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This	
  is	
  a	
  closed	
  book	
  exam,	
  but	
  a	
  number	
  of	
  useful	
  quantities	
  and	
  formulas	
  are	
  provided	
  

in	
  the	
  front	
  of	
  the	
  exam.	
  	
  (Note	
  that	
  this	
  list	
  is	
  more	
  extensive	
  than	
  in	
  past	
  years.)	
  	
  If	
  you	
  
need	
  to	
  make	
  an	
  assumption	
  or	
  estimate,	
  indicate	
  it	
  clearly.	
  	
  Show	
  your	
  work	
  in	
  an	
  
organized	
  manner	
  to	
  receive	
  partial	
  credit	
  for	
  it.	
  	
  Answer	
  the	
  questions	
  directly	
  in	
  this	
  
exam	
  booklet.	
  	
  If	
  you	
  need	
  more	
  space	
  than	
  there	
  is	
  under	
  the	
  problem,	
  continue	
  on	
  the	
  
back	
  of	
  the	
  page	
  or	
  on	
  additional	
  blank	
  pages	
  that	
  the	
  proctor	
  will	
  provide.	
  	
  Please	
  clearly	
  
indicate	
  if	
  you	
  continue	
  your	
  answer	
  on	
  another	
  page.	
  	
  	
  Label	
  additional	
  blank	
  pages	
  with	
  
your	
  exam	
  number,	
  found	
  at	
  the	
  upper	
  right	
  of	
  this	
  page	
  (but	
  not	
  with	
  your	
  name).	
  	
  Also	
  
clearly	
  state	
  the	
  problem	
  number	
  and	
  “page	
  x	
  of	
  y”	
  (if	
  there	
  is	
  more	
  than	
  one	
  additional	
  
page	
  for	
  a	
  given	
  question).	
  
You	
  must	
  answer	
  the	
  first	
  8	
  required	
  questions	
  and	
  2	
  of	
  the	
  4	
  optional	
  questions.	
  	
  

Indicate	
  which	
  of	
  the	
  latter	
  you	
  wish	
  us	
  to	
  grade	
  (e.g.	
  by	
  circling	
  the	
  question	
  number).	
  	
  We	
  
will	
  only	
  grade	
  the	
  indicated	
  optional	
  questions.	
  	
  Good	
  luck!!	
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Some	
  Fundamental	
  Constants	
  

	
  

speed of light  c = 2.998×108  m/s

proton charge e =1.602×10−19  C

Planck's constant  = 6.626×10−34  J·s = 4.136×10−15  eV·s
Rydberg constant R

∞
=1.097×107 m−1

Coulomb constant k = (4πε0 )−1 = 8.988×109  N·m2 / C2

vacuum permeability µ0 = 4π ×10−7 T·m/A

universal gas constant R = 8.3 J / K·mol

Avogadr !o s number NA =6.02×1023mol-1

Boltzman !n s constant kB =R/NA =1.38×10-23J/K=8.617×10-5eV/K

Stefan-Boltzmann constant σ = 5.67×10−8 W / m2K4

radius of the sun Rsun = 6.96×108 m

radius of the earth Rearth = 6.37×106 m

radius of the moon Rmoon =1.74×106 m

gravitational constant G = 6.67×10−11m3 / (kg·s2 )

	
  	
  

	
  



Required (do all of the first 8 problems)

1. (Quantum Mechanics) In one and two dimensions, any attractive po-
tential, no matter how weak, will admit at least one bound state. However,
the same is not true in three dimensions. Consider a particle of mass m in a
finite spherical well in three dimensions with potential

V (r) =
{
−V0 r < a
0 r > a

Find the minimum value of V0 for which a bound state can exist. (You can
assume this will occur for angular momentum l = 0.)
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2. (Quantum Mechanics) A forced harmonic oscillator is described by the
Hamiltonian

H = (a†a+ 1
2
)h̄ω + f(t)a+ f ∗(t)a†

where a and a† are the usual annihilation and creation operators satisfying
[a, a†] = 1. Here f(t) is a time-dependent forcing function and f ∗(t) is its
complex conjugate. The harmonic oscillator is initially in its ground state,
and then the forcing function is turned on at time t0.
a) Find an expression for the transition probability Pn←0 from the ground
state to the n-th excited state in first-order time-dependent perturbation
theory.
b) What is the probability for the oscillator to be found in an excited state
at time t =∞ if the forcing function

f(t) = f0e
−t2/2τ2

(where f0 and τ are constants) is turned on at time t0 = −∞?
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3. (Quantum Mechanics) Consider a localized electron (spin operator
~S = 1

2
h̄~σ, where ~σ are the Pauli matrices) with magnetic moment ~µ and gyro-

magnetic ratio g, whose Hamiltonian in the presence of an external magnetic
field ~B is:

H = −~µ · ~B =
egh̄

4mc
~σ · ~B.

The direction of the magnetic field is taken to define the z axis. Suppose
that at time t = 0 the spin is an eigenstate of Sx with eigenvalue h̄/2. What
is the expectation value of Sx and Sy at a later time t? What is the physical
interpretation of your result?
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4. (Quantum Mechanics) A particle of mass m at t = 0 is in the ground
state of an infinite square well of width L. Suddenly the well expands with
the right wall moving from x = L to x = 3L, leaving the wavefunction mo-
mentarily undisturbed.
a) If the energy of the particle is is now measured, what is the most probable
result and what is the probability of obtaining this result?
b) What does the wavefunction of the particle look like after a time t? Is it
still an energy eigenstate?

The energy eigenvalues and eigenfunctions of a particle of mass m in an
infinite square well of width a are given by

En =
n2π2h̄2

2ma2
, n = 1, 2, .....

ψn =

√
2

a
sin

nπx

a
, 0 ≤ x ≤ a.
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5. (Statistical Mechanics) Consider a 1D quantum harmonic oscillator
with eigen-energies En = (n+ 1/2)h̄ω, where n = 0, 1, 2, . . .
a) At temperature T , what is the probability for the quantum oscillator to
be at its ground state
b) Prove that at high temperature, the probability is P ≈ h̄ω/(kBT )
c) Prove that at low temperature, the probability is P ≈ 1
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6. (Statistical Mechanics) A system consists of N weakly interacting par-
ticles at a temperature T . Each particle has a mass m and performs one
dimensional oscillations about its equilibrium position. Assuming the valid-
ity of classical statistical mechanics calculate the heat capacity of this system
for each of the following cases:
a) The restoring force is proportional to the displacement x from equilibrium
b) The restoring force is proportional to x3.
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7. (Statistical Mechanics) Spin waves or magnons are elementary ex-
citations in ferromagnetic materials. Like photons they are bosons, have
zero rest mass and there are no conservation laws for the magnon number.
Assume that at low temperatures the magnons obey a dispersion relation,
ε = h̄ω = h̄Dk2, where D is a constant.
a) Calculate the density of states g(ε) for magnons.
b) Calculate the contribution of magnons to the specific heat at low temper-
atures. In this problem you need not explicitly evaluate the constants. Only
the form (or power ) of the temperature dependence is asked for.
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8. (Condensed Matter Physics) Consider a dimerized linear chain where
all the atoms are identical. As shown in the figure, M is the mass of the
atoms and k1, k2 are the spring constants connecting two neighboring atoms.
The spring constants are different so that k1 6= k2. Calculate the sound
velocity.
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Optional (do 2 of of the final 4 problems)

9. (Nuclear Physics) The semi-empirical mass formula (SEMF) provides
a good working model for the binding energy EB of a nucleus and has the
form

EB(A,Z) = CvA− CsA2/3 − Cc
Z2

A1/3
− Ca

(A− 2Z)2

A
,

whereA is the atomic weight and Z is the atomic number and the (Cv, Cs, Cc, Ca)
are constants that are fit to nuclear data. (Note that we omit an asymmetry
term).
a) For a fixed (constant) atomic weight A, find the optimized number N of
neutrons (where A = N +Z). Express your result in terms of the ratio N/Z.
b) Using the result from the first part of the problem, derive an expression
for the binding energy as a function of atomic weight A
c) Now consider a simplified version of the problem where all nuclei have
equal numbers of protons and neutrons, so that Z = N = A/2. Derive an
expression for the atomic weight A∗ that has the highest binding energy per
nucleon.
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10. (Condensed Matter Physics) Many metals can occur with both the
body-centered cubic and the face-centered cubic structure, and it is observed
that the transition from one structure to the other involves only an insignif-
icant volume change. Assuming no volume change, find the ratio Dfcc/Dbcc

where Dfcc and Dbcc are the closest distances of approach of metal atoms for
the two structures.
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11. (Particle Physics) A unit of radiation dose is the rad, which corre-
sponds to an energy deposit of 0.01 J/kg. The annual safe dose for humans
is 5 rad. Let us assume that 100 times this dose would lead to the extinction
of life. Based on this, find a lower limit on the proton lifetime. (Assume that
in proton decay all of the liberated energy is absorbed in tissue.) The mass
of the proton is 1.67 × 10−27 kg.
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12. (Atomic Physics) The electron and positron have the same (absolute)
magnetic moment, but opposite g-factors. Show that the “ground state” of
the e+-e− atom (positronium), which is a 1S0 , 3S1 doublet, cannot have a
linear Zeeman effect. Argue in terms of the total magnetic-moment operator.
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