2026

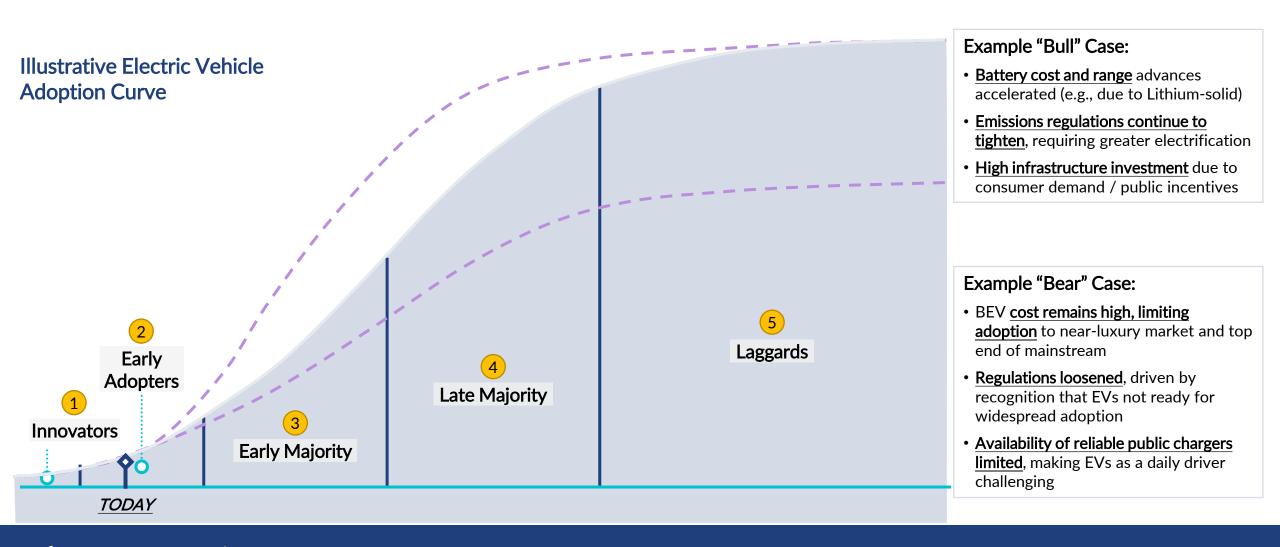


Electrified Vehicle Production North America Projections

The transition to electrified powertrains is becoming more certain. North American EV volume is projected to grow to 35% of production by 2030 and continues to grow to 58% of production by 2035

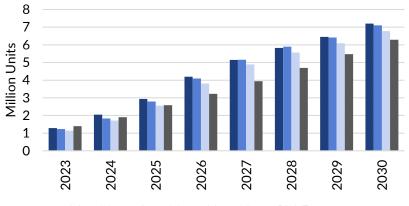

North American Vehicle Production

For Meeting Attendees Only


ICE, EV, and Hybrid North American Production *Detroit 3, Toyota, Honda, Nissan*

OEMs have timing variances in their transition plans to electrified vehicles. GM and Honda have the most aggressive EV plans, with a little focus on hybrid offerings - Toyota and Stellantis focusing on diversification of their product portfolio

For Meeting Attendees Only



plante moran

Is N.A. EV Demand Slowing? EV Forecast Model Comparison

Forecast of EV adoption in the US maintains growth despite industry challenges such as UAW labor strike and high interest rates—forecast likely to maintain growth as the US Government and OEMs remain steadfast in their targets and continued investment

Total NA EV Production Forecasts

■ Mar-23 ■ Aug-23 ■ Nov-23 ■ PM Forecast

- North American EV forecasts have remained consistent throughout the year amidst industry disruptions and economic headwinds
- Plante Moran Forecast remains consistent with industry forecasts with more conservative growth due to required manufacturing capacity
- OEMs have yet to reduce their stated EV targets—expect forecasts to remain consistent as OEMs continue to build to reach demand

EV % of Total NA Production by Forecast Model								
Forecast	2023	2024	2025	2026	2027	2028	2029	2030
March 2023	8%	13%	18%	25%	30%	33%	36%	39%
August 2023	8%	11%	17%	24%	30%	34%	37%	40%
November 2023	7%	11%	16%	22%	29%	32%	35%	39%
PM Forecast (used in BM construction model)	9%	12%	15%	19%	23%	27%	31%	35%

Source: AFS, PM Model

plante moran

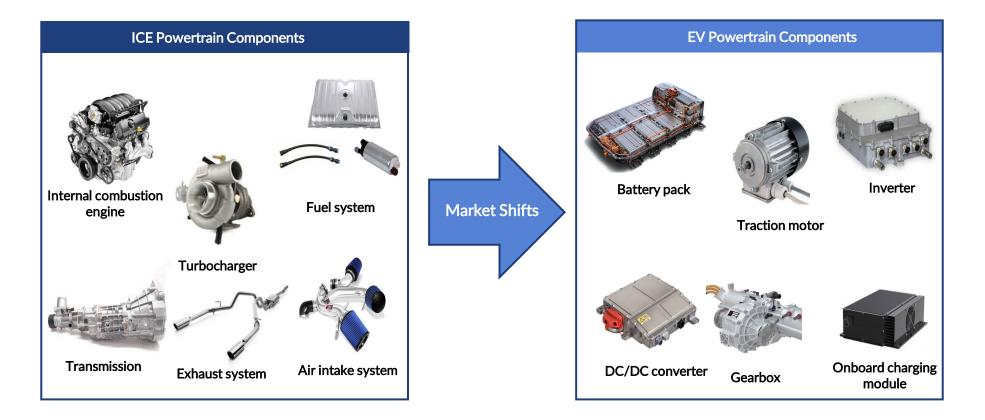
Is N.A. EV Demand Slowing? *Factors to Monitor*

OEM EV program delays and growth in EV inventory reflect short-term market conditions—OEM product strategy driven by multiple factors that will overcome current challenges long-term

Factors to Monitor	Implications
Pace of EV Adoption	 6 weeks in lost production resulting in new EV program delays as OEMs work to build inventory of existing saleable vehicles GM Delays: Equinox EV, Sierra EV, and Silverado EV Average Tesla transaction prices is ~11% higher than ICE today—GM EV prices ~150% higher Current EV models are typically higher trim levels focused on specialized vehicles—higher manufacturing cost leads to greater MRSP to gain cost recovery and profit margin Interest rates are driving higher monthly payments and leases OEM's EV profit margin targets dependent on the ability to launch lower cost EVs—the inability to obtain profitability on EVs due to the lack of high-volume offering
UAW Strike	 The proposed UAW contracts include significant domestic investment from OEMs over contract period (November 2023-April 2028): GM: \$11B investment previously announced-\$8.4 EV investment Ford: \$8.1B in investment in existing facilities-\$5.5 EV investment Stellantis: \$19B across US including idled facilities-\$16.0 EV investment Increased labor rates due to the UAW negations will drive the need for cost efficiencies through the manufacturing process-implementation of automation and manufacturing simplification are greater enabled by EV vehicle architecture
Government Policy	 Emissions regulations continue to increase, creating increased pressure for OEMs to electrify their fleets to avoid growing CAFE penalties IRA incentives (~\$400B) expected to end in 2032–OEMs expected to take advantage of existing funding Government and OEMs driving onshoring of battery value chain to reduce foreign reliance and cost Facility demand for upstream operations expected to remain strong to support build-out of domestic supply chain

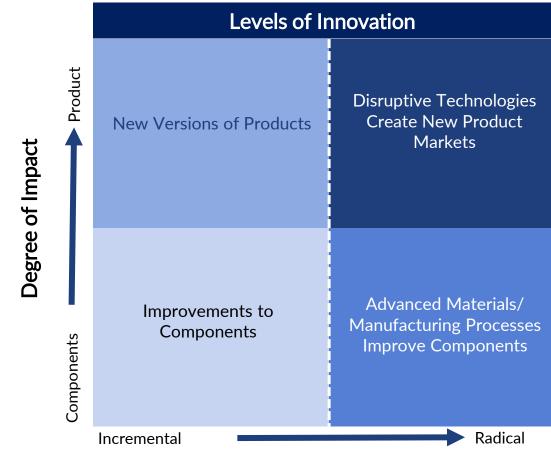
Transition to Electric Supplier and Component Impacts

plante moran | Audit. Tax. Consulting. Wealth Management.


For Meeting Attendees Only

13

Vehicle Technology - Electrification *Radical Powertrain Shift in Supplier Components for EVs*


Electrification will greatly impact vehicle and component manufacturing – financial investment in new EV powertrain component manufacturing will be required from the supply base

Innovation in the Automotive Market *Innovation Impact*

- Some innovations are incremental; some are disruptive and create new market opportunities
- Innovations are occurring in multiple areas: components, product, material, manufacturing process, and technology/software
- Innovations across all these areas will continue to drive dramatic changes and adoptions across electric, connected, autonomous and shared vehicles in the automotive industry

Degree of Innovation

Vehicle Bill of Material *New Segments*

Current EV bill of material is ~41% larger than the ICE equivalent—new vehicle components are focused on EV value chain with changes impacting propulsion and electrical components

Vehicle Segment	Component	ICE (\$000's)	EV (\$000's)	EV Impact %
Body & Structural	BIW	\$4.16	\$4.89	17%
	Body Glass	\$0.20	\$0.20	-1%
Chassis	Braking	\$0.66	\$1.00	52%
	Suspension	\$0.81	\$0.80	-2%
	Steering	\$0.53	\$0.53	-2%
	Wheels and Tires	\$0.45	\$0.44	-3%
Driveline	Axles, Driveshafts, Components	\$1.35	\$0.99	-26%
Electrical	Electronics & Electrical	\$3.08	\$3.02	-2%
	EV Electrical Architecture	\$0.00	\$1.30	-
ICE Propulsion	Transmission	\$2.13	\$0.00	-100%
•	Fuel System	\$0.52	\$0.00	-100%
	Engine	\$4.26	\$0.00	-100%
	Exhaust	\$0.43	\$0.00	-100%
Interior	Interior	\$1.90	\$1.86	-2%
	Audio & Telematics	\$0.53	\$0.73	37%
	Passenger Restraints	\$0.49	\$0.49	-2%
Thermal	Climate Control and Powertrain Cooling	\$1.10	\$1.51	37%
EV Propulsion	Battery Pack	\$0.00	\$10.96	-
·	Power Electronics	\$0.00	\$1.78	-
	Electric Motor/Drive	\$0.00	\$1.40	-
	Total	\$22.60	\$31.85	41%

Shifts to EV technologies will provide opportunities and change:

- New component opportunities for electric motors and gearbox, power electronics, and battery packs
- Declining market opportunities for engines, transmissions, fuel systems, and exhaust
- Shifting customized component needs for electrical & electronics, climate control, thermal management, body & structural, interior, axles/drive

Overtime EV value per vehicle will fall as:

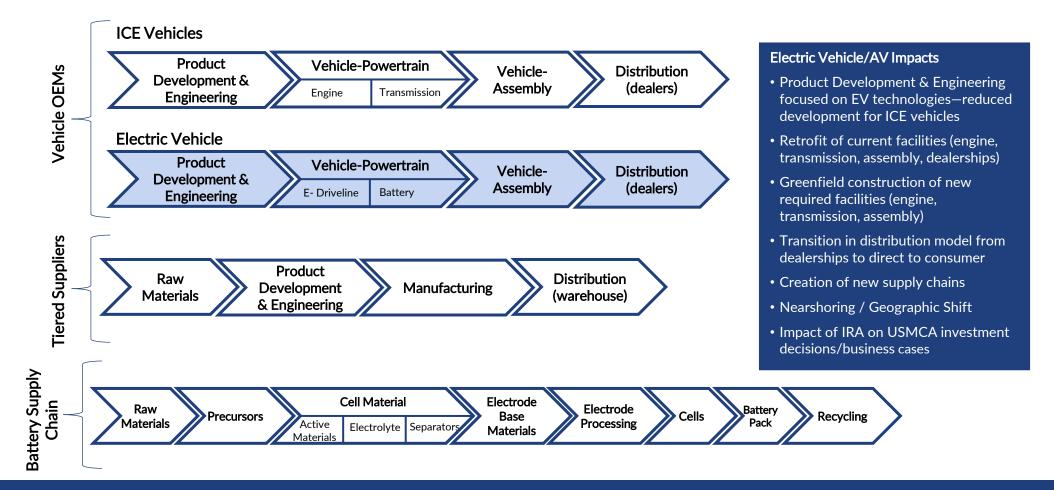
- Increased production volumes provide economies of scale (1.7M BEV built in 2019 vs 7.3M in 2022est)
- Proliferation of EVs models into mass market applications and lower price points
- Expansion of capable supply base and increased competitive bidding processes
- Technology innovations (i.e. battery chemistries, manufacturing processes)

ICE costs will rise as market share and volumes decline

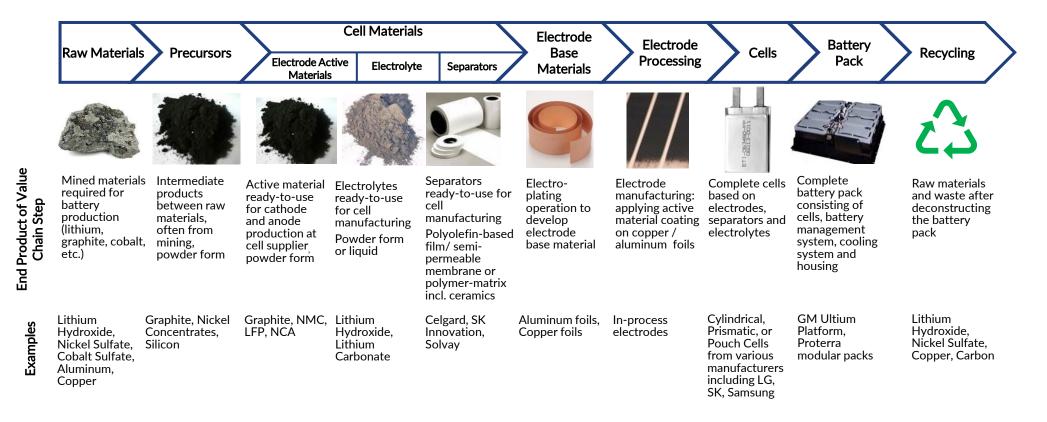
Note: EV cost estimates impacted by lower initial volumes, and expected to reach cost parity with ICE by 2025-2027

Source: Bank of America

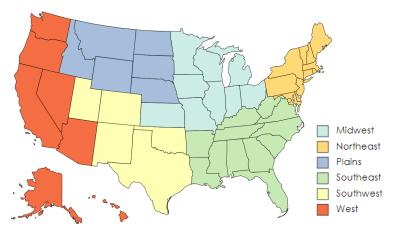
GM's Ultium platform is a large-scale skateboard architecture used for their EV offerings. All OEMs are developing vehicle architectures to utilize the same battery and drivetrain components over multiple vehicle "top hats". Standardization is critical to reduce complexity and drive down costs.


- Battery manufacturers and OEMs to utilize common components for different battery packs
 - Higher volumes to drive down costs minimize unique components
 - Simplify components, supply chain, and assembly
 - GM is targeting **19 different battery and drive** configurations, compared with **550 ICE drivetrain** configurations
- Commonization of cells has the most significant impact on pack costs
 - GM and LG Energy targeting cost below **\$100/kWh** with Ultium battery pack
- Flexibility in design is required to meet demands for different vehicle types (sedan, trucks, SUVs, etc.)
 - Differences in pack sizes ranging from 50 to 200kWh

Automotive Manufacturing Value Chain *EV Transition Opportunities Across the Entire Vehicle*


The automotive manufacturing value chain continues to grow more complex with the adoption of electrification – OEMs will need their supply base to support both ICE and EV manufacturing while adapting to ever changing technology capabilities

Strategic Development of the EV Value Chain


Supply chain for lithium-ion batteries covers raw materials through end-of-life recycling of packs and cells. OEMs are engaging across the value chain, in some case with minimal knowledge and experience, to secure supply

Strategic Development of the EV Value Chain *Regional Implications*

Investment in the Southeast, Midwest and Canada are leading the new wave of automotive construction opportunities—the establishment of the battery value chain expected to follow OEM investment

- The presence of large renewable energy sources and critical minerals make Canada attractive to downstream battery value chain investment
- Southeast US attracting OEM investment due to reduced labor costs combined with the lack of strong union presence
- Midwest investment focused on expansion and transition of current vehicle production capabilities

Driving Factor	Southeast	Midwest	West	Southwest	Northeast	Plains
OEM Investment	\$40B	\$21B	\$14B	\$0.35B	-	-
EV Production Growth 23-30	44%	37%	(1%)	18%	0%	0%
Electricity Cost	Low	Moderate	High	Low	High	Low
Union Presence	Low	High	High	Low	High	High
Concentration of Critical Minerals	Low	Low	High	Moderate	Moderate	Low

Facility Transition Case Study: Assembly and Powertrain Facilities

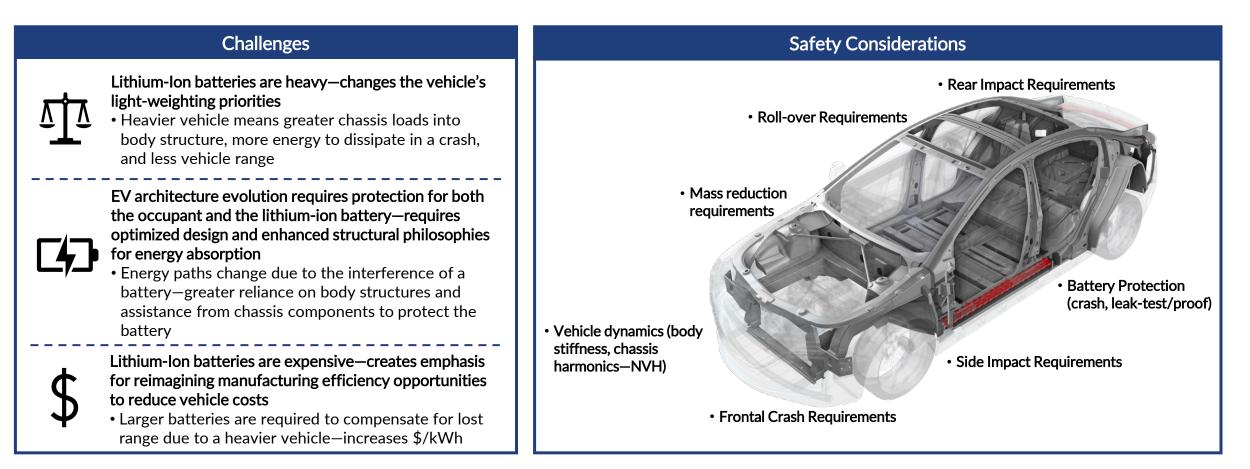
Facility transitions are taking place across the entire automotive value chain and at every OEM – Honda is using product and plant consolidation to create an EV hub in Ohio, GM is leveraging dual manufacturing within their existing transmission facility in OH

Honda Vehicle Assembly Facilities

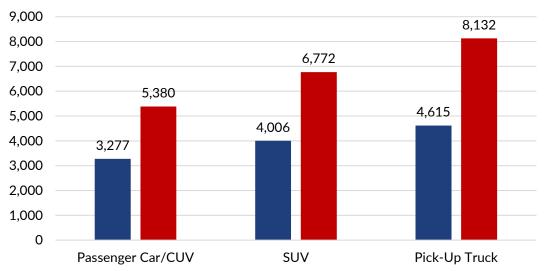
- EV Hub, OH transforming Marysville, East Liberty and Anna plants to lead EV production – proximity to the new JV battery plant with LGES
- Marysville, OH consolidation of production lines from two to one, training workforce for skills needed for EV production
- Indiana gain production of Accord from Marysville, in addition to current production of Civic Hatchback and CRV-V

Honda Powertrain Facilities

Honda Precision Parts of Georgia, IV



- Anna, OH transferring engine production, engine head machining, and block casting to Alabama to reallocate space for battery casing production
- Tallapoosa, GA filling non-operational transmission space through partnership with supplier to install a new line to build e-axles, the supplier will install, own, and operate the new e-axle facility
- Toledo, OH retrofitting a dedicated portion of Toledo transmission facility to produce a family of EV drivetrain units. The facility will maintain production of 6-spd., 8spd., 10 spd. RWD and 9 spd. FWD transmissions



Electric Vehicles create challenges for legacy automakers as they transition their portfolio away from internal combustion engines. Structural architectures require an even stronger emphasis on light weighting, occupant safety, battery protection, and vehicle performance (range)

Average vehicle weight increases from ICE to BEV – driven by introduction of new components, material changes, and increased safety standards surrounding electric drivetrains

Average Total Vehicle Weight (lbs.)

■ICE ■BEV

- Average passenger car/CUV weight change of ~2,100 lbs. primary driven by addition of battery, e-drive system, and other body/chassis updates
- 24% increase in body and chassis weight due to added materials to support battery and increase vehicle safety
- 15% increase in BEV transmission system weight due to higher content of steel

* Source Argonne Laboratory, PM Research

plante moran |

Innovations in the Automotive Market

Innovations are occurring throughout the automotive value chain by OEMs and suppliers – product & component, material & process, and technology & software innovations are driving efficiencies and moving the industry forward

Innovations in the Automotive Market					
Product/Component	Material/Process	Technology/Software			
Rising Battery Energy Density	Giga Castings	OTA Updates			
Sic Inverters	Thermoplastic Seats/ Pultrusion	Connectivity			
Thermal Systems	Stainless Steel Exo-Skeleton	Autonomous			

Transition to Electric Federal Policy Impact

plante moran | Audit. Tax. Consulting. Wealth Management.

For Meeting Attendees Only

25

Inflation Reduction Act Summary Profile

The Inflation Reduction Act (IRA), signed into law in August 2022, includes nearly \$370 billion in investments for projects that repurpose retired fossil fuel infrastructure and employ displaced workers, setting the U.S. on a course for an economic clean energy transition

What did this create?

- An ecosystem of credits and incentives supporting green energy, broadly defined
- Combination of 10 new and 12 modified tax credits and incentives
 - Tax credits can be used directly (general business credit), sold for cash payment, or used to generate tax refunds
 - Applicable in some form to all types of taxpayers (businesses, individuals, non-profits, etc.)
- \$90 billion in additional funding for grants and loans to support the adoption of technologies and retrofit existing operations

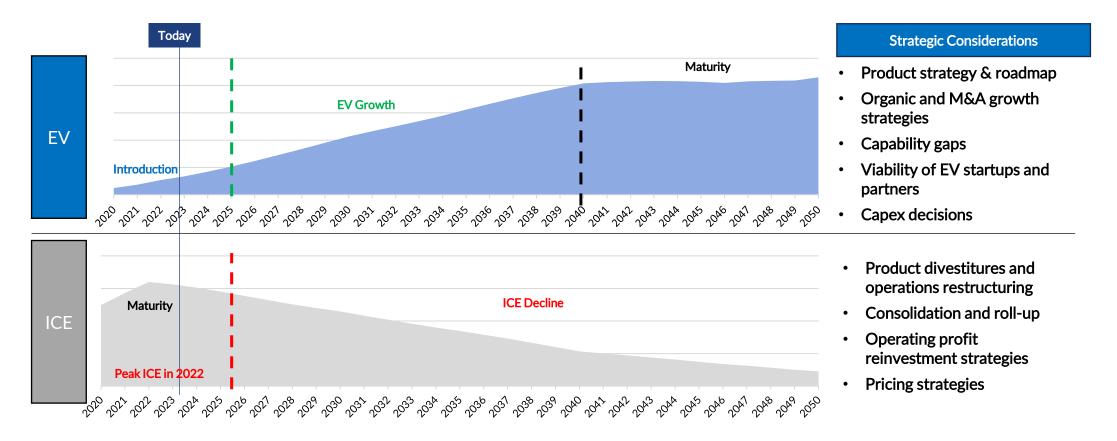
Expected impact

- We expect a transformational impact given the scope of interrelated credits and incentives
- The integration of both supply-side and demand-side programs is expected to impact the market on a long- term basis

IRA Overview *Tax Credit Opportunities*

The IRA has created multiple opportunities across multiple area, The main focus of our discussion will surround the opportunities in the manufacturing and transportation areas

Area	IRA Section	Tax Code Section	Program Name
	13401	30D	Clean Vehicle Credit
Manufacturing and Transportation	13502	45X	Advanced Manufacturing Production Credit
	13402	25E	Credit for Previously-Owned Clean Vehicles
	13403	45W	Credit for Qualified Commercial Clean Vehicles
	13404	30C	Alternative Fuel Vehicle Refueling Property Credit
	13101	45	Production Tax Credit for Electricity from Renewables
	13102	48	Investment Tax Credit for Energy Property
	13103		Increase in Energy Credit for Solar and Wind Facilities Placed in Service in Connection with Low-Income Communities
Electricity and Power	13105	45U	Zero-Emission Nuclear Power Production Credit
Generation	13701	45Y	Clean Electricity Production Tax Credit
	13702(h)	48E	Clean Electricity Investment Tax Credit
	13703	16X(e)(3)(B)	Cost Recovery for Qualified Facilities, Qualified Property, and Energy Storage Technology
	13501	48C	Advanced Energy Project Credit
	13201	40A, 6426(c),6427(e)	Extension of Tax Credits for Biodiesel and Renewable Diesel
	13201	6426(d), 6426(e),6427(e)	Extension of Tax Credit for Alternative Fuels
Alternative Fuels 8 Carbon	13202	40	Extension of Second-Generation Biofuel Incentives
Alternative Fuels & Carbon Sequestration	13704	45Z	Clean Fuel Production Credit
Sequestiation	13203	40B	Sustainable Aviation Fuel Credit
	13104	45Q	Credit for Carbon Oxide Sequestration
	13204	45V	Clean Hydrogen Production Tax Credit
	13301	25C	Energy Efficient Home Improvement Credit
Residential & Commercial	13302	25D	Residential Clean Energy Credit
Clean Energy	13304	45L	New Energy Efficient Homes Credit
	13303	179D	Energy Efficient Commercial Buildings Deduction


IRA Tax Credits Opportunities Across Transportation and Mobility Value Chain

Critical Mineral Production	Cell Production	Module Production	End Product	Infrastructure
 Advanced Manufacturing Production Credit (45x) Tax credit 10% of the cost of production for battery critical minerals Includes: cathode materials, anode materials, anode foils, and electrochemically active materials, including solvents, additives, and electrolyte salts that contribute to the electrochemical processes necessary for energy storage 	• 2030 – 75%	Advanced Manufacturing Production Credit (45x) • Credit for battery module is \$ 10/kWh • Phase out of Credit begins in 2030 • 2030 – 75% • 2031 – 50% • 2032 – 25% • 2033 – 0%	Clean Vehicle Credit (30D) • \$7,500 Consumer tax credit for new light vehicle EVs • \$3,750 if critical mineral requirement met • \$3,750 for battery components requirement met Qualified Commercial Clean Vehicles (45W) • Up to \$40,000 for Electric Medium/Heavy Duty Trucks (>14,000 GVWR) • Up to \$7,500 light vehicle EVs (<14,000 GVWR) leased for business use Previously-Owned Clean Vehicles (25E) • \$4,000 tax credit for used light vehicle EVs	 Alternative Fuel Vehicle Refueling Property (30C) Provides 30% of the cost per electric vehicle charger, up to \$100,000. Companies that install multiple chargers can claim tax credits for each separate charger they install, significantly reducing the cost of electrifying the fleet

Strategic Directions Impacting both OEMs and Suppliers North American Business Models in transition

OEMs and Suppliers will have critical strategic investment decisions to make over the next 2-3 years. The next decade will bring dramatic product shifts toward Electric Vehicles, while ICE products will begin to decline

