Madeleine Setiono

Levchenko, A.

**ECON 490** 

# **State Capacity and Export Oriented Industrialization**

I. Abstract

The rise of East Asian Newly Industrialized Countries; South Korea, Singapore, Taiwan, and Hong Kong in the 1980s through 90s was a unique phenomenon of immense economic growth through export-oriented industrialization. The combination of liberalization practices and strong governments exhibiting high state capacity in these countries were thought as the main contributors of their success. This paper attempts to find the relationship between state capacity, measured by fiscal capacity—with manufacturing exports using ordinary least squares and instrumental variables regression. I regress manufactured exports share of GDP to total tax/GDP and income tax/GDP ratios. OLS and IV regressions show that there is significant negative correlation between fiscal capacity and manufactured goods exports, and OLS regression shows negative correlation between FDI net inflows/GDP and manufactured goods exports. I also find that fiscal capacity in total tax/GDP ratio has a significant positive correlation with net FDI/GDP ratio.

#### II. Background

Modern economic development theories have hailed export-oriented growth as the passage to development. This strategy largely refers to exports of industry products, which are items that have undergone value addition process, instead of commodity goods. Countries that have taken on this path are usually referred as Export Oriented Industrialization (EOI) and have experienced rapid growth post-Cold War Era. The most prominent example of this phenomena is the Asian Tigers that comprise of Hongkong, South Korea, Taiwan, and Singapore while China has been leading EOI growth in more recent decades. I will refer to these countries as the Asian NICs. Studies prove that these Asian NICs did not only experience an increase in overall output but have achieved a "considerable degree of restructuring in favor of manufacturing and away from commodity production since the 1970s" (Lee and Naya 1988).

Scholars have long addressed the relationship between politics and economic growth. Therefore, the political institutions or forces acting in a particular country should affect the country's economic outcome, be it in industrialization, trade or both. Acemoglu and Robinson argue that political institutions are prerequisites to the subsequent economic growth that the country might experience. According to this neo-institutionalist framework, economic growth in a state is only possible by first having inclusive political institutions. There are two strands to inclusive political institutions; plurality in government (democracy), and a centralized government. I argue that a centralized government is able to foster better economic growth. Centralized government is associated to state capacity (Dincecco 2009, 2017). Consequently, state capacity is positively correlated with economic growth because it attracts capital by providing public goods such as protection for private property, infrastructure and government services that would ease the process of investment. Investment will in turn, spur economic growth.

Additionally, the relationship of state capacity and economic growth goes back to the study of early modern Spain by Drelichmann and Voth. From the late 1500s to the 18<sup>th</sup> century, Spain went from the biggest European power to the weakest empire in the area. Revenues in silver grams declined by more than a half and number of armed troops declined by more than two thirds. Drelichmann and Voth argue that this decline is attributed to the lack of state capacity presented by the kingdom to the regions under Spain. The government's weakness gave regions less incentive to comply in taxation activity, hence these regions ended up free-riding. The failure of the central government to exercise their state capacity caused regions to ignore the rule of law, hence declining revenues and federal armed troops over time.

How does this theory apply to the Asian NIC phenomenon in the 80s? Scholars have long attributed the "Asian Miracle" to their switch to an open market economy that enables their governments to set efficient market prices (James, Naya, and Meier 1989). However, more recent studies by scholars such as Wade, Bradford and Amsden suggest that the neoclassical economic explanation is not sufficient to explain this success. Doner states that institutionalism; politicaleconomic explanations regarding government structures and policy in each NIC are the most promising school of thought that can be employed to explain this occurrence. Therefore, I aim to explore the relationship between the two concepts and see if there is a correlation between institutions (state capacity) and economic growth through manufacturing exports. Although my motivation comes from looking at the Asian success story in the post-Cold War era, I will look into the broader scheme of things in my research. Additionally, I exploit the existence of Foreign Direct Investment as a mechanism that translates of state capacity to manufacturing exports. I argue that states with high state capacity attract foreign direct investment through the provision of public goods that make investment less risky (states are more stable or secure with aforementioned public goods). My argument is supported by the fact that most Asian NICs had strong governments during their period of growth. Singapore boomed under by a strong single party, the People's Action Party (PAP) that was able to consolidate the country and efficiently administer the country. South Korea was an authoritarian-style market economy under Rhee Syngman. Similarly, China boasts one of the strongest and most-centralized governments in the world. It is important to

analyze the source of growth in these economies because policymakers in developing countries attempt to replicate their successes.

I hypothesize that countries that demonstrate higher state capacity have bigger manufactured goods exports sector relative to other exported merchandises. Furthermore, the connection hinges on foreign direct investment intensity. Countries demonstrating higher state capacity are more able to provide "rules of the game" (Dincecco 2009, 2017), making the country more attractive to foreign capital, thus attracting more foreign direct investment. Foreign direct investment entering developing countries from more developed countries usually comes in the form of factory creation, which increases manufactured goods exports. For the purposes of this research, I will use fiscal capacity as a proxy for state capacity, further discussed in section IV.

#### III. Literature Review

#### a. Fiscal Capacity

This research largely draws on a study done by Dincecco and Prado ("Fiscal Capacity and Economic Performance"). Dincecco and Prado argue that states that have low state capacities are unable to provide basic public goods that improve worker productivity, which influences a country's economic performance. These public goods include police force, legal system and transportation infrastructure. Consequently, low worker productivity is associated with impeded economic growth. Dincecco and Prado also mention the low economic performance of Latin American heavily conflicted countries such as Guatemala in contrast to the development experiences of East Asian countries under strong states.

The relationship between fiscal capacity and economic performance is therefore studied by regressing GDP per worker as the benchmark of worker productivity on direct taxation as a measure of fiscal capacity. They find that there is a significant positive correlation between direct taxation share of GDP and total tax share of GDP, making direct taxation a good measure of fiscal capacity. From their cross-sectional regression analysis of 112 countries from 1975 to 2004, greater fiscal strength significantly improves worker productivity: a 10-percentage point increase in fiscal capacity leads to a 21 to 44 percent increase in GDP per worker for the average income sample country. Dincecco and Prado utilize legal origin as an instrument for their instrumental variable regression, which I also exploit in my paper. Their instrumental variable regression also shows a positive correlation between fiscal capacity and worker productivity.

# b. Foreign direct investments and manufacturing exports

There have been plenty of research on Foreign direct investment and exports. I use one article from Camarero and Tamarit (2004) that analyzes specifically the relationship between Foreign Direct Investment and manufacturing exports. Camarero and Tamarit use a sample of 13 OECD countries to test out the substitution and complementary effects of Foreign Direct Investment on exports of manufactured goods. Substitution means that FDI inflow decreases trade volume, complementary means that FDI inflow increases trade volume. Among the 13 countries, significant correlations were found in 8 countries. Austria, Denmark, Finland, France and Sweden show positive significant correlation, signifying a complementary effect of FDI. Belgium, Spain, and the USA show negative correlation, signifying a substitution effect of FDI.

I also refer to other scholars' work on the effect of FDI on total trade. Marjeed and Ahmad find positive relationship between the two variables in developing countries while Pain and Waeklin indicate that eight out of eleven countries found inward FDI complements exports while the inward FDI substitutes exports in Japan, Italy and Denmark.

- IV. Data and Methodology
- a. Empirical Methodology

This research attempts to find the correlation between state capacity and a country's degree of manufactured goods exports. I hypothesize that countries that demonstrate higher state capacity have bigger manufactured goods exports sector important to its GDP. Furthermore, the connection hinges on foreign direct investment intensity. Countries demonstrating higher state capacity are are more attractive to foreign capital, thus attracting more foreign direct investment. Foreign direct investment entering developing countries comes in the form of factory creation, which increases manufactured goods exports. To find the correlation of state capacity to manufactured goods exports we need to first find the measures for state capacity then construct a regression of manufactured goods exports on that measure.

b. Fiscal Capacity as measure of state capacity

State capacity is defined by Besley and Persson as *institutional capability of the state to carry out various policies that deliver benefits and services to households and firms* (Besley and Persson 2009). I also draw on Mann's classic notion of the infrastructural power of the state, which he defined as the capacity of the state actually to penetrate civil society and to implement logistically decisions throughout the realm. Thus, the state capacity yardstick we use must be a measure of what is actually exercised by the state, not just its potential. Besley and Persson build a model of state capacity using two determinants; "legal" and "fiscal" capacity.

For the purposes of this research, I will focus on the latter. Fiscal capacity is used because its impact to economic development is easier discerned as it is interchangeable to taxation. Fiscal capacity is defined as a state's capacity to generate tax revenue. If taxation is low, a government will be less able to provide for public goods that will generate economic development. Dincecco uses worker productivity as a form of economic development and writes "weak fiscal states that lack the capacity to raise sufficient tax resources cannot provide adequate amounts of basic public goods that improve worker productivity."

An essential gauge of fiscal capacity is level of direct taxation attained by the country. I decide to follow Besley and Persson's (2009) model that includes different kinds of taxes to measure fiscal capacity. I choose tax/GDP ratio and Income tax/GDP ratio as Dincecco has also done. Tax/GDP ratio provides a systematic look at the state's potential economic role. Income tax/GDP ratio acts as a 'harsher' measure for state capacity because the collection of income tax requires the government to enforce compliance towards its subjects, therefore demanding more administrative capacity (Besley and Persson 2013). Using both indicators will give a good comparison on state capacity. Dincecco shows that there is strong positive correlation between both average tax/GDP ratio and average income tax/GDP ratio on per capita GDP (Figure 1 and Figure 2). I use the tax/GDP ratio and income tax/GDP ratio data from the IMF Government Finance Statistics Yearbook. More information on these datasets are available below.

#### c. Manufactured exports per GDP Ratio

To measure the size of manufactured goods exports, I choose to use Manufactured Exports per GDP ratio. I multiply the share of manufactured exports to total merchandise exports in current US\$ to value of total merchandise exports in current US\$, then dividing the resulting data with real GDP in PPP (in 2011 US\$) data to obtain manufactured exports per GDP ratio.

# d. Regression Models

After defining the measures for both the dependent variable and variable of interest in question, I can finally construct a regression to test the paper's hypothesis. My hypothesis is "high fiscal capacity causes a high degree of manufacturing exports" as the country takes on the path of Export Oriented Industrialization (henceforth referred to as EOI). Hence, I use a fixed effects ordinary least square regression using panel data of Share of manufactured exports from total exports as the dependent variable and tax/GDP ratio or income tax/GDP ratio as the variable of interest. Therefore, I will have two basic regression equations, one with Tax/GDP ratio as the interest variable.

I use control variables to produce a coefficient that only captures the effect of fiscal capacity measured by tax/GDP ratio or income tax/GDP ratio to EOI. These controls are; Total Factor Productivity, Capital stock in current PPPs (2011 million US\$), Manufactured goods share of GDP, Real GDP per Capita in chained PPP in 2011 USD and human capital measured by Penn World Table's human capital index. I take logs of the merchandise exports, capital stock, and GDP/Capita.

Manufactured goods consist of goods with a much higher level of processing and technological content due to going through industrial processes. Technology is accounted for in Total Factor Productivity and thus is important to include as a control variable. Some countries could export more manufactured goods because they are inherently better in allocating their production factors through technology and not because of fiscal capacity.

#### Model 1

 $\begin{aligned} &Manufactured\ exports/GDP_i = \beta_1 Tax/GDP_i + \ \beta_2\ ln\ Merchandise\ exports_i + \ \beta_3\ TFP + \\ &\beta_4\ lnCapital\ stock_i + \ \beta_5\ lnGDP/Capita_i + \ \beta_6\ Manufacture\ share\ of\ GDP\ + \ + \ \epsilon_i \end{aligned}$ 

# Model 2

 $\begin{aligned} &Manufactured\ exports/GDP_i = \beta_1 Income\ Tax/GDP_i + \ \beta_2\ ln\ Merchandise\ exports_i + \ \beta_3\ TFP + \\ &\beta_4\ lnCapital\ stock_i + \ \beta_5\ lnGDP/Capita_i + \ \beta_6\ Manufacture\ share\ of\ GDP\ + \ \epsilon_i \end{aligned}$ 

Where model 2 uses income tax/GDP ratio instead of tax/GDP ratio. Then, I add fixed country and fixed time effects where  $\delta_i$  is country fixed effects and  $\delta_i$  time effect to generate models 3 and 4.

Model 3

 $\begin{aligned} & Manufactured\ exports/GDP_i = \beta_1 Tax/GDP_i + \ \beta_2\ ln\ Merchandise\ exports_i + \ \beta_3\ TFP + \\ & \beta_4\ lnCapital\ stock_i + \ \beta_5\ lnGDP/Capita_i + + \ \beta_6\ Manufacture\ share\ of\ GDP + \ \delta_i + \ \delta_t + \ \epsilon_i \end{aligned}$ 

Model 4

 $\begin{aligned} & Manufactured\ exports/GDP_i = \beta_1 Income\ Tax/GDP_i + \ \beta_2\ ln\ Merchandise\ exports_i + \ \beta_3\ TFP + \\ & \beta_4\ lnCapital\ stock_i + \ \beta_5\ lnGDP/Capita_i + \ \beta_6\ Manufacture\ share\ of\ GDP + \ \delta_i + \ \delta_t + \ \epsilon_i \end{aligned}$ 

Country fixed effects allow us to control for the omitted variables that are constant through time but differ between countries at a certain time (features unique to each country that are not represented in the other control variables). Time fixed effects control for trends in the global economy that are different across time frames but constant across countries (experienced by all countries in the dataset). Eliminating omitted variable bias through fixed effects allows us to determine a purer coefficient for fiscal capacity (in tax/GDP or income tax/GDP) that is not affected by internal distinctions between countries or across-the-board global macroeconomic shocks or trends.

e. Channel

Wilhelms' Institutional FDI Fitness theory postulates that "it is institutions, their policies and implementation, rather than generic inflexible variables that give a country a competitive advantage in the global FDI market that stable countries with better economic environment attract more foreign capital." (Wilhelms 1998). I argue that a high degree of manufacturing exports is mostly achieved through Foreign Direct Investment (FDI) as the main channel, since FDI commonly takes the form of industrial plants or factories. Hence, the relationship between fiscal capacity, FDI and export manufacture share shall not be overlooked.

I account for Foreign Direct Investment as a secondary output variable. I will regress the same basic equation, substituting Share of manufactured exports with Foreign direct investment to see whether fiscal capacity is positively correlated to FDI.

This produces the FDI regression model as follows:

Model 1 (FDI)

 $FDI/GDP_{i} = \beta_{1}Tax/GDP_{i} + \beta_{2} \ln Merchandise \ exports_{i} + \beta_{3} \ TFP + \beta_{4} \ln Capital \ stock_{i} + \beta_{5} \ln GDP/Capita_{i} + \beta_{6} \ Manufacture \ share \ of \ GDP + \delta_{i} + \delta_{t} + \epsilon_{i}$ 

Model 2 (FDI)

 $FDI/GDP_i = \beta_1 Income Tax/GDP_i + \beta_2 ln Merchandise exports_i + \beta_3 TFP +$ 

 $\beta_4 \ln Capital \ stock_i + \ \beta_5 \ lnGDP/Capita_i + + \ \beta_6 \ Manufacture \ share \ of \ GDP + \ \delta_i + \ \delta_t + \ \epsilon_i$ 

Then, I regress manufactured exports share of GDP (main y-variable) on FDI to see its correlation.

Model 5

 $\begin{aligned} &Manufactured\ exports/GDP_i = \beta_1 FDI/GDP_i + \ \beta_2\ ln\ Merchandise\ exports_i + \ \beta_3\ TFP + \\ &\beta_4\ lnCapital\ stock_i + \ \beta_5\ lnGDP/Capita_i + \ \beta_6\ Manufacture\ share\ of\ GDP \ + \ \delta_i + \ \delta_t + \ \epsilon_i \end{aligned}$ 

I also add FDI as a control variable in the original regression equations of Models 3 and 4.

# Model 6

 $\begin{aligned} &Manufactured\ exports/GDP_i = \beta_1 Tax/GDP_i + \ \beta_2\ ln\ Merchandise\ exports_i + \ \beta_3\ TFP + \\ &\beta_4\ lnCapital\ stock_i + \ \beta_5\ lnGDP/Capita_i + + \ \beta_6\ Manufacture\ share\ of\ GDP + \ \beta_8\ FDI/GDP_i + \ \delta_i + \ \delta_t + \\ &\epsilon_i \end{aligned}$ 

Model 7

 $\begin{aligned} &Manufactured\ exports/GDP_i = \beta_1 Income\ Tax/GDP_i + \ \beta_2\ ln\ Merchandise\ exports_i + \ \beta_3\ TFP + \\ &\beta_4\ lnCapital\ stock_i + \ \beta_5\ lnGDP/Capita_i + + \ \beta_6\ Manufacture\ share\ of\ GDP + \ \beta_8\ FDI/GDP_i + \ \delta_i + \ \delta_t + \\ &\epsilon_i \end{aligned}$ 

If adding FDI causes the significance of taxation to decrease, it suggests that FDI really is an effective channel or translator of state capacity to manufactured exports to GDP ratio. In other words, the effect of fiscal capacity to manufactured exports is encapsulated in foreign direct investment.

f. Test for Robustness

There is a possibility of endogeneity in my models because there might be a confounding factor in the error term that affects both fiscal capacity and manufacturing exports ratio. I use an instrumental variable regression to address this endogeneity issue.

Following Dincecco, La Porta and Besley & Persson, I use legal origin as an instrument for fiscal capacity (tax/GDP ratio and income tax/GDP ratio). Besley & Persson argue that an

instrument for fiscal capacity should be an event or occurrence that acts as past investment that make a state more able to raise taxes. Legal origin is both endogenous to the regressor (fiscal capacity) and exogenous to the outcome variable (manufactured exports share of GDP). Legal origin is endogenous because it determines the country's taxation system, thus its fiscal capacity measured in tax/GDP ratio and income tax/GDP ratio, but also exogenous to the outcome because it is unlikely that a country's legal origin affects its manufactured good exports in the present. All legal origin types (British, French, German, Scandinavian and Socialist) have country examples that vary in terms of export and manufacturing.

The first stage regression for my instrumental variable model is as follows;

$$Tax/GDP_i = \beta_1 Legal \ origin + \epsilon_i$$

Similarly, tax/GDP can be substituted with Income tax/GDP. Thus, the resulting instrumental variables model looks like this:

# Manufactured exports/ $GDP_i = \beta_1 Tax/GDP + X + \delta_t + \epsilon_i$

Where Legal origin is a dummy variable instrument, tax or income tax/GDP is the instrumented variable and X is a vector of all controls in previous models. I drop country fixed effects from my regression because the legal origin of each country does not change across years.

I use Dincecco's database in classifying countries into having British, French, Scandinavian, or Socialist legal origins using dummy variables. The classification relies on a country's historical influences such as previous colonizer or affiliation. For instance; an ex-USSR country like Yugoslavia is classified as having socialist legal origin, the United States is classified as having British legal origin, Guinea is classified as having French legal origin, Denmark is classified as having Scandinavian legal origin and Belgium as having German legal origin.

V. Data

|                           | (1)   | (2)       | (3)       | (4)      | (5)       |
|---------------------------|-------|-----------|-----------|----------|-----------|
| VARIABLES                 | Ν     | mean      | sd        | min      | max       |
|                           |       |           |           |          |           |
| Tax/GDP                   | 3,172 | 0.183     | 0.0812    | 0.00192  | 0.565     |
| Income tax/GDP            | 2,564 | 0.0713    | 0.0510    | 0.000515 | 0.328     |
| Manufactured              | 6,412 | 0.113     | 0.166     | 4.46e-08 | 1.513     |
| Exports/GDP               |       |           |           |          |           |
| Total merchandise exports | 6,741 | 5.013e+10 | 1.675e+11 | 62,631   | 2.342e+12 |
| Capital Stock             | 5,297 | 1.152e+06 | 4.046e+06 | 103.1    | 6.938e+07 |
| TFP                       | 3,958 | 0.753     | 0.410     | 0.105    | 5.740     |
| Real GDP per capita       | 5,297 | 13,953    | 16,763    | 246.1    | 191,229   |
| Manufactured              | 6,834 | 12.76     | 7.158     | 0        | 54.21     |
| Goods/GDP                 |       |           |           |          |           |
| FDI/GDP                   | 3,246 | 0.0470    | 0.150     | -0.583   | 4.517     |
|                           |       |           |           |          |           |

Table 1: Summary Statistics

I use the IMF Government Finance Statistics Yearbook (WoRLD database) for tax revenue as percent GDP and Income tax revenue as percent GDP data. Tax revenue refers to compulsory transfers to the central government for public purposes. Certain compulsory transfers such as fines, penalties, and most social security contributions are excluded. Refunds and corrections of erroneously collected tax revenue are treated as negative revenue. The dataset contains data from 185 countries from year 1990 to 2014 and data points are collected annually using weighted average. For income tax revenue as percent GDP, the dataset contains data from 167 countries from year 1990 to 2014. Government finance statistics are reported in local currency at the end of each fiscal year. There are no adjustments made to the data. The mean for Tax/GDP ratio is 18.3% and 7.13% for Income tax/GDP. The standard deviations are 8.12% ad 5.10% respectively.

The maximum values for both Tax/GDP and Income tax/GDP are held by Denmark across all years, which is unsurprising being a Scandinavian country famous for high tax collection. The minimum value of Tax/GDP ratio is held by Kuwait in 1991, coinciding with the Iraq invasion of Kuwait. This signifies low fiscal capacity caused by an event that might not be related to the country's actual fiscal capacity on regular times. The lowest value of Income tax/GDP ratio is held by Algeria in 1981. I also averaged all Tax and Income tax/GDP data from 1990-2014 and ranked countries from lowest to highest. Middle Eastern countries dominate the lower values and Scandinavian countries dominate the upper values. Middle Eastern countries have low tax/GDP ratios because their wealth largely relies on foreign capital and foreign oil consumption. There is little to no pressure for the government to build state capacity through taxation. More importantly, raising taxes will scare away corporations from doing business or buying commodity in these countries.



Figure 1: Manufactured Exports to Total Merchandise Exports

Share of manufactured exports as percentage of total merchandise export data is taken from the World Bank dataset from the United Nations Comtrade database through the WITS platform and is computed using weighted average. In this dataset, manufactures comprise commodities in SITC sections 5 (chemicals), 6 (basic manufactures), 7 (machinery and transport equipment), and 8 (miscellaneous manufactured goods), excluding division 68 (non-ferrous metals). This dataset contains data for 183 countries from 1960 to 2017. I multiply this data to total merchandise export data also from the World Bank database to find total manufactured exports, then divide it by real GDP (expenditure-side at chained PPP in million 2011 US Dollars) data from Penn World Tables. The mean manufactured exports/GDP ratio is 11.3% and the standard deviation is 16.6%. The maximum value is held by Hong Kong which ranks highest across the board. The maximum value of manufactured exports share of GDP is found in Hong Kong (in all years). Hong Kong manufactured exports share of GDP values are consistently above 1. This is an interesting case due to Hong Kong's industrial nature and high reliance on exports and demands further discussion. The minimum value of manufactured exports share of GDP is low reliance on manufactured exports, however the year 2010 is a dramatically low number even compared to 2009 and 2011. This might be caused by country-and-time specific events, as 2010 was the year where US decided to withdraw troops from Iraq and Iraq held elections. This situation might have caused instability that drastically stopped manufacturing exports for a year.

Plotting a scatterplot (Figure 1) of total manufactured exports shows positive linear relationship of total manufactured exports to total merchandise exports suggesting that the two are complementary. An increase in share of manufactured exports is likely not only a substitution or switch from commodity or agriculture exports but caused by a volume growth in the manufactures exports sector, i.e., a bigger pie instead of just a bigger slice of the same pie.

I obtain Foreign Direct Investment net inflows data from the World Bank database. The data is compiled from the IMF Balance of Payments database, supplemented by data from UNCTD (UN Conference on Trade and Development) and other official national sources. I then divide it with real GDP (expenditure-side at chained PPP in million 2011 US Dollars) data from the Penn

World Tables 9.0. to find FDI/GDP ratio. The highest FDI/GDP ratio is held by Malta in 2007, when it experienced a sudden surge of net FDI inflow.

I plot scatterplots for Tax/GDP ratio and Income tax/GDP ratio against Manufactured exports share of GDP data.



Figure 2: Manufactured Exports Share of GDP to total tax/GDP ratio



Figure 3: Manufactured Exports Share of GDP to Income tax/GDP ratio

The scatterplots (Figure 2 and 3) show fiscal capacity measured through income tax and total tax/GDP ratio has a weak relationship with manufactured exports share of GDP. I hypothesize is that the relationship will be more apparent after controlling for endogenous factors, so we can see the purer correlation between fiscal capacity and manufactured exports.

Total Factor Productivity and Capital Stock data at current PPPs in million 2011 US Dollars are obtained from the Penn World Tables. The classification of countries into French, British, Scandinavian or Socialist legal system for the IV regression robustness test uses Dincecco's database and relies on a country's colonial history. An ex-British colony will be coded as having British legal system, an ex-USSR country will be coded as having a socialist legal system. Countries that are affiliated to Russia or was a part of USSR pre-dissolution are coded as having socialist legal origin.

I also calculated subsample means and standard deviations for East Asian NICs and OECD countries (not included in summary statistics table). The mean Tax/GDP ratio for the East Asian

NICs is 14.60% with a standard deviation of 3.55% while the mean for Income tax/GDP ratio is 5.48% with a standard deviation of 2.29%. Parallel to the theory, the mean manufactured exports share to GDP ratio for East Asian NICs is very high at 53.14%. However, there is very high variability as the standard deviation is 39.48%. This is possibly because of their rapid growth of the manufacturing sector and economy as a whole—the economic conditions of these countries experienced a shock from the years after independence and cold war (circa 1960s) to the late 80s and early 90s. The mean Tax/GDP ratio for OECD countries is 24.94% with a standard deviation of 6.56%, possibly driven by Scandinavian countries inside the organization. The mean Income tax/GDP ratio is 11.63% with a standard deviation of 5.09%. The mean manufactured/GDP ratio is 17.39%, as richer economies shift to service or knowledge economy and OECD is a coalition of mostly very rich countries. The standard deviation is 14.94%.

# VI. Results

My sample contains 115 countries from years 1990-2014.

|                                      | (1)           | (2)       | (3)                 | (4)                 | (5)                 | (6)                 | (7)                 |
|--------------------------------------|---------------|-----------|---------------------|---------------------|---------------------|---------------------|---------------------|
| VARIABLES                            | (1)           | (2)       | (5)                 | (+)                 | $(\mathbf{J})$      | (0)                 | (/)                 |
| tax gdp yr                           | -0.340***     | :         | -0.340***           |                     |                     | -0.333***           |                     |
|                                      | (0.070)       |           | (0.055)             |                     |                     | (0.055)             |                     |
| incometax_gdp yr                     |               | -0 851*** | . ,                 | -0.377***           |                     | . ,                 | -0 351***           |
|                                      |               | (0.113)   |                     | (0.097)             |                     |                     | (0.097)             |
| yrfdi_gdp                            |               | (0.115)   |                     | (0.037)             | -0.003***           | 0.000               | 0.002               |
|                                      |               |           |                     |                     | (0.001)             | (0.006)             | (0.006)             |
| yrManufacturedgdp                    | 0.048**       | 0.027     | 0.064***            | 0.094***            | 0.063***            | 0.065***            | 0.097***            |
|                                      | (0.020)       | (0.026)   | (0.008)             | (0.012)             | (0.009)             | (0.008)             | (0.012)             |
| Imerchandise_exports                 | 0.169***      | 0.200***  | 0.093***            | 0.104***            | 0.087***            | 0.094***            | 0.104***            |
|                                      | (0.009)       | (0.011)   | (0.007)             | (0.009)             | (0.007)             | (0.007)             | (0.009)             |
| TFP level at current<br>PPPs (USA=1) | -<br>0.370*** | -0.272*** | -0.033*             | -0.035              | -0.027              | -0.029              | -0.024              |
|                                      | (0.025)       | (0.024)   | (0.020)             | (0.029)             | (0.020)             | (0.021)             | (0.032)             |
| lnck                                 | -<br>0.167*** | -0.193*** | -0.029***           | -0.038***           | -0.024***           | -0.027***           | -0.034***           |
|                                      | (0.008)       | (0.009)   | (0.008)             | (0.011)             | (0.008)             | (0.009)             | (0.011)             |
| lnrgdpe_pc                           | 0.079***      | 0.059***  | -0.058***           | -0.063***           | -0.042***           | -0.060***           | -0.068***           |
|                                      | (0.007)       | (0.007)   | (0.015)             | (0.020)             | (0.014)             | (0.015)             | (0.021)             |
| Constant                             | -<br>2.202*** | -2.442*** | -1.450***           | -1.157***           | -1.536***           | -0.890***           | -1.677***           |
|                                      | (0.092)       | (0.104)   | (0.161)             | (0.133)             | (0.162)             | (0.131)             | (0.190)             |
| Observations                         | 1 976         | 1 722     | 1 976               | 1 722               | 1 917               | 1 952               | 1 701               |
| R-squared                            | 0.494         | 0.523     | 0.954               | 0.955               | 0.951               | 0.954               | 0.955               |
| Fixed Effects                        | None          | None      | Country<br>and Year |

Table 2: Manufactured Exports Share of GDP OLS Regressions

Robust standard errors in parentheses \*\*\* p<0.01, \*\* p<0.05, \* p<0.1

|                       | (1)       | (2)       |
|-----------------------|-----------|-----------|
| VARIABLES             | IV        | IV        |
|                       |           |           |
| tax gdp yr            | -0.395*** |           |
|                       | (0.104)   |           |
| incometax gdp yr      |           | -0.776*** |
|                       |           | (0.148)   |
| yrfdi gdp             | -0.001    | -0.002    |
|                       | (0.001)   | (0.001)   |
| yrManufacturedgdp     | 0.048***  | 0.028***  |
|                       | (0.008)   | (0.009)   |
| lyrmerchandise_expo   |           |           |
| rts                   | 0.169***  | 0.200***  |
|                       | (0.005)   | (0.006)   |
| TFP level at current  |           |           |
| PPPs (USA=1)          | -0.375*** | -0.274*** |
|                       | (0.020)   | (0.023)   |
| lnck                  | -0.167*** | -0.192*** |
|                       | (0.005)   | (0.006)   |
| lnrgdpe_pc            | 0.082***  | 0.058***  |
|                       | (0.008)   | (0.007)   |
| Constant              | -2.212*** | -2.426*** |
|                       | (0.058)   | (0.070)   |
|                       |           |           |
| Observations          | 1,976     | 1,722     |
| R-squared             | 0.493     | 0.523     |
| Fixed Effects         | Year      | Year      |
| Robust standard       |           |           |
| errors in parentheses |           |           |
| *** p<0.01, **        |           |           |
| p<0.05, * p<0.1       |           |           |

Table 3: Manufactured Exports Share of GDP IV Regressions

Results from both ordinary least square regression and instrumental variable regressions give significant negative coefficients. Despite the small positive relationship in the preliminary scatterplots, the regressions in Table 2 surprisingly show negative correlation between both tax/GDP and income tax/GDP with manufactured exports share of GDP. Keeping all else constant,

a 1-point increase in tax/GDP ratio is correlated to a 0.327-point decrease in manufactured exports share to GDP. A 1-point increase in income tax/GDP ratio is correlated to a 0.322-point decrease in manufactured exports share to GDP. Instrumental variable regression (Table 3) shows that a 1-point increase in tax/GDP ratio is correlated to a 0.395-point decrease in manufactured exports share to GDP while a 1-point increase in income tax/GDP ratio is correlated to a 0.776-point decrease in manufactured exports share to GDP.

These results are unexpected as I hypothesized that fiscal capacity should be positively correlated to manufactured exports/GDP intensity. I run diagnostics to check if the sign of tax coefficients changes when I restrict the factor variables. I make two diagnostic regression, the first by dropping East Asian NIC countries (Taiwan, South Korea, Hong Kong, and Singapore) and the second diagnostic by dropping OECD countries. I drop NICs because these countries might be anomalies due to their unnatural growth, therefore I want to see if the same phenomenon is experienced by the rest of the countries. The second diagnostic drops OECD countries. Results from both of my diagnostic tests (Table 4) show that there is no sign change. Thus, I conclude the negative coefficients in Tables 2 & 3 to be true.

FDI unexpectedly has a small negative correlation with manufactured exports share to GDP, although this should not be interpreted as a causal relationship (Table 2 column 5). A 1-point increase in tax/GDP ratio is correlated to a 0.514-point increase in FDI net inflows/GDP ratio and the correlation between income tax/GDP ratio and FDI is insignificant. When added as a control in the regression of manufactured exports share of GDP on tax/GDP and income tax/GDP, FDI/GDP ratio becomes insignificant, which is another puzzling data. Table 5 shows the regression results of FDI/GDP on Total tax/GDP an Income tax/GDP ratios. FDI has a significant relationship with tax/GDP ratio. This aligns with my initial hypothesis that greater fiscal capacity (as a measure

of state capacity) attracts more Foreign Direct Investment. However, this does not explain the missing link between FDI and manufactured exports.

| 00                                | (1)       | (2)       | (3)       | (4)       |
|-----------------------------------|-----------|-----------|-----------|-----------|
| VARIABLES                         | Drop NICs |           | Drop OECD | S         |
|                                   | 1         |           | 1         |           |
| tax_gdp yr                        | -0.343*** |           | -0.235*** |           |
|                                   | (0.053)   |           | (0.064)   |           |
| incometax_gdp yr                  |           | -0.376*** |           | 0.011     |
|                                   |           | (0.091)   |           | (0.122)   |
| yrManufacturedgdp                 | 0.063***  | 0.094***  | 0.041***  | 0.062***  |
|                                   | (0.008)   | -0.011    | (0.008)   | (0.014)   |
| Inyrmerchandise_exports           | 0.094***  | 0.105***  | 0.082***  | 0.094***  |
|                                   | (0.007)   | -0.009    | (0.008)   | (0.010)   |
| TFP level at current PPPs (USA=1) | -0.045*** | -0.056**  | 0.007     | 0.014     |
|                                   | (0.016)   | -0.023    | (0.026)   | (0.058)   |
| lnck                              | -0.031*** | -0.042*** | 0.006     | 0.012     |
|                                   | (0.007)   | -0.009    | (0.010)   | (0.015)   |
| lnrgdpe_pc                        | -0.054*** | -0.056*** | -0.069*** | -0.074**  |
|                                   | (0.014)   | -0.019    | (0.017)   | (0.031)   |
| Constant                          | -1.074*** | -1.316*** | -1.564*** | -2.044*** |
|                                   | (0.119)   | -0.147    | (0.191)   | (0.245)   |
|                                   |           |           |           |           |
| Observations                      | 1,927     | 1674      | 1,241     | 985       |
| R-squared                         | 0.926     | 0.926     | 0.958     | 0.960     |

Table 4: Diagnostics regressions

Country fixed effects and Year fixed effects

Robust standard errors in parentheses

\*\*\* p<0.01, \*\* p<0.05, \* p<0.1

|                           | (1)       | (2)       |
|---------------------------|-----------|-----------|
| VARIABLES                 |           |           |
|                           |           |           |
| tax_gdp yr                | 0.514***  |           |
|                           | (0.172)   |           |
| incometax_gdp yr          |           | 0.434     |
|                           |           | (0.271)   |
| lyrmerchandise_exports    | -0.036**  | -0.044**  |
|                           | (0.017)   | (0.019)   |
| TFP level at current PPPs |           |           |
| (USA=1)                   | 0.012     | -0.030    |
|                           | (0.055)   | (0.095)   |
| lnck                      | 0.003     | -0.011    |
|                           | (0.017)   | (0.023)   |
| lnrgdpe_pc                | 0.017     | 0.058     |
|                           | (0.037)   | (0.058)   |
| yrManufacturedgdp         | -0.089*** | -0.137*** |
|                           | (0.032)   | (0.047)   |
| Constant                  | 0.989**   | 1.064**   |
|                           | (0.409)   | (0.512)   |
|                           |           |           |
| Observations              | 1,952     | 1,701     |
| R-squared                 | 0.272     | 0.275     |
| Country fixed effects and |           |           |
| Year fixed effects        |           |           |
| Robust standard errors in |           |           |
| *** n<0.01 ** n<0.05 *    |           |           |
| p<0.1                     |           |           |
| •                         |           |           |

Table 5: FDI on Tax/GDP and Income Tax/GDP Regressions

#### VII. Discussion

The negative coefficients contradict what the institutionalist framework say about fiscal capacity. Dincecco proves that there is positive correlation between fiscal capacity and GDP per worker. Acemoglu and Robinson would argue the same, that a state's ability to tax should signal a strong government that can provide public goods to support economic growth (Acemoglu & Robinson 2012). Rodrik shows that bigger governments by government expenditure are more exposed to trade (Rodrik 1998). I propose several explanations for my data.

#### a. Tax/GDP ratios as inaccurate benchmarks of fiscal capacity

First, I come back to tax and income tax to GDP ratio to attempt in explaining the dissonance. I propose that the problem lies my assumption of it being a measure of a state's "ability to tax." In reality, this ratio does not only measure a state's ability to tax—fiscal capacity, but also a state's tax revenue. In other words, a high tax to GDP ratio can signal high fiscal capacity, but moreover might simply suggest high tax rates, and tax rates affect FDI (Hines). Mutti and Gruber argue that an important element in the success of low and middle-income countries seeking to attract export-oriented industries appears to have been offering lower tax rates. Case studies by Rabushka show that the East Asian NICs applied this theory; although these countries have strong governments, these countries actually had low taxation and gave away numerous tax exemptions during the Asian Growth Miracle period. This claim aligns with the summary statistics for NICs that I included in the Data section of this paper (mean taxes for NICs are lower than mean taxes for the world).

On the consumption side, tax rates also influence individuals' disposable incomes. A lower tax rate increases the disposable income of individuals, therefore increasing individuals' ability to consume. Higher consumption could attract businesses to produce in a country, thus increasing

24

manufacturing. These industries could over time experience excess production and switch to exporting their products, thus increasing the manufacturing exports sector of a country's economy.

Although promising, the explanation that taxation is an inaccurate measure of fiscal capacity falls short of the positive correlation between tax/GDP and FDI net inflows/GDP ratio in Table 5. If tax/GDP ratio really signifies high tax rates instead of high fiscal capacity, then taxation and FDI should have an inverse relationship. An explanation I propose is that these FDI inflows are channeled to the non-tradable sector such as service. This validates the broken link between FDI to manufactured exports share, as manufacturing is included in the tradable sector. My argument is consistent to Kinoshita (2011), suggesting that "countries where FDI predominantly flows to the non-tradable sector will have a higher trade deficit than countries where it flows to the tradable sector." Therefore, a more sufficient measure of FDI to apply in my model should be FDI channeled specifically to the tradable sector, or better yet, manufacturing. Additionally, the results in my OLS and IV regressions could suggest non-causal inverse relationship. I suspect that countries with high FDI net inflows to GDP ratio in my dataset are not manufacturing countries. To prove my inference, I rank countries by FDI/GDP from highest to lowest (Appendix b). The top-ranking countries by FDI/GDP ratio in my dataset are mostly non-manufacturing countries. These include island nations such as Cayman Islands, Malta, Equatorial Guinea, and Cyprus although we see Hong Kong and Singapore on the top as well. Luxembourg also ranks on top. Meanwhile, other manufacturing countries like China, India and manufacturing Southeast Asian countries rank below. This fact suggests that high FDI/GDP might just be channeled into other sectors that are non-manufacturing. This data also unveils that countries with high FDI/GDP capita might not be countries that are FDI intensive per se but have very small GDP in comparison to

their capital inflows (island nations). These two facts shed a little light on why there is negative relationship between FDI net inflows/GDP and manufactured exports share of GDP.

On the other hand, there is a possibility that the coefficients for fiscal capacity are negative not because it captures high tax rates, but because the taxing abilities of countries are not translated into the provision of public goods that goes into the manufacturing or exports sector of the economy. According to my theory, it is the provision of public goods that can influence the inflow of FDI, generate economic activity and finally spur growth of the manufacturing exports sector.

# b. Other inadequate theories

I also argue that there could be a delay from the time that FDI is given to when a factory is planted and running to make manufactured exports. I do lag regression to check this out theory. The lagged regression is available on Table 6. A t-2 lag of FDI/GDP ratio does not change the coefficients seen on Table 1. Instead, the results are more negative. Thus, it could not be the case that it is due to a delay in implementation of the imported capital to the host country.

|                                    | (1)       | (2)       | (3)       |
|------------------------------------|-----------|-----------|-----------|
| VARIABLES                          |           |           |           |
|                                    |           |           |           |
| tax gdp yr                         | -0.364*** |           |           |
|                                    | (0.058)   |           |           |
| incometax gdp yr                   |           | -0.433*** |           |
| _0 1 5                             |           | (0.097)   |           |
| lag2 FDI/GDP                       | -0.013*   | -0.012*   | -0.015**  |
| -                                  | (0.007)   | (0.007)   | (0.007)   |
| yrManufacturedgdp                  | 0.068***  | 0.095***  | 0.067***  |
|                                    | (0.009)   | (0.013)   | (0.010)   |
| Invrmerchandise exports            | 0.103***  | 0.113***  | 0.097***  |
| · _ 1                              | (0.008)   | (0.009)   | (0.008)   |
| TFP level at current PPPs (USA=1)  | -0.037    | -0.028    | -0.045**  |
|                                    | (0.024)   | (0.036)   | (0.022)   |
| lnck                               | -0.028*** | -0.034*** | -0.032*** |
|                                    | (0.010)   | (0.012)   | (0.009)   |
| lnrgdpe pc                         | -0.064*** | -0.079*** | -0.040*** |
|                                    | (0.017)   | (0.022)   | (0.015)   |
| Constant                           | -1.165*** | -1.349*** | -1.718*** |
|                                    | (0.110)   | (0.154)   | (0.174)   |
| Observations                       | 1 783     | 1 576     | 1 814     |
| R-squared                          | 0.957     | 0.958     | 0.954     |
| Country fixed offects and Veer fix | 0.757     | 0.750     | 0.734     |
| Country fixed effects and year fix | eu        |           |           |

Table 6: Manufactured Exports Share of GDP OLS regressions with lagged FDI/GDP ratio

Country fixed effects and Year fixed effects Robust standard errors in parentheses \*\*\* p<0.01, \*\* p<0.05, \* p<0.1

Finally, I argue that this might be the substitution effect of FDI, which states that FDI can in fact reduce exports. In this perspective, FDI is market seeking and therefore substitutes for trade because the motivation is market access and expansion (Markusen and Venables 1998). Despite this theory, I find more literature arguing for the complementary (positive) effect of FDI on exports compared to the evidence for substitution effect as discussed in the previous section on FDI. Camarero and Tamarit analyzed 13 OECD European countries; they found that five out of the eight significant coefficients of inward FDI to exports of manufactures are positive. However, coefficients for Belgium, Spain and the United States are negative, meaning that inward FDI decreases exports of manufactured goods (Camarero and Tamarit 2004). Therefore, there is a slight possibility that the overall effect of FDI to manufactured exports share is substitutive, although the lack of academic evidence suggests otherwise.

# VIII. Conclusion

My results show that fiscal capacity is negatively correlated to manufacturing exports to DGP share. Total tax/GDP and income tax/GPD ratios are significantly positively correlated to FDI/GDP while FDI/GDP has a negative relationship with manufactured exports share to GDP. These results are puzzling and there is a dissonance between FDI to manufacturing exports, disproving my initial hypotheses. Two arguments are proposed to explain these results. First, fiscal capacity measured by tax/GDP ratio does not link to the improvement of the manufacturing sector. Fiscal capacity could provide public goods and conditions that attract FDI but not public goods that generate the growth of the manufacturing exports sector specifically. Second, FDI inflows might go to the non-tradable sector. When FDI mostly flows into nontradables, FDI will not result in the growth of manufactured goods exports. One problem might arise from using net FDI inflows instead of gross FDI inflows because manufacturing countries are usually also capital-exporting countries (bigger economies compared to island nations). Thus, my suggestion for further research is to use gross FDI inflows and specifically inflows into the tradable sector.

#### Works Cited

- Amsden, Alice. (1989). *Asia's Next Giant: South Korea and Late Industrialization*. New York: Oxford University Press.
- Besley, T., & Persson, T. (2009). The Origins of State Capacity: Property Rights, Taxation, and Politics. *American Economic Review*, 99(4), 1218–1244. https://doi.org/10.1257/aer.99.4.1218
- Besley, T., & Persson, T. (2017). *Pillars of prosperity: the political economics of development clusters*. Retrieved from http://dx.doi.org/10.23943/princeton/9780691152684.001.0001
- Bradford, C. I. (1987). Trade and structural change: NICs and next tier NICs as transitional economies. *World Development*, 15(3), 299–316. https://doi.org/10.1016/0305-750X(87)90015-5
- Camarero, Mariam and Tamarit, Cecilio, (2003), Estimating exports and imports demand for Manufactured goods: The role of FDI, No 22, European Economy Group Working Papers, European Economy Group, https://EconPapers.repec.org/RePEc:eeg:euroeg:22.
- Chung H. Lee and Seiji Naya, (1988), Trade in East Asian Development with Comparative
  Reference to Southeast Asian Experiences. *Economic Development and Cultural Change*36, no. S3 (Apr., 1988): S123-S152
- Dincecco, M. (2017). *State Capacity and Economic Development: Present and Past* (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781108539913
- Dincecco, M., & Prado, M. (2012). Warfare, fiscal capacity, and performance. *Journal of Economic Growth*, *17*(3), 171–203. https://doi.org/10.1007/s10887-012-9079-4
- Doner, R. F. (1991). Approaches to the Politics of Economic Growth in Southeast Asia. *The Journal of Asian Studies*, *50*(4), 818–850. https://doi.org/10.2307/2058543

Drelichman, M., & Voth, H.-J. (2017). *Lending to the borrower from hell: debt, taxes, and default in the age of Philip II*. Retrieved from http://dx.doi.org/10.23943/princeton/9780691151496.001.0001

Feenstra, Robert C., Robert Inklaar and Marcel P. Timmer (2015), "The Next Generation of the Penn World Table" American Economic Review, 105(10), 3150-3182, available for download at <u>www.ggdc.net/pwt</u>

Hines, J. R. (1996). Dividends and Profits: Some Unsubtle Foreign Influences. *The Journal of Finance*, 51(2), 661–689. https://doi.org/10.1111/j.1540-6261.1996.tb02698.x

INTERNATIONAL MONETARY FUND STATISTICS DEPARTMENT. (2018). *INTERNATIONAL FINANCIAL STATISTICS YEARBOOK, 2018.* S.I.: INTL MONETARY FUND.

- LaPorta, Rafael, Florencio Lopez-de-Silanes, and Andrei Shleifer. 2008. "The Economic Consequences of Legal Origins." Journal of Economic Literature 46 (2): 285-332.
- Majeed, Muhammad Tariq, and Eatzaz Ahmad. "FDI and Exports in Developing Countries: Theory and Evidence." *The Pakistan Development Review*, vol. 46, no. 4, 2007, pp. 735– 750. *JSTOR*, JSTOR, www.jstor.org/stable/41261193.
- Markusen, J. R., & Venables, A. J. (1998). Multinational Firms and the New Trade Theory. Journal of International Economics, 46, 183–201.

Pain, Nigel and Katharine Wakelin. "Export Performance and the Role of Foreign Direct Investment by Nigel Pain and Katharine Wakelin. National Institute of Economic and Social Research & Maastricht Economic Research Institute on Innovation and Technology." (1997). Rabushka, Alvin. Tax Policy and Economic Growth in the Four Asian Tigers. *Journal of Economic Growth*, 3(1), 11–20.

The World Bank. 2014. "World Development Indicators"

- Thieme, A., James, W. E., Naya, S., & Meier, G. M. (1991). Asian Development: Economic Success and Policy Lessons. *American Journal of Agricultural Economics*, 73(1), 226. https://doi.org/10.2307/1242902
- Wade, R. (2004). Governing the market: economic theory and the role of government in East Asian industrialization ; with a new introduction by the author (2. pbk. ed). Princeton, NJ: Princeton Univ. Press.
- Wilhelms, S.K. and Witter, M.S.D. (1998) Foreign Direct Investment and Its Determinants in Emerging Economies. United States Agency for International Development, Bureau for Africa, Office of Sustainable Development.

# Appendix

a. List of countries by average tax/GDP ratio and income tax/GDP ratio from years 1990-2014, lowest to highest (IMF WoRLD Revenue Longitudinal Database)

|                      | Average Total |                       | Average Income |
|----------------------|---------------|-----------------------|----------------|
| Country              | Tax/GDP Ratio | Country               | Tax/GDP Ratio  |
| Iraq                 | 0.87816922    | Kuwait                | 0.24692466     |
| Kuwait               | 0.98335609    | Iraq                  | 0.50741249     |
| Bahrain, Kingdom of  | 1.53863364    | United Arab Emirates  | 0.76001356     |
| Saudi Arabia         | 1.57095267    | Maldives              | 0.76350168     |
| Timor-Leste          | 1.870439      | Bahrain, Kingdom of   | 0.8291147      |
| Oman                 | 2.24147041    | Tajikistan            | 0.86527394     |
| Qatar                | 2.77465704    | Oman                  | 0.98415343     |
| Guinea-Bissau        | 5.03922636    | Myanmar               | 1.16102198     |
| Congo, Dem. Rep. of  | 5.34029503    | Guinea                | 1.28637165     |
| Iran, I.R. of        | 5.49367058    | Congo, Dem. Rep. of   | 1.30425392     |
| Afghanistan, I.R. of | 6.01127378    | Chad                  | 1.30757225     |
| Libya                | 6.48029238    | Central African Rep.  | 1.42296062     |
| Bangladesh           | 7.08281832    | Cambodia              | 1.55528339     |
| Yemen, Republic of   | 7.32752882    | Bangladesh            | 1.59993116     |
| Sudan                | 7.45227303    | Afghanistan, I.R. of  | 1.65431792     |
| Sierra Leone         | 7.6634217     | Nepal                 | 1.79155641     |
| Central African Rep. | 7.86185369    | Nigeria               | 1.83604626     |
| Congo, Republic of   | 8.73656803    | Madagascar            | 1.84495547     |
| Bhutan               | 9.19320871    | Paraguay              | 1.89461039     |
| Nepal                | 9.4467874     | Niger                 | 1.92553492     |
| Madagascar           | 9.53074459    | Congo, Republic of    | 1.92660658     |
| Ecuador              | 9.7370599     | Bosnia & Herzegovina  | 1.94449376     |
| Ethiopia             | 9.74169668    | Tonga                 | 1.97888994     |
| Haiti                | 9.7996325     | Ecuador               | 2.20628377     |
| Cambodia             | 9.82879752    | Sierra Leone          | 2.31004071     |
| Chad                 | 9.89050913    | Ethiopia              | 2.34921395     |
| Uganda               | 9.98449914    | Bolivia               | 2.37296731     |
| Equatorial Guinea    | 10.1209564    | Sri Lanka             | 2.41281369     |
| Nigeria              | 10.3571952    | China, P.R.: Mainland | 2.42318661     |
| Dominican Republic   | 10.459712     | Cameroon              | 2.45958097     |
| Paraguay             | 10.5932949    | Antigua and Barbuda   | 2.60094642     |
| Pakistan             | 10.5941839    | Lebanon               | 2.66076566     |
| Guatemala            | 10.6804289    | Uganda                | 2.66183188     |
| Rwanda               | 10.7390426    | Guatemala             | 2.70309182     |

| Ghana                   | 10.7775651 | Dominican Republic         | 2.81632528 |
|-------------------------|------------|----------------------------|------------|
| Niger                   | 10.8276706 | Gambia, The                | 2.87949751 |
| Tanzania                | 11.1658284 | Uruguay                    | 2.94935225 |
| Turkmenistan            | 11.2708428 | Pakistan                   | 2.95883146 |
| Indonesia               | 11.2713002 | Togo                       | 2.96559486 |
| Cameroon                | 11.2956149 | Costa Rica                 | 2.96657276 |
| Comoros                 | 11.3576271 | Iran, I.R. of              | 2.96733252 |
| Micronesia, Fed. States |            |                            |            |
| of                      | 11.6143517 | Nicaragua                  | 2.98651564 |
| Burkina Faso            | 11.6368302 | Micronesia, Fed. States of | 2.99055329 |
| Nicaragua               | 11.6672104 | Burkina Faso               | 3.07321464 |
| Mozambique              | 11.92938   | Albania                    | 3.14870285 |
| Lao People's Dem.Rep    | 12.0065417 | Jordan                     | 3.16080452 |
| Venezuela, Rep. Bol.    | 12.0218796 | Moldova                    | 3.1667633  |
| El Salvador             | 12.1354041 | Mauritius                  | 3.18895275 |
| Maldives                | 12.6246316 | Lao People's Dem.Rep       | 3.25535683 |
| China,P.R.:Hong Kong    | 12.7349704 | Argentina                  | 3.3200154  |
| Costa Rica              | 12.7683822 | Ghana                      | 3.39114477 |
| Guinea                  | 12.7805569 | Mali                       | 3.39748973 |
| China, P.R.: Mainland   | 12.9140602 | Cote d'Ivoire              | 3.39883204 |
| Azerbaijan, Rep. of     | 13.0152864 | Kyrgyz Republic            | 3.40678758 |
| Bahamas, The            | 13.0770262 | Benin                      | 3.43617923 |
| Gambia, The             | 13.2793583 | Palau                      | 3.44266629 |
| Mauritania              | 13.3872396 | Macedonia, FYR             | 3.575529   |
| Benin                   | 13.5484775 | Grenada                    | 3.58990586 |
| Togo                    | 13.5786783 | El Salvador                | 3.6029366  |
| Lebanon                 | 13.7950261 | Burundi                    | 3.68305679 |
| Mexico                  | 13.8403753 | India                      | 3.80095524 |
| Burundi                 | 13.8792918 | Honduras                   | 3.84131005 |
| Malawi                  | 14.0456663 | Yemen, Republic of         | 3.94728275 |
| Philippines             | 14.1198862 | Rwanda                     | 3.97176729 |
| Panama                  | 14.1699436 | Senegal                    | 4.10693605 |
| Mali                    | 14.172364  | Panama                     | 4.11413902 |
| Eritrea                 | 14.4067766 | Sao Tome & Principe        | 4.24093806 |
| Sri Lanka               | 14.4266977 | Armenia                    | 4.24921335 |
| Singapore               | 14.4527013 | Tanzania                   | 4.32914396 |
| Gabon                   | 14.6636157 | Peru                       | 4.47991138 |
| Syrian Arab Republic    | 14.6652316 | Colombia                   | 4.48448221 |
| Tajikistan              | 14.724058  | Mexico                     | 4.51879739 |
| Kenya                   | 14.8172287 | Croatia                    | 4.58894703 |

| Liberia              | 14.8853079 | Dominica             | 4.66541282 |
|----------------------|------------|----------------------|------------|
| Sao Tome & Principe  | 14.9898783 | Gabon                | 4.71675968 |
| Armenia              | 15.0071239 | Bhutan               | 4.77321883 |
| Colombia             | 15.0777472 | St. Kitts and Nevis  | 5.00612266 |
| India                | 15.0948373 | Azerbaijan, Rep. of  | 5.06600751 |
| Egypt                | 15.2516126 | Samoa                | 5.13342333 |
| San Marino           | 15.2571762 | Georgia              | 5.28963209 |
| Zambia               | 15.4476625 | Vietnam              | 5.46167202 |
| Cote d'Ivoire        | 15.4662918 | Philippines          | 5.54514763 |
| Honduras             | 15.5683971 | Liberia              | 5.57147196 |
| Suriname             | 15.7528938 | Belize               | 5.72264512 |
| Zimbabwe             | 15.7757194 | Thailand             | 5.80831165 |
| Malaysia             | 15.8656207 | Turkey               | 5.81971554 |
| Kyrgyz Republic      | 15.9839745 | Kenya                | 5.82239277 |
| Thailand             | 16.172471  | Cape Verde           | 5.86683852 |
| Peru                 | 16.2456726 | Chile                | 5.87026394 |
| Albania              | 16.3700796 | Tunisia              | 5.91489982 |
| Jordan               | 16.4318858 | Serbia, Republic of  | 5.92631801 |
| Antigua and Barbuda  | 16.4977574 | Brazil               | 5.93495842 |
| Mongolia             | 16.5048664 | St. Lucia            | 5.96094238 |
| United Arab Emirates | 16.9003228 | Swaziland            | 6.06524038 |
| Senegal              | 17.0397891 | San Marino           | 6.14154152 |
| Marshall Islands     | 17.080255  | Egypt                | 6.15849682 |
| Tuvalu               | 17.1657683 | Indonesia            | 6.18360755 |
| Georgia              | 17.220565  | St. Vincent & Grens. | 6.18992617 |
| Kiribati             | 17.3806275 | Mongolia             | 6.25292687 |
| Palau                | 17.4075503 | Korea, Republic of   | 6.27740437 |
| Korea, Republic of   | 17.4242538 | Zambia               | 6.35627434 |
| Vanuatu              | 17.4578079 | Seychelles           | 6.36152215 |
| Japan                | 17.4937803 | Belarus              | 6.40026568 |
| Mauritius            | 17.6343709 | Singapore            | 6.43325907 |
| Turkey               | 17.7777863 | Malawi               | 6.44782798 |
| Tonga                | 17.9073958 | Venezuela, Rep. Bol. | 6.45939658 |
| Macedonia, FYR       | 17.9332788 | Marshall Islands     | 6.53839207 |
| Grenada              | 17.9401048 | Suriname             | 6.61935798 |
| Bolivia              | 18.1012243 | Zimbabwe             | 6.79186487 |
| Chile                | 18.1582002 | Slovak Republic      | 6.79945192 |
| St. Kitts and Nevis  | 18.6241945 | Greece               | 6.99695427 |
| Slovak Republic      | 18.8950281 | Morocco              | 7.02013031 |
| Czech Republic       | 18.9535299 | Latvia               | 7.1006567  |

| Romania              | 18.9737913 | <b>Russian Federation</b> | 7.17655827 |
|----------------------|------------|---------------------------|------------|
| Cape Verde           | 18.9802292 | Kazakhstan                | 7.19162648 |
| Lithuania            | 18.9932386 | Slovenia                  | 7.27252846 |
| Latvia               | 19.085839  | Romania                   | 7.27847733 |
| United States        | 19.3646019 | Kiribati                  | 7.28455853 |
| Vietnam              | 19.3759672 | Lithuania                 | 7.29733367 |
| Tunisia              | 19.4634277 | Czech Republic            | 7.73412335 |
| Switzerland          | 19.5712321 | Mozambique                | 7.74817002 |
| Guyana               | 19.7431521 | Fiji                      | 7.79919808 |
| Kazakhstan           | 20.4021482 | Bulgaria                  | 7.82641094 |
| St. Lucia            | 20.6027237 | China, P.R.: Hong Kong    | 7.83173961 |
| Argentina            | 20.6798314 | Estonia                   | 7.90238969 |
| Belize               | 20.7289782 | Ukraine                   | 8.07467525 |
| Solomon Islands      | 20.7307591 | Cyprus                    | 8.08362329 |
| Morocco              | 20.7749488 | Poland                    | 8.09608248 |
| Greece               | 20.8579433 | Syrian Arab Republic      | 8.23988304 |
| St. Vincent & Grens. | 20.9504044 | Portugal                  | 8.53442459 |
| Estonia              | 20.9533637 | Hungary                   | 8.81998201 |
| Spain                | 21.1789379 | Barbados                  | 8.99767169 |
| Dominica             | 21.2142662 | France                    | 9.09137596 |
| Samoa                | 21.2304455 | Malaysia                  | 9.17205444 |
| Moldova              | 21.402467  | Jamaica                   | 9.21906295 |
| Germany              | 21.6107873 | Lesotho                   | 9.47235215 |
| Bulgaria             | 21.7134898 | Spain                     | 9.69989216 |
| Cyprus               | 22.0052518 | Japan                     | 9.76779778 |
| Djibouti             | 22.0475928 | Namibia                   | 9.82221699 |
| Fiji                 | 22.3866034 | Malta                     | 9.86593016 |
| Poland               | 22.5578175 | Netherlands               | 10.3767891 |
| Portugal             | 22.5779037 | Solomon Islands           | 10.4743798 |
| Bosnia & Herzegovina | 22.7002514 | Germany                   | 10.5527602 |
| Slovenia             | 22.7308249 | Papua New Guinea          | 11.2619032 |
| Papua New Guinea     | 22.8278185 | Israel                    | 11.293387  |
| Brunei Darussalam    | 23.054244  | Botswana                  | 11.4247592 |
| Uruguay              | 23.0987942 | Equatorial Guinea         | 11.5861448 |
| Netherlands          | 23.1910195 | Switzerland               | 11.8067257 |
| Malta                | 23.3040421 | United States             | 11.8149707 |
| Jamaica              | 23.4290633 | Austria                   | 11.8313494 |
| Uzbekistan           | 23.5255236 | United Kingdom            | 12.3259734 |
| South Africa         | 23.6594112 | Ireland                   | 12.3548981 |
| Swaziland            | 23.7783071 | South Africa              | 13.1046898 |
|                      |            |                           |            |

| Croatia             | 23.90684   | Luxembourg          | 13.6055945 |
|---------------------|------------|---------------------|------------|
| Ukraine             | 23.9339825 | Italy               | 13.6874325 |
| Botswana            | 24.1975917 | Iceland             | 13.9008305 |
| Serbia, Republic of | 24.2866531 | Trinidad and Tobago | 14.7072034 |
| Barbados            | 25.5032398 | Canada              | 15.8805404 |
| Trinidad and Tobago | 25.6817366 | Belgium             | 15.9074971 |
| Ireland             | 25.902127  | Angola              | 16.1834494 |
| France              | 25.9284672 | Finland             | 16.2807762 |
| Hungary             | 26.1390021 | Australia           | 16.6277161 |
| Russian Federation  | 26.1791047 | Sweden              | 17.3599867 |
| United Kingdom      | 26.8438115 | Norway              | 17.4397349 |
| Luxembourg          | 27.0264333 | Algeria             | 18.7142249 |
| Brazil              | 27.3623782 | New Zealand         | 20.1120882 |
| Namibia             | 27.4914152 | Denmark             | 28.4678178 |
| Austria             | 27.5244482 |                     |            |
| Israel              | 27.6040308 |                     |            |
| Italy               | 28.1425793 |                     |            |
| Seychelles          | 28.2521652 |                     |            |
| Canada              | 28.7437999 |                     |            |
| Australia           | 29.0419906 |                     |            |
| Belgium             | 29.3777243 |                     |            |
| Finland             | 31.0309914 |                     |            |
| Iceland             | 31.3984659 |                     |            |
| Norway              | 31.6799155 |                     |            |
| Belarus             | 32.0002046 |                     |            |
| Algeria             | 32.9061932 |                     |            |
| Sweden              | 33.5449236 |                     |            |
| New Zealand         | 34.1158392 |                     |            |
| Angola              | 41.1080477 |                     |            |
| Lesotho             | 44.3333754 |                     |            |
| Denmark             | 46.0453519 |                     |            |

| b. | List of countries by FDI/GDP Ratio, highest to lowest (World Bank Data and Penn World | ld |
|----|---------------------------------------------------------------------------------------|----|
|    | Tables 9)                                                                             |    |

| Country              | Average FDI/GDP Ratio (1990-2014) |
|----------------------|-----------------------------------|
| Malta                | 0.743019687                       |
| Luxembourg           | 0.423031097                       |
| China, Hong Kong SAR | 0.246099732                       |
| Azerbaijan, Rep. of  | 0.186681187                       |
| Netherlands          | 0.171575952                       |
| Singapore            | 0.153486055                       |
| St. Kitts and Nevis  | 0.146967146                       |
| Belgium              | 0.132509212                       |
| Palau                | 0.131579503                       |
| Ireland              | 0.11998755                        |
| Cyprus               | 0.116926514                       |
| Mauritania           | 0.111802675                       |
| Seychelles           | 0.107229205                       |
| Mozambique           | 0.106065927                       |
| Antigua and Barbuda  | 0.105338427                       |
| Congo, Republic of   | 0.104143713                       |
| Lebanon              | 0.099196577                       |
| Grenada              | 0.097293607                       |
| Vanuatu              | 0.090180397                       |
| Hungary              | 0.089420883                       |
| St. Lucia            | 0.089187978                       |
| Bulgaria             | 0.088692545                       |
| Estonia              | 0.087381322                       |
| Dominica             | 0.082267283                       |
| Georgia              | 0.081132943                       |
| Kazakhstan           | 0.079513285                       |
| Guyana               | 0.075145593                       |
| Cambodia             | 0.074616082                       |
| Panama               | 0.068633739                       |
| Bahrain, Kingdom of  | 0.067277768                       |
| Fiji                 | 0.065621388                       |
| Chile                | 0.062561991                       |
| Namibia              | 0.060635727                       |
| Belize               | 0.059700751                       |
| Jordan               | 0.05741905                        |
| Trinidad and Tobago  | 0.057278776                       |
| Zambia               | 0.056638612                       |
| Armenia              | 0.05605919                        |
| Gambia, The          | 0.055890286                       |

Vietnam Mongolia Albania Moldova Maldives Iceland Czech Republic Costa Rica Djibouti Kyrgyz Republic Sierra Leone Bosnia & Herzegovina Niger Nicaragua Ghana Sweden Bolivia Bahamas, The Malaysia Jamaica Latvia Croatia Turkmenistan Honduras Botswana Barbados Slovak Republic Uganda TFYR of Macedonia United Kingdom Peru Madagascar Ukraine Togo Switzerland Solomon Islands Portugal Lithuania Dominican Republic Uruguay Sudan Colombia Austria Romania Poland Finland

0.055025995 0.055003551 0.054998606 0.054905638 0.053443962 0.049595453 0.049333482 0.048985848 0.048638966 0.048626424 0.048144641 0.046113988 0.044755478 0.044614292 0.044021655 0.04384443 0.043264137 0.043163552 0.042717963 0.042541058 0.042194608 0.04101556 0.041009552 0.039697197 0.039549921 0.039150839 0.037077007 0.036804289 0.036604377 0.036576759 0.03610216 0.035985645 0.034299313 0.03398491 0.033692101 0.032614361 0.032613399 0.03238857 0.032248344 0.030848962 0.030820486 0.030181816 0.029972567 0.029448852 0.029442337 0.029335032

| Nigeria                            | 0.028903462 |
|------------------------------------|-------------|
| Thailand                           | 0.028716873 |
| Spain                              | 0.028681634 |
| Lesotho                            | 0.028579441 |
| Eritrea                            | 0.028102378 |
| Tunisia                            | 0.027971276 |
| Canada                             | 0.027754628 |
| Tajikistan                         | 0.027358424 |
| Australia                          | 0.027140314 |
| Brunei Darussalam                  | 0.027056721 |
| Israel                             | 0.02637982  |
| Qatar                              | 0.025728145 |
| Malawi                             | 0.02481467  |
| Brazil                             | 0.024423095 |
| Norway                             | 0.024199507 |
| Denmark                            | 0.024060736 |
| Mexico                             | 0.023647369 |
| Belarus                            | 0.023489827 |
| Argentina                          | 0.023098616 |
| Ethiopia                           | 0.02268195  |
| Libva                              | 0.022601102 |
| Russian Federation                 | 0.021844666 |
| Mali                               | 0.021357663 |
| Tonga                              | 0.020985238 |
| New Zealand                        | 0.020813819 |
| El Salvador                        | 0.020701806 |
| Samoa                              | 0.020175385 |
| Venezuela (Bolivarian Republic of) | 0.019680636 |
| France                             | 0.019645636 |
| Cote d'Ivoire                      | 0.019294503 |
| Mauritius                          | 0.018649589 |
| Saudi Arabia                       | 0.018329788 |
| Senegal                            | 0.018178602 |
| Papua New Guinea                   | 0.018053364 |
| United Arab Emirates               | 0.017864031 |
| Germany                            | 0.017510938 |
| Oman                               | 0.017458637 |
| Slovenia                           | 0.016900103 |
| Morocco                            | 0.016268569 |
| Ecuador                            | 0.01518676  |
| Philippines                        | 0.015080506 |
| Rwanda                             | 0.014781526 |
| United States                      | 0.014756222 |
| Paraguay                           | 0.014528457 |
| Guinea                             | 0.014310281 |
| South Africa                       | 0.014058102 |

Bhutan Iraq Cameroon Sri Lanka Pakistan Benin Turkey Indonesia India Zimbabwe Syrian Arab Republic Algeria Burkina Faso Korea, Republic of Iran, I.R. of Italy Comoros Guatemala Greece Gabon Guinea-Bissau Kenva Bangladesh Burundi Afghanistan, I.R. of Kiribati Timor-Leste Kuwait Nepal Yemen, Republic of Japan Haiti Tuvalu Angola Suriname

0.013537005 0.013074917 0.0129174 0.01237717 0.011976746 0.011903658 0.011373985 0.011259248 0.011148697 0.010938967 0.01072634 0.009949658 0.009510798 0.008855831 0.008685722 0.008558958 0.008217703 0.00771359 0.007476195 0.007318323 0.006746467 0.006204655 0.005464081 0.004672807 0.004367026 0.004152122 0.003462388 0.003130056 0.002885642 0.002284858 0.001432786 0.000137579 -0.000575198 -0.013692589 -0.039884953