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SUMMARY

Oncogenic mutations in RAS provide a compelling
yet intractable therapeutic target. Using co-immu-
noprecipitation mass spectrometry, we uncovered
an interaction between RAS and Argonaute 2
(AGO2). Endogenously, RAS and AGO2 co-sedi-
ment and co-localize in the endoplasmic reticulum.
The AGO2 N-terminal domain directly binds the
Switch II region of KRAS, agnostic of nucleotide
(GDP/GTP) binding. Functionally, AGO2 knock-
down attenuates cell proliferation in mutant KRAS-
dependent cells and AGO2 overexpression
enhances KRASG12V-mediated transformation. Us-
ing AGO2�/� cells, we demonstrate that the RAS-
AGO2 interaction is required for maximal mutant
KRAS expression and cellular transformation.
Mechanistically, oncogenic KRAS attenuates
AGO2-mediated gene silencing. Overall, the func-
tional interaction with AGO2 extends KRAS function
beyond its canonical role in signaling.
INTRODUCTION

Approximately one-third of human cancers harbor an onco-

genic mutation in HRAS, KRAS, or NRAS (Balmain and Prag-

nell, 1983; Karnoub and Weinberg, 2008; Pylayeva-Gupta

et al., 2011). The tumor types most frequently harboring RAS

mutations, predominantly in KRAS, include pancreatic, lung,

and colon carcinoma, among others (COSMIC, 2013; Hand

et al., 1984; Karachaliou et al., 2013; Lauchle et al., 2006;
1448 Cell Reports 14, 1448–1461, February 16, 2016 ª2016 The Auth
Löhr et al., 2005). RAS genes encode a family of small

GTPases (Sweet et al., 1984) that transduce extracellular

growth signals by cycling between an active GTP-bound state

and an inactive GDP-bound state (Karnoub and Weinberg,

2008; Schubbert et al., 2007). Oncogenic Ras proteins exhibit

reduced intrinsic GTPase activity and are resistant to negative

regulation by GTPase-activating proteins (GAPs) such as

p120GAP and neurofibromin (Cichowski and Jacks, 2001).

Constitutively elevated levels of Ras-GTP aberrantly activate

downstream effector pathways that promote neoplastic trans-

formation (Karnoub and Weinberg, 2008; Shaw and Cantley,

2006; Trahey and McCormick, 1987). Despite extensive char-

acterization of the Ras/GAP molecular switch(es) and down-

stream signaling axes, therapeutic targeting of RAS-driven

cancers remains elusive (Baines et al., 2011; Downward,

2003; Stephen et al., 2014).

The oncogenic activity of RAS-GTP is mediated through

canonical effectors including RAF, PI3 kinase (PI3K), and Ral-

GDS (Cox and Der, 2010; Karnoub and Weinberg, 2008), and

other effectors have been described in various contexts (Gysin

et al., 2011). RAS effectors bind through the conserved Switch

I and Switch II domains and drive cellular transformation by acti-

vating downstream kinases and GTPase-signaling modules, the

best known of which are the RAF/MEK/ERK (mitogen activation

protein [MAP] kinase) and the PI3K/Akt signaling cascades. RAS

interactors have been identified using conventional approaches

of ectopically expressed epitope-tagged RAS constructs (Gold-

finger et al., 2007; Vasilescu et al., 2004). Here, we employed co-

immunoprecipitation followed by mass spectrometry (coIP MS)

to analyze the endogenous interactome of RAS in a panel of

lung and pancreatic cancer cell lines representing the spectrum

of both KRASmutation and dependency status. Surprisingly, the

most prominent interacting protein, across all cell lines analyzed,
ors
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Figure 1. Identification of the RAS-AGO2

Interaction

(A) Spectral counts of RAS and AGO2 peptides

detected in RAS co-immunoprecipitation mass

spectrometric (coIP MS) analysis in the indicated

cancer cell lines and NIH3T3 cells expressing

KRASWT and KRASG12V.

(B) Distribution of peptides mapping to RAS and

AGO gene families from RAS coIP MS based on

ClustalW alignments. Representative experiment

from H358 cells is shown. Blue boxes indicate

peptides mapping to multiple gene family mem-

bers, and red boxes indicate peptides mapping

uniquely to a protein.

(C) Immunoprecipitation (IP) of RAS or AGO2 in

H358 (left) and H460 (right) lung cancer cells fol-

lowed by immunoblot analysis using multiple

distinct antibodies, as indicated.

(D) IP of RAS from a panel of benign and cancer

cells with differing mutational status of KRAS (as

indicated) followed by immunoblot analysis of

AGO2 or RAS. RAS10 mAb was used for IB.

See also Figure S1.
was EIF2C2, commonly known as Argonaute 2 (AGO2), a key

effector of the RNA-silencing pathway. Interestingly, a role for

AGO2 in RAS-induced senescence has been described recently

(Benhamed et al., 2012; Yang et al., 2014). Also, phosphorylation

of AGO2 by MAPK/PI3K pathway activators has been shown to

alter its microRNA-related function through different mecha-

nisms (Horman et al., 2013; R€udel et al., 2011; Shen et al.,

2013; Zeng et al., 2008), portending a broader, direct interface

between intracellular signaling and RNA-silencing mechanisms

(Paroo et al., 2009). Considering the potential functional implica-

tions of RAS-AGO2 interaction, here we corroborated and char-

acterized this interaction in detail.

RESULTS

Endogenous RAS and AGO2 Interaction
To analyze RAS-interacting proteins in an endogenous setting,

we first used the pan-RAS antibody RAS10 (Cheng et al.,

2011), which efficiently immunoprecipitates RAS proteins by

binding to the Switch I domain (amino acids [aa] 32–40; Fig-

ures S1A–S1C). Co-immunoprecipitation of RAS followed by

tandem mass spectrometry (RAS coIP MS) was performed

as outlined in Figure S1D using a panel of ten lung and pancre-

atic cancer cell lines of known KRAS mutation status (Table

S1), as well as NIH 3T3 cells ectopically overexpressing human

KRAS wild-type (KRASWT) or mutant (KRASG12V) proteins.

Peptide fragments deduced from MS analyses spectral counts

revealed robust detection of the bait protein (RAS) in all the 12
Cell Reports 14, 1448–1461, F
cell lines, as expected (Table S2). To

minimize individual cell-specific obser-

vations in the endogenous system em-

ployed, we focused on observations

common across different cell lines.

Intriguingly, peptides spanning EIF2C2
protein, commonly known as AGO2, the catalytic component

of the RNA-induced silencing complex (RISC), were observed

in the RAS coIP MS of all cancer cell lines (n = 10) tested, as

well as in NIH 3T3 cells expressing KRASWT or KRASG12V (Fig-

ure 1A). Remarkably, only the RAS and AGO2 peptides were

detected in every cell line tested, with cumulative spectral

counts of 576 and 229, respectively. Other interactors de-

tected in five or more of the 12 cell lines are tabulated in Table

S2. The significant lack of peptides spanning the RAS effectors

like RAF/PI3K in the endogenous mass spectrometric analysis

is due to the RAS10 antibody binding the Switch I domain, pre-

venting effector binding (Figure S1C). The lack of other RAS

regulators like SOS1 and NF1 that associate with RAS through

the Switch II domain may be due to their transient association

and plasma-membrane-localized/cell-specific expression.

Interestingly, we did not detect peptides spanning AGO2 in

our earlier mass-spectrometric-based studies involving ERG,

PRC complex protein EED (Brenner et al., 2011; Cao et al.,

2014), and at least four other protein pull-down data sets

(data not shown), indicating the specificity of AGO2 coIP

with RAS. Analyzing the RAS coIP MS data further, we noted

peptides mapping uniquely to all three RAS family members,

namely KRAS, NRAS, and HRAS, were readily detected

across the cell line panel (Figure 1B). In contrast, almost all

uniquely mapping peptides to AGO family proteins were spe-

cific to AGO2 in all of the 12 cell lines (except for a single

unique peptide that mapped to AGO1 in one sample;

Figure 1B).
ebruary 16, 2016 ª2016 The Authors 1449



A B

C

D

Figure 2. Co-sedimentation and Co-locali-

zation of RAS and AGO2 in the Endoplasmic

Reticulum

(A) Cell fractionation analysis of H358 cells to show

enrichment of distinct proteins in the cytosolic/

membrane or organelle/nuclear fractions. GAPDH

was used as a cytosolic marker whereas SAM68

and H3 histone were used as nuclear markers.

(B) Sucrose density gradient fractionation of cell

lysates from H358 cells followed by immunoblot

detection of total RAS, KRAS, AGO1, and AGO2

proteins.

(C) Representative images of immunofluorescence

analysis of RAS (red) and AGO2 (green) in H358,

MIA PaCa-2, and DLD-1 cells. Yellow spots in

merged images indicate perinuclear co-localization

of RAS and AGO2. The nucleus was visualized by

DAPI staining (blue). Dotted boxes highlight plasma

membrane regions predominantly localized by

RAS.Manders overlap coefficient in the intracellular

regions of the cells is indicated on the right. An

overlap coefficient of 0 suggests no co-localization,

whereas a value of 1 indicates complete co-locali-

zation. The inset shows a magnified 5.3 3 5.3 mm

view of the areas marked. Images are pseudocol-

ored maximum intensity projections (across

2.5 mm), obtained from 3D imaging. The scale bar

represents 5 mm.

(D) Representative images of immunofluorescence

analysis of AGO2 (green), RAS (red), and ER

marker, PDI, (blue) in MiaPaCa-2 cells. White spots

indicate co-localization signals for RAS/AGO2/PDI

in each panel. Pairwise Manders overlap co-

efficients are shown on the right. The inset shows a

magnified 6.7 3 6.7 mm view of the areas marked.

The scale bar represents 5 mm.

See also Figure S2.
The putative endogenous interaction between RAS and AGO2

was corroborated by reciprocal IPs using two different anti-

bodies for each, in two different lung cancer cell lines, H358

and H460, harboring distinct KRAS mutations (Figure 1C).

Further, consistent with the coIP MS analyses (Figure 1A), the

RAS-AGO2 interaction was readily detected by coIP followed

by immunoblot analysis in two cell lines with wild-type KRAS

and representative lung and pancreatic cancer cells harboring

various activating mutations of KRAS (Figure 1D). The observed

RAS-AGO2 interaction was maintained even under highly strin-

gent conditions of 1 M NaCl (Figure S1E). The RAS-AGO2 coIP

was maintained in the presence of RNase, suggesting that the

interaction is independent of AGO2 interaction with RNA (Figures

S1F and S1G). To demonstrate further specificity of this interac-

tion, we overexpressed FLAG-tagged AGO2 construct in

HEK293 cells and detected RAS in FLAG immunoprecipitates

(Figure S1H). We also performed the coIP analysis in genetically

engineered ‘‘RASless’’ mouse embryonic fibroblast cells (Dros-

ten et al., 2010) and failed to detect this interaction upon ablation

of KRAS expression (Figure S1I), further establishing the speci-

ficity of the RAS-AGO2 interaction.
1450 Cell Reports 14, 1448–1461, February 16, 2016 ª2016 The Auth
Co-localization of RAS and AGO2 in the Membrane
Component of Endoplasmic Reticulum
RAS proteins are known to localize to the plasma membrane

and membranes of various intracellular organelles like the

endoplasmic reticulum (ER), Golgi, and mitochondria with

distinct signaling outputs (Bivona et al., 2006; Prior and Han-

cock, 2012). AGO2 is known to assemble in the ER (Kim

et al., 2014; Stalder et al., 2013), cytoplasm (Höck et al.,

2007), and nucleus (Dudley and Goldstein, 2003; Gagnon

et al., 2014). Consistent with this observation, fractionation of

H358 cells revealed that RAS was restricted mainly to the

membrane (plasma membrane and endomembrane) fraction

along with AGO2, which was also detected in the cytoplasmic

and nuclear extracts (Figure 2A). Sedimentation analyses using

sucrose density gradient showed that total RAS and mutant

KRAS predominantly co-sedimented with AGO2 in smaller-mo-

lecular-weight fractions (Complex I; Figure 2B) as defined by a

previous study (Höck et al., 2007).

Next, to assess co-localization of endogenous RAS and

AGO2, we performed indirect immunofluorescence using

RAS10 and AGO211A9 (R€udel et al., 2008) antibodies in
ors
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Figure 3. The N-Terminal Domain of AGO2

Interacts with RAS

(A) Schematic summary of FLAG-tagged AGO2

deletion and mutant constructs used for RAS coIP

analyses.

(B) Expression of FLAG-tagged N-terminal, PAZ,

or PIWI domains of AGO2 in HEK293 cells (left),

followed by RAS IP (right). Immunoblot analysis

shows that deletion of (1–226 aa) N-terminal

domain in AGO2 abrogates RAS interaction.

(C) Expression of indicated AGO2 N-terminal point

mutant constructs within the wedge domain (50–

139 aa) in HEK293 cells, followed by RAS coIP

analysis.

See also Figure S3.
different cells. To ascertain the specificity of RAS10 Ab,

antigenic peptides were used for competition prior to imm-

unofluorescence analysis (Figure S2A); in addition, AGO211A9

has been demonstrated to be a highly specific, validated

monoclonal antibody for immunofluorescence detection of

AGO2 (R€udel et al., 2008). In H358, MIA PaCa-2, and DLD-1

cells (Figure 2C), RAS staining was visible both at the

plasma membrane and intracellular regions, whereas only

cytoplasmic staining was detected for AGO2. Manders co-
Cell Reports 14, 1448–1461, F
efficient analysis indicative of signal

overlap between the two proteins

was determined to be 0.53, 0.65,

and 0.60 in H358, MIA PaCa-2, and

DLD-1 cells, respectively (where 1 is

considered complete overlap and 0 is

considered no overlap). These findings

suggest significant co-localization of

RAS and AGO2 predominantly in the

intracellular perinuclear regions of cells

(Figure 2C).

Given that cytoplasmic RAS is

restricted to the endomembrane bound

organelles, we performed a three-color

immunofluorescence staining for RAS

and AGO2 along with specific protein

markers of different organelles in MIA

PaCa-2 cells. Whereas we observed a

significant signal overlap between RAS,

AGO2, and ER marker (PDI; Figures 2D

and S2B), Manders coefficient values

were minimal for Golgi (RCAS1), endo-

somal (Rab5/7/11), or mitochondrial

(COX4) markers (Figures S2B and S2C).

This suggests that endogenous RAS

and AGO2 are predominantly found in

the ER (Manders coefficient for both

RAS in ER and AGO2 in ER was 0.62

each), where they co-localize. Hence,

along with the cell fractionation ana-

lyses, these immunofluorescence data

suggest that a subset of RAS proteins
co-localizes with AGO2 in the endomembranous components

of the ER.

AGO2 Binds RAS through Its N-Terminal Wedge Domain
To identify specific region(s) in AGO2 involved in the interaction

with RAS, we employed a panel of FLAG-epitope-tagged

AGO2 expression constructs (summarized in the schematic in

Figure 3A). RAS coIP analysis of the FLAG-tagged AGO2 dele-

tion constructs showed that the N-terminal domain of AGO2
ebruary 16, 2016 ª2016 The Authors 1451



A

C

B

D

AGO2 
binding

SwitchI

SwitchII

SwitchII

SwitchII

G-motifs (GDP/GTP binding)
Effector Domain (32-40)
Membrane targeting

+

SwitchI
+

SwitchI
Y13-259

_

981/88176174154191161171011 30 62 7639

981/88176174154191161171011 30 62 7639

981/88176174154191161171011 30 62 7639
RAS10

SwitchIISwitchI

981/88176174154191161171011 30 39 Y64* _

K
R

A
S

E
62

A
K

R
A

S
W

T
K

R
A

S
Y

64
F

KRAS input

100 50 25 12.5 100 50 25 12.5

KRASWT KRASY64F KRASE62A
100 50 25KRAS(ng)

AGO2 (His) Ni-NTA
Pull 
downKRAS

20
0

10
0

50 25 12
.5

6.
25

IP: RAS 
AGO2+KRASG12V

AGO2

KRASG12V

AGO2
  (ng) A

G
O

2

Input

K
R

A
S

A
G

O
2

Input

AGO2

KRASWT

AGO2
   (ng) 20

0

10
0

50 25 12
.5

6.
25

K
R

A
S RAS 

AGO2+KRASWT
IP:

AGO2+KRAS mutants 

E
62

Q

E
62

A

E
63

A

E
63

K

Y
64

S

Y
64

F

W
T

C
trl

 Ig
G

AGO2

KRAS
IP:RAS

E

IP: RAS

Y
13

-2
59

 (S
w

itc
h 

II)

C
on

tro
l 

R
A

S
10

 (S
w

itc
h 

I)

AGO2
RAS

C
on

tro
l 

In
pu

t, 
10

%

IP:RAS

Figure 4. The Switch II Domain of RAS Interacts with AGO2

(A) Schematic summary of the antibodies and recombinant proteins used for RAS-AGO2 coIP analysis to identify residues in RAS, critical for AGO2 interaction.

(B) RAS coIP using antibodies that bind Switch I domain (RAS10 Ab) or Switch II domain (Y13-259 Ab), followed by immunoblot analysis for RAS and AGO2.

(C–E) Characterization of direct RAS-AGO2 interaction, in vitro. (C) Immunoblot analysis following in vitro coIP of recombinant KRASG12V (top) and KRASWT

(bottom) in the presence of varying concentrations of recombinant AGO2 is shown. (D) In vitro coIP analysis of KRAS-AGO2 interaction using a panel of KRAS

mutant proteins spanning amino acid residues 62–65 in the Switch II domain is shown. (E) Immunoblot analysis following His-AGO2 pull-down assay using Ni-NTA

beads upon incubation with different KRAS mutant proteins is shown.

See also Figure S4.
was necessary (Figure 3B) and sufficient (Figure S3A) for RAS

binding. Further analysis of a panel of deletion constructs span-

ning the N-terminal domain suggested that the region spanning

50–139 aa was critical for RAS binding (Figure S3B). Interest-

ingly, this aa stretch was recently shown to be part of the

‘‘wedging’’ domain, important for microRNA duplex unwinding

prior to RISC assembly (Kwak and Tomari, 2012). To further

define AGO2 residues critical for interaction with RAS, we

focused on the 50–139 aa stretch that is uniquely present in

AGO2 (and not in AGO1, 3, or 4) based on the fact that, among

the Argonaute family proteins, AGO2 was almost singularly

represented in the RAS coIP MS data. ClustalW alignment of

all human Argonaute proteins (AGO1–4) identified ten residues

unique to AGO2 in this region (Figure S3C). Alanine substitution

of each of the ten residues was followed by RAS coIP analysis,

and aa K112 and E114 of AGO2 were found to be critical for a

direct association with RAS (Figure 3C).
1452 Cell Reports 14, 1448–1461, February 16, 2016 ª2016 The Auth
Y64 Residue within the Switch II Domain of KRAS Is
Critical for Direct AGO2 Binding
In a parallel analysis aiming to define the residues in RAS critical

for AGO2 association, we first employed two RAS antibodies

that bind exclusively either to the Switch I (RAS10 mAb) or the

Switch II (Y13-259) domains (summarized in Figure 4A). Whereas

both antibodies efficiently immunoprecipitated RAS in H358 cell

lysates, AGO2 was present only in IPs with Switch-I-specific

RAS10 Ab and not in Switch-II-specific Y13-259 Ab (Figure 4B),

suggesting that the Switch II domain in RAS is critical for AGO2

interaction. Next, we hypothesized that, if the RAS-AGO2 interac-

tion is restricted through contacts with the Switch II domain, we

may be able to detect AGO2 in RAS-GTP complexed with RAF,

on RAS-binding domain (RBD) agarose beads. As predicted, we

were able to detect AGO2 on RAS-GTP bound to RBD-agarose

in H358 (KRASG12C) cells (Figure S4A), further supporting that

AGO2 binds to the Switch II domain of GTP-bound KRAS.
ors
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Figure 5. AGO2 Is Essential for Mutant KRAS-Dependent Cell Proliferation

(A) Immunoblot analysis of AGO2 and KRAS after knockdown or overexpression of AGO2.

(B and C) Growth curves (B) and colony formation assays (C) of mutant KRAS-dependent H358 lung cancer cells, following either knockdown of KRAS/AGO2

using shRNA or AGO2 overexpression. Error bars are based on SEM. *(p < 0.05) and **(p < 0.005) denote significant differences in growth at the indicated times

compared to either scrambled or vector control. Data were obtained from three independent experiments.

(D) Pathscan intracellular signaling arrays probed with lysates from H358 cells following AGO2 knockdown.

(E) Growth curves (left) and colony formation assays (right) of mutant KRAS-independent H460 lung cancer cells, following knockdown of KRAS/AGO2. Data

obtained from three independent experiments are shown. Inset shows immunoblot analysis of AGO2 and KRAS upon AGO2 knockdown.

(F) Intracellular signaling array probed with lysates from H460 following AGO2 knockdown.

(legend continued on next page)
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Next, we sought to determine the specific residues in the

Switch II region of KRAS involved in its interaction with AGO2,

using in vitro coIP assays. Purified recombinant KRASG12V or

KRASWT proteins were incubated with varying concentrations

of AGO2 protein followed by RAS immunoprecipitation. We

observed a concentration-dependent, direct interaction be-

tween recombinant AGO2 and both the wild-type and mutant

KRAS proteins (Figure 4C). Further, in vitro coIP of recombinant

AGO2 protein with the panel of Switch II mutant KRAS proteins

showed that altering the Y64 residue (but not the neighboring

aa) significantly reduced KRAS binding to AGO2 (Figure 4D).

To further substantiate this observation, and to obviate potential

technical concerns inherent in antibody-based coIP, we

carried out an antibody-independent pull-down assay using re-

combinant His-tagged AGO2 protein bound to Ni-NTA beads.

Consistent with the in vitro coIP analyses, the His-tagged

AGO2 pull-down assay also showed specific dependency of

AGO2-RAS binding on the Y64 residue (Figure 4E).

To assess whether GDP/GTP loading of KRAS may influence

the AGO2 interaction in vitro, we carried out in vitro coIP ana-

lyses using KRASWT and KRASG12V proteins loaded with

GDP/GTPgS and as seen in Figure S4B. Our results showed

that AGO2 binding was agnostic to nucleotide loading status

of KRAS. Similarly, both the KRASWT and KRASG12V proteins

were observed to bind to His-tagged AGO2, independent of

the nucleotide loading on KRAS (Figure S4C). To validate the

efficiency and specificity of nucleotide loading onto KRAS pro-

teins, we performed RAF-RBD pull-down assays and observed

the expected differential between GDP- and GTP-bound KRAS

with respect to RAF-RBD binding (Figure S4D). Thus, these

data define the aa in RAS (Y64) and AGO2 (K112/E114) as critical

for the RAS-AGO2 interaction.

Reduced RISC Activity Elevates Oncogenic KRAS
Levels, Making AGO2 Essential for Mutant KRAS-
Dependent Cell Proliferation
Next, we set out to analyze functional implications of the RAS-

AGO2 interaction, particularly in the context of KRAS-driven

transformation. To this end, we first carried out knockdown of

AGO2 in H358 lung cancer cells that harbor a homozygous

KRAS mutation and are known to be KRAS dependent (Sy-

monds et al., 2011). Whereas the microRNA let-7/AGO2 axis is
(G) Growth curves of pancreatic cancer cells, MIA PaCa-2 (mutant KRAS depende

KRAS or AGO2, as indicated. *(p < 0.05) and **(p < 0.005) denote significant diffe

were obtained from three independent experiments.

(H) In vivo growth of Mia PaCa-2 cells transiently treated with either scrambled sh

(n = 8), one million cells were injected and average tumor volume (in mm3) was pl

analysis of AGO2 and RAS following AGO2 knockdown in Mia PaCa-2 cells. Indica

(I) (Top) Schematic of the labeled let-7 microRNA used in the intracellular strand

Wobble pairs, respectively. The thermodynamically unstable end (highlighted

Representative images of the guide strand (green) and passenger strand (red) o

expressing wild-type KRAS (�/WT) or KRASG12C (MUT/WT) are shown. Numbers r

let-7 dsRNA unwinding whereas a higher guide:passenger strand ratio indicate

(Bottom right) Native acrylamide gel electrophoresis of let-7 unwinding assay and

represent double- (ds) and single-stranded (ss) markers, respectively.

(J) Box plot representing the guide:passenger strand ratio in the indicated cell

maximum values, and line represents median of the data set (n R 2; no. cells R

See also Figure S5.
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reported to negatively regulate wild-type RAS levels (Diederichs

and Haber, 2007; Johnson et al., 2005), we observed a remark-

able reduction in mutant KRAS protein levels in H358 cells with

AGO2 knockdown (Figure 5A, left panel). Conversely, overex-

pression of AGO2 in the same cells led to elevated levels of

KRAS, implying a positive regulation of mutant KRAS levels by

AGO2 (Figure 5A, right panel). Consistent with these observa-

tions, knockdowns of AGO2 and/or KRAS in H358 cells (using

two independent shRNAs; Figures S5A and S5B) showed

reduced rates of cell proliferation whereas AGO2 overexpression

resulted in increased cell proliferation (Figure 5B). Furthermore,

AGO2 knockdown reduced the ability of H358 cells to form col-

onies in colony formation assays (Figure 5C) and resulted in a

marked reduction in levels of known mediators of KRAS

signaling, including p-Akt, p-mTOR, and p-RPS6 based on our

analysis with Pathscan intracellular signaling array (Cell

Signaling Technology; Figures 5D, S5C, and S5D). Interestingly,

similar AGO2 depletion experiments (using the same shRNAs

described above) in KRAS-independent H460 lung cancer cells,

which also harbors a mutant KRAS, did not affect cell prolifera-

tion, colony formation (Figure 5E), or intracellular signaling (Fig-

ures 5F and S5E). Phenotypic effects upon AGO2 knockdown

in the context of KRAS dependency were also observed in

pancreatic cancer cell lines, where knockdown of either KRAS

or AGO2 dramatically reduced cell proliferation in mutant

KRAS-dependent MIA PaCa-2 cells, but not in mutant KRAS-in-

dependent PANC-1 cells (Figures 5G, S5A, and S5B). Further,

AGO2-depleted MIA PaCa-2 cells failed to establish xenografts

in SCID mice (Figure 5H), with a concomitant reduction in

KRAS protein levels (Figure 5H, inset). These data suggest that

KRAS-dependent cancer cells manifest a coincident depen-

dence on AGO2 to maintain oncogenic KRAS protein levels

and support a functional role for AGO2 in potentiating the onco-

genic activities of mutant KRAS.

To directly address the consequence of mutant KRAS binding

at the N-terminal of AGO2, critical for microRNA duplex unwind-

ing (Kwak and Tomari, 2012; Wang et al., 2009), we performed

let-7 unwinding assays in isogenic colorectal cancer cells,

DLD-1, harboring heterozygous KRASG13D (MUT/WT) alleles

or wild-type KRAS (�/WT). Dually labeled double-stranded

let-7a (Figure 5I, schematic) was injected and assessed

for the extent of single strand formation. Quantitation of the
nt; left), and PANC-1 (mutant KRAS independent; right) following knockdown of

rences in growth at the indicated times compared to scrambled control. Data

RNA or shRNA targeting AGO2 prior to injecting in nude mice. For each group

otted on y axis and days after injection on the x axis. Right shows immunoblot

ted p value was calculated using two-sided Student’s t test for the two groups.

unwinding assays. Straight lines and double dots represent Watson-Crick and

in yellow) promotes asymmetric loading of the guide strand. (Bottom left)

f let-7 microRNA, 30 min post-intracellular injections in DLD-1 isogenic lines,

epresent the guide:passenger strand ratio. Ratio of 1:1 indicates attenuation of

s efficient unwinding and functional RISC. The scale bar represents 10 mm.

immunoblot analysis of DLD-1 isogenic cell line extracts is shown. M1 and M2

lines with varying KRAS mutation status. Whiskers represent minimum and

13; ***p < 0.0005). Red asterisk indicates cells expressing mutant KRAS.

ors



guide-to-passenger strand ratio was estimated 30 min after in-

jection, where a 1:1 ratio was considered as no unwinding

whereas higher ratios indicate active unwinding. As seen in Fig-

ure 5I (left), the formation of single-stranded (ss) RNA molecules

from double-stranded (ds) let-7 substrates, a key step in the for-

mation of active RISC, was attenuated in DLD-1 MUT/WT cells

(ratio = 1.3). Duplex unwinding was restored in isogenic cells

lackingmutant KRAS (�/WT; ratio = 5.7). Biochemical assays us-

ing cellular lysates followed by gel electrophoresis also showed

reduced let-7 unwinding in DLD-1 MUT/WT cells (Figure 5I,

right), even though the RAS-AGO2 interaction was detected in

both DLD-1 isogenic cells (Figure S5F). Additionally, the let-7 un-

winding assay was performed in mouse embryonic fibroblasts

lacking AGO2 (MEFAGO2�/�) and MEFAGO2�/� reconsti-

tuted with AGO2 (MEFAGO2�/� + AGO2; Broderick et al.,

2011) to demonstrate that the microRNA unwinding assay is

AGO2 dependent (Figures S5G and S5H). Further, to circumvent

any artificial effects of gene knockoutmodels, we subjectedmul-

tiple cancer cells, naturally harboring different KRAS alleles, to

the same let-7 unwinding assay. As seen in Figures 5J and S5I,

only oncogenic KRAS-expressing cells showed reduced let-7

unwinding, indicative of diminished AGO2 function in cells

harboring mutations in KRAS.

Mutant KRAS-AGO2 Interaction Promotes Cellular
Transformation
To address the mechanistic underpinnings of the phenotypic ef-

fects associated with the mutant KRAS-AGO2 interaction, we

employed the classic NIH 3T3 experimental model system to

ectopically express human KRASWT or KRASG12V (Qiu et al.,

1995; Shih et al., 1981), with or without AGO2, and carried out

transient foci formation assays. As expected, no foci were

observed in cells transfected with KRASWT, as well as in cells

with KRASWT ± AGO2. However, NIH 3T3 cells transfected with

KRASG12V generated characteristic foci of transformed cells.

Remarkably, co-transfection of KRASG12V with AGO2 enhanced

the number of foci by approximately 5-fold, compared to the vec-

tor control (Figure 6A). In contrast, AGO2 overexpression did not

enhance BRAFV600E-driven focus formation (Figure S6A), sug-

gesting that AGO2 specifically potentiates RAS-mediated onco-

genesis, most likely as a result of its direct interaction with RAS.

In vivo experiments using amouse xenograft model also showed

a significant increase in tumor growth with cells expressing

KRASG12V+AGO2 compared to KRASG12V+vector control (Fig-

ure S6B). As expected, in these experiments, cells expressing

either KRASWT or AGO2 alone did not develop tumors. Consis-

tent with AGO2 overexpression in H358 cells (Figure 5A), immu-

noblot analysis of NIH 3T3 cells overexpressing AGO2 showed

an increase in KRAS protein levels (Figure 6B).

To understand the effects of AGO2 on the RAS-signaling

pathways, we analyzed protein lysates from NIH 3T3 cells stably

expressing KRASG12V+vector or KRASG12V+AGO2 using the

Pathscan intracellular signaling arrays. Cells expressing

KRASG12V+AGO2 showed a marked increase in the levels of

p-Akt, p-mTOR, p-RPS6, and p-BAD, but not phospho-ERK

(Figures 6C, right panel, S5C, and S5D), suggesting that the

increased levels of oncogenic KRASG12V protein signals largely

through PI3K activation.
Cell R
Exploiting the NIH 3T3 overexpression model to probe the

reciprocal effects of mutant KRAS on AGO2 function, we profiled

microRNAs from foci obtained from KRASG12V+vector and

KRASG12V+AGO2 using high-throughput sequencing. Whereas

AGO2 overexpression is known to elevate levels of mature mi-

croRNAs (Diederichs and Haber, 2007), we observed a marked

reduction in microRNA levels (214/781) in KRASG12V+AGO2-ex-

pressing foci, including most of the let-7 family members (Fig-

ure S6E). Interestingly, a small proportion (27/781) of microRNAs

was elevated and included known ‘‘oncomiRs’’ miR-221 and

miR-222. microRNA qPCR analysis of NIH 3T3 cells expressing

AGO2 alone or KRASWT/KRASG12V ± AGO2 also showed

reduced let-7 levels only in the KRASG12V +AGO2-expressing

cells (Figure S6F), suggesting an inhibition of AGO2 function in

oncogenic KRAS-expressing cells.

To further investigate a requirement for an AGO2 interaction in

KRASG12V-driven transformation, we first performed in vitro RAS

coIP assays using mutant KRASG12D and the double mutant

KRASG12DY64G, which has previously been shown to have

limited oncogenic potential (Shieh et al., 2013). Whereas

KRASG12D binds AGO2, KRASG12DY64G failed to bind

AGO2 (Figure S6G). Transfecting a retroviral vector encoding

KRASG12VY64G double mutant into NIH 3T3 cells failed to

generate foci (Figure 6D). As an important corollary to our hy-

pothesis that mutant KRAS-AGO2 interaction leads to elevated

mutant KRAS protein levels, the KRASG12VY64G stably express-

ing cells also showed much-lower levels of KRAS protein than

KRASG12V-expressing cells (Figure 6E, top panel). An indepen-

dent construct encoding KRASG12VY64G showed similar results

despite high levels of KRAS transcript expression (Figures

S6H–S6J). Curiously, RBD assays suggest that expressed

KRASG12VY64G was GTP loaded and activated phospho-Akt

and phospho-ERK similar to KRASG12V, suggesting that,

although KRASG12VY64G levels are low, it is GTP loaded and likely

signaling at the membrane. Yet, despite expressing activated

RAS, NIH 3T3 stable cells expressing KRASG12VY64G failed to

show the characteristic morphology of KRASG12V cells (Fig-

ure 6E, bottom panel). In vivo, these cells also failed to establish

tumors in the xenograft mouse model (Figure 6F), supporting a

critical role for Switch II region (Y64) in KRAS-driven transforma-

tion, including its association with AGO2.

Whereas NIH 3T3 cells stably expressing KRASG12V showed

reduced let-7 levels, KRASG12VY64G-expressing cells, which do

not allow for the mutant KRAS-AGO2 interaction, showed no

change in let-7 expression, providing evidence for a direct

role of mutant KRAS in the modulation of microRNA levels in

this model (Figure S6K). Cognate analysis of the levels of

let-7 target transcripts (Lee and Dutta, 2007) showed an almost

log-fold change in the mRNA levels of HMGA1 and HMGA2

only in KRASG12V-expressing cells (Figure S6L). Together, our

data using the KRASG12VY64G mutant and let-7 levels as

readout of AGO2 function broadly support the conclusion that

mutant KRAS, through its direct association, inhibits AGO2

activity.

To more directly explore the potential effect of KRASG12V on

functional messenger ribonucleoprotein particles (mRNPs), we

exploited a recently described method for intracellular single-

molecule, high-resolution localization and counting (iSHiRLoC)
eports 14, 1448–1461, February 16, 2016 ª2016 The Authors 1455
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Figure 6. Mutant KRAS-AGO2 Interaction Promotes Transformation

(A) Representative images of foci formation assays using NIH 3T3 cells co-transfected with KRASWT or KRASG12V and AGO2 (left panel). Quantitation of foci from

two technical replicate experiments (right panel) is shown. Foci assays were performed at least three times with similar results. p value was calculated using two-

sided Student’s t test between the two groups.

(B) Immunoblot analysis shows increased levels of oncogenic KRAS levels in the presence of AGO2.

(C) Intracellular signaling arrays probed with lysates fromNIH 3T3 cells stably expressing vector, AGO2, orKRASG12V ±AGO2. The colored circlesmark duplicate

spots corresponding to p-AKT (S473), p-RPS6 (S235/236), and p-mTOR (S2448).

(D) Representative images of foci formation assays using NIH 3T3 cells co-transfected with KRASG12V or KRASG12VY64G. Quantitation of foci from two inde-

pendent experiments (right) is shown. Indicated p value was calculated using two-sided Student’s t test.

(E)KRAS immunoprecipitation (using sc-521pAb) followedby immunoblotanalysis (RAS10Ab) showing low levelsof oncogenicKRASproteinexpression inNIH3T3

cells stably expressingKRASG12VY64G. RAS-GTP levelswere assessedusingRBDagarosebeads.Signaling throughphospho-Akt andphospho-ERKactivationwas

performed after serumstarvation by immunoblot analysis. Lower panel showsmorphology of indicated stable lines grown in 10%serumupon crystal violet staining.

(F) In vivo growth of NIH 3T3 cells stably overexpressing KRASG12V and KRASG12VY64G in nude mice. For each group (n = 8), 500,000 cells were injected and

average tumor volume (in mm3) was plotted on y axis and days after injection on the x axis.

(G) (Left) Representative 3.14 3 3.14 mm2 regions from NIH 3T3 (top left), NIH 3T3-KRASWT (top right), NIH 3T3-KRASG12V (bottom left), and NIH 3T3-

KRASG12V,Y64G cells (bottom right) that were imaged 4 hr (h) after microinjection of let-7-a1-Cy5. Individual particle tracks (colored) and their net displacements

(white arrow) over a 5-s period (time; color bar) are shown. Shorter displacement vectors indicate let-7 assembly in larger mRNP complexes with less mobility,

whereas longer white arrows indicate let-7 assembly in smaller mRNP complexes with high mobility. (Right) Graphical representation of ratio of ‘‘slow’’-moving

complexes (particles with diffusion coefficients <0.06 mm2/s) and ‘‘fast’’-moving complexes (particles with diffusion coefficients >0.06 mm2/s), normalized to the

first hour time point, are plotted as a function of time.

See also Figure S6.
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ofmicroRNAs (Pitchiaya et al., 2012, 2013). Diffusion coefficients

of microinjected fluorophore-labeled let-7a molecules suggest

that, in NIH 3T3 cells expressing KRASWT, let-7a assembles

into both ‘‘fast’’ (low molecular weight) and ‘‘slow’’ (high molec-

ular weight) mRNA-protein complexes (mRNPs; Figures 6G and

S6M). By contrast, in cells expressing KRASG12V, let-7a mani-

fested predominantly in fast-moving complexes, suggesting

that let-7a is unable to accumulate in larger mRNPs (known to

be functional RISC; Pitchiaya et al., 2012, 2013) in an oncogenic

KRAS setting. Importantly, in cells expressing KRASG12VY64G,

let-7a accumulates in both fast and slow mRNPs, further impli-

cating that a direct interaction between mutant KRAS and

AGO2 is essential to prevent functional RISC assembly. Thus,

the NIH 3T3 overexpression model suggests that, through its

interaction with AGO2, mutant KRASmodulates levels of mature

microRNAs likely due to its ability to inhibit an early step of RISC

assembly.

AGO2 Interaction Is Required to Maximize Oncogenic
Potential of Mutant KRAS
To further underscore the role of AGO2 in KRASG12V-driven

oncogenesis, we generated NIH 3T3 cells with AGO2 knockout

(NIH 3T3 AGO2�/�) using the CRISPR/Cas9 methodology

(Ran et al., 2013; Figure S7A). Validation of AGO2 knockout in

NIH 3T3 AGO2�/� cells was performed at the DNA, RNA, and

protein levels (Figures S7B–S7D). Sucrose density sedimenta-

tion analysis of NIH 3T3 AGO2�/� showed that, in contrast to

NIH 3T3 parental cells, RAS is restricted largely to the first four

fractions of the gradient with minimal overlap with AGO1

complexes, indicating that RAS associates with higher-molecu-

lar-weight fractions through its interactionwith AGO2 (Figure 7A).

NIH 3T3 AGO2�/� cells had lower levels of let-7 family

microRNAs (Figure S7E), consistent with previous studies

demonstrating that a loss of AGO2 results in reduction of abso-

lute levels of all microRNAs (Diederichs and Haber, 2007). In NIH

3T3 AGO2�/� cells, the reduction of let-7 family microRNA

levels also resulted in a concomitant increase in let-7 target

(HMGA1/HMGA2) transcript levels (Figure S7F).

Despite reduced levels of microRNAs, KRASG12V expression

in the NIH 3T3 AGO2�/� cells showed a markedly reduced

ability to generate foci compared to parental NIH 3T3 (Figures

7B and S7G). Partial rescue of the ability to establish foci in these

cells was achieved by overexpression of AGO2 or AGO2K98A

(which permits RAS interaction), but not the AGO2K112A mutant

(which does not bind RAS; Figure 3C). These observations also

support the notion that a direct association of oncogenic KRAS

and AGO2 is required for mutant KRAS-driven transformation.

In addition, NIH 3T3AGO2�/� cells stably expressingKRASG12V

did not display the characteristic morphology of NIH 3T3

KRASG12V cells (Figure 7C, top panel). In vivo experiments in a

mouse xenograft model also showed significantly decreased tu-

mor growth, with NIH 3T3 AGO2�/� cells expressing KRASG12V

compared to parental NIH 3T3 cells expressing KRASG12V,

further demonstrating a requirement for AGO2 in KRAS-driven

transformation (Figure 7C, lower panel). At the protein level,

NIH 3T3 AGO2�/� cells stably expressing KRASG12V showed

reduced expression of mutant KRAS compared to that of NIH

3T3 cells stably expressingKRASG12V (Figure 7D). Reduced acti-
Cell R
vation of phospho-Akt signaling by mutant KRAS and a slight

increase in phospho-ERK signaling in NIH 3T3 AGO2�/� cells

suggests that AGO2 plays an essential role in modulating the

signaling output of mutant KRAS.

Taken together, we have established AGO2 as a critical regu-

lator of RAS-GTP in cells, and our study posits an essential role

for the KRAS-AGO2 interaction in oncogenic KRAS-driven

cellular transformation.

DISCUSSION

RAS, one of the first proto-oncogenes identified (DeFeo et al.,

1981), has emerged as one of the genes with most-frequent

recurrent mutations in a broad spectrum of human cancers. In

recent years, there is a renewed interest in targeting RAS to alter

its status from an undruggable to druggable candidate (Burns

et al., 2014; Ostrem et al., 2013; Spiegel et al., 2014; Stephen

et al., 2014; Sun et al., 2012). In this context, discovery of novel

endogenous interactors of RAS could potentially advance our

understanding of RAS biology and provide additional therapeutic

avenues.

Here, we identify the interaction of RAS with AGO2, a key

mediator of RNA-based gene silencing (Czech and Hannon,

2011; Peters and Meister, 2007; Wilson and Doudna, 2013).

Like guanine nucleotide exchange factors (GEFs), AGO2 binds

RAS-GTP and RAS-GDP and likely interacts functionally with

both wild-type and oncogenic RAS proteins (Jeng et al., 2012;

Margarit et al., 2003). Furthermore, AGO2 and RAS co-localize

in the ER, known sites for both RAS trafficking and AGO2 RISC

activity. The KRAS-AGO2 interaction involves Y64 in the

Switch II domain of KRAS and K112-E114 residues in the N-ter-

minal Wedge domain of AGO2 (Figure 7E). Functionally, the

mutant KRAS-AGO2 interaction is critical for KRAS-mediated

oncogenesis. Mechanistically, mutant KRAS binding attenuates

AGO2 N-terminal-dependent microRNA duplex unwinding, crit-

ical for functional RISC assembly. Reciprocally, AGO2 modu-

lates mutant-KRAS-mediated signaling output, particularly the

AKT-mTOR pathway.

Our study focused on analyzing endogenous interactors of

RAS, common across a panel of cancer cells spanning the

spectrum of KRAS aberrations. To the best of our knowledge,

this is the first study using endogenous RAS as bait for mass

spectrometric analyses, as all previous coIP MS analyses used

N-terminal epitope-tagged HRAS, MRAS, or RRAS ectopically

expressed in NIH 3T3 cells (Goldfinger et al., 2007; Vasilescu

et al., 2004). Studies using tagged AGO2 as bait for mass spec-

trometry have also been reported (MacRae et al., 2008; Meister

et al., 2005) and, as a 25-kDa cutoff was employed for analyses,

may have missed the detection of the 21 kDa RAS protein. In this

study, the pull-down of AGO2 using multiple independent

antibodies consistently co-precipitated RAS (Figure 1C), and

we found that this interaction is direct, as assessed using purified

components (Figure 4). Endogenously, the RAS-AGO2 inter-

action is readily detected in both cancer and benign cells, inde-

pendent of KRAS mutation status (Figure 1D), portending a

fundamental role for this interaction in the cell.

KRAS interacts with AGO2 through the Switch II domain,

the Y64 residue being critical for its AGO2 association. The
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Figure 7. AGO2 Interaction Is Required for Maximal Oncogenic Potential of Mutant KRAS

(A) Sucrose density gradient fractionation of parental NIH 3T3, NIH 3T3 KRASG12V, and NIH 3T3 AGO2�/� cell lysates followed by immunoblot detection of RAS,

AGO1, and AGO2 proteins.

(B) (Left) Representative images of KRASG12V-driven foci in NIH 3T3 and NIH 3T3 AGO2�/� cells upon co-transfection with various AGO2 constructs. (Right)

Quantitation of foci from two replicate experiments is shown. Error bars show SEM, and asterisks indicate p values less than 0.005 for the indicated conditions

compared to vector control.

(C) Upper panel shows crystal violet staining of indicated stable lines grown in 10% serum. (Lower panel) In vivo growth of NIH 3T3 or NIH 3T3 AGO2�/� cells

stably expressing KRASG12V in nude mice is shown. For each group (n = 8), 500,000 cells were injected and average tumor volume (in mm3) was plotted on y axis

and days after injection on the x axis. Error bars are SEM. *p < 0.05 and **p < 0.005 at the indicated times.

(D) Immunoblot analysis showing reduced expression of oncogenic KRAS in KRAS AGO2�/� stably expressing KRASG12V and the extent of phospho-ERK and

phospho-AKT activation in these cells.

(E) Schematic representation of the N-terminal domain of AGO2 interacting with the Switch II domain in RAS.

See also Figure S7.
Switch II domain and particularly Y64 was recently demon-

strated to be critical in hematopoietic malignancies, where

KRASG12DY64G mutant expressed at lower levels compared to

KRASG12D (Shieh et al., 2013), much like we observed in our

NIH 3T3 model, extending a role for the KRAS-AGO2 interaction

in models other than lung and pancreas. It should be noted that

the Switch II domain in RAS is the site for allosteric regulation

through its binding to various regulators and may contribute to

the biological effects observed in these studies. Yet, this study

provides a first instance where the mutant KRAS Switch II

domain (and Y64) has a direct bearing on RISC assembly

through its association with AGO2.
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The AGO2 N-terminal domain represents the most-distinct re-

gion in the highly conserved AGO protein family. A recent report

(Kwak and Tomari, 2012) suggests that the regionwe identified in

AGO2 as critical for RAS binding (i.e., the ‘‘wedge domain’’) is

important for small RNA duplex unwinding, a prerequisite for

RISC assembly. Using isogenic lines, we demonstrate that

mutant KRAS, but not wild-type KRAS, interaction with AGO2 at-

tenuates microRNA duplex unwinding function with a direct

bearing on AGO2-RISC assembly. Inhibition of RISC assembly

by mutant KRAS may be the critical step that likely contributes

to global loss of microRNA levels and downstream effects on

increased protein translation of target mRNAs, features of
ors



human tumors (Lu et al., 2005). Because we have used mutant

KRAS constructs that do not have 30 UTR regions that can

bind microRNAs, it remains unclear how AGO2 elevates mutant

KRAS levels (Figures 5A and 6B) to increase its transformation

potential.

Recent studies have shown that KRAS, but not HRAS, trans-

lation is tightly regulated by rare synonymous codons of the

KRAS transcript (Lampson et al., 2013; Pershing et al., 2015),

suggesting a significant role for KRAS regulation at a level prior

to its better-characterized post-translational modifications. An

association of mutant KRAS with the RNA machinery through

binding to HNRNPA2B1 was also reported (Barceló et al.,

2014), supporting a likely interface of RAS with the RNA-pro-

cessing machinery, including the hub protein AGO2 as observed

in our study. The EGFR kinase was also recently shown to phos-

phorylate AGO2 in response to hypoxia, leading to inhibition of

AGO2-mediated microRNA processing (McCarthy, 2013; Shen

et al., 2013). Similarly, Akt was shown to phosphorylate AGO2

to inhibit AGO2-mediated mRNA endonucleolytic activity (Hor-

man et al., 2013). Interestingly, AGO2 phosphorylation also leads

to inhibition of microRNA loading into RISC complexes in the

presence of mutant HRASG12V (Yang et al., 2014). The identifica-

tion of AGO2 as a critical partner of RAS further provides a direct

mechanistic link between RAS oncogenic signaling and RNA

silencing. Further illumination of such integral effector mecha-

nisms of RAS may inform novel approaches to therapeutically

target this frequently mutated cancer pathway.

EXPERIMENTAL PROCEDURES

Co-immunoprecipitation and Tandem Mass Spectrometric Analysis

Methods used for immunoprecipitation with RAS/control IgG followed by

tandem mass spectrometric analysis and database searching are schemati-

cally outlined in Figure S1D. Complete data of the peptides represented in

the RAS coIP mass spectrometric analysis from the different cell lines are

provided in Table S5.

Immunoprecipitation and Western Blot Analysis

Routine methods to immunoprecipitate proteins were employed and detailed

in the Supplemental Experimental Procedures. Antibodies used in the study

are detailed in Table S3.

RAS-GTP Pull-Down Assay

The RAS-RAF interaction was studied using the RBD agarose beads as per

manufacturer’s instructions (Millipore) and detailed in the Supplemental Exper-

imental Procedures.

Focus Formation Assay

Foci formation assays were performed by transfecting/co-transfecting (the

indicated constructs) 150,000 early passage NIH 3T3 cells in 6-well dishes

using Fugene HD (Promega). After 2 days, cells were trypsinized and plated

onto 150mm dishes containing 4%–5% calf serum. The cells were maintained

under low serum conditions, and medium was refreshed every 2 days. After

21 days in culture, the plates were stained for foci using crystal violet.

Generation of NIH 3T3 AGO2�/� Line

AGO2-knockout NIH 3T3 cells were generated by CRISPR-Cas9-mediated

genome engineering (Ran et al., 2013). Genomic regions in murine AGO2

between exons 8 and 9 and between exons 11and 12 were targeted for dele-

tion using primers TCCTTGGTTACCCGATCCTGG and AGAGACTATCTG

CAACTATGG, respectively (PAM motif underlined). Selection of clones is

detailed in the Supplemental Experimental Procedures.
Cell R
iSHiRLoC Analyses

Oligos (let-7-a1 guide: P-UGAGGUAGUAGGUUGUAUAGUU-XCy5, where

X = Cy3 or Cy5; let-7-a1-passenger: P-CUA UAC AAU CUA CUG UCU UUC

C-Y, where Y = OH, Cy3, or Cy5) were microinjected in cells and incubated

in phenol red-free DMEM containing 2% (v/v) CS in the presence of a 5%

CO2 atmosphere at 37�C for the indicated amounts of time prior to imaging.

Details of microinjection and imaging are provided in the Supplemental Exper-

imental Procedures.

Extract Preparation and In Vitro miRNA Unwinding Assay

Cell extracts were prepared as described (Kwak and Tomari, 2012; Rakoton-

drafara and Hentze, 2011), with minor modifications detailed in Supplemental

Experimental Procedures.

Further details on other methods are provided in the Supplemental Experi-

mental Procedures.

Xenograft Studies

All experimental procedures involving mice were approved by the University

Committee on Use and Care of Animals at the University of Michigan and

conform to their relevant regulatory standards and are detailed in the Supple-

mental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and five tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2016.01.034.
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