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This	
  is	
  a	
  closed	
  book	
  exam,	
  but	
  a	
  number	
  of	
  useful	
  quantities	
  and	
  formulas	
  are	
  provided	
  

in	
  the	
  front	
  of	
  the	
  exam.	
  	
  (Note	
  that	
  this	
  list	
  is	
  more	
  extensive	
  than	
  in	
  past	
  years.)	
  	
  If	
  you	
  
need	
  to	
  make	
  an	
  assumption	
  or	
  estimate,	
  indicate	
  it	
  clearly.	
  	
  Show	
  your	
  work	
  in	
  an	
  
organized	
  manner	
  to	
  receive	
  partial	
  credit	
  for	
  it.	
  	
  Answer	
  the	
  questions	
  directly	
  in	
  this	
  
exam	
  booklet.	
  	
  If	
  you	
  need	
  more	
  space	
  than	
  there	
  is	
  under	
  the	
  problem,	
  continue	
  on	
  the	
  
back	
  of	
  the	
  page	
  or	
  on	
  additional	
  blank	
  pages	
  that	
  the	
  proctor	
  will	
  provide.	
  	
  Please	
  clearly	
  
indicate	
  if	
  you	
  continue	
  your	
  answer	
  on	
  another	
  page.	
  	
  	
  Label	
  additional	
  blank	
  pages	
  with	
  
your	
  exam	
  number,	
  found	
  at	
  the	
  upper	
  right	
  of	
  this	
  page	
  (but	
  not	
  with	
  your	
  name).	
  	
  Also	
  
clearly	
  state	
  the	
  problem	
  number	
  and	
  “page	
  x	
  of	
  y”	
  (if	
  there	
  is	
  more	
  than	
  one	
  additional	
  
page	
  for	
  a	
  given	
  question).	
  
You	
  must	
  answer	
  the	
  first	
  8	
  required	
  questions	
  and	
  2	
  of	
  the	
  4	
  optional	
  questions.	
  	
  

Indicate	
  which	
  of	
  the	
  latter	
  you	
  wish	
  us	
  to	
  grade	
  (e.g.	
  by	
  circling	
  the	
  question	
  number).	
  	
  We	
  
will	
  only	
  grade	
  the	
  indicated	
  optional	
  questions.	
  	
  Good	
  luck!!	
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Some	
  Fundamental	
  Constants	
  

	
  

speed of light  c = 2.998×108  m/s

proton charge e =1.602×10−19  C

Planck's constant  = 6.626×10−34  J·s = 4.136×10−15  eV·s
Rydberg constant R

∞
=1.097×107 m−1

Coulomb constant k = (4πε0 )−1 = 8.988×109  N·m2 / C2

vacuum permeability µ0 = 4π ×10−7 T·m/A

universal gas constant R = 8.3 J / K·mol

Avogadr !o s number NA =6.02×1023mol-1

Boltzman !n s constant kB =R/NA =1.38×10-23J/K=8.617×10-5eV/K

Stefan-Boltzmann constant σ = 5.67×10−8 W / m2K4

radius of the sun Rsun = 6.96×108 m

radius of the earth Rearth = 6.37×106 m

radius of the moon Rmoon =1.74×106 m

gravitational constant G = 6.67×10−11m3 / (kg·s2 )

	
  	
  

	
  



Required (do all of the first 8 problems)

1. (Mechanics) A pendulum is made from a massless spring (with force
constant k and unstretched length `0) that is suspended at one end from a
fixed pivot O and has a mass m attached to its other end. The spring can
stretch and compress but cannot bend, and the whole system is confined to
a single vertical plane.

(a) Write down the Lagrangian L for the pendulum, using as generalized
coordinates the usual angle φ and the length r of the spring.
(b) Derive the Euler-Lagrange equations from the Lagrangian L.
(c) Find the solutions for small oscillations. [Hint: Let ` denote the equilib-
rium length of the spring with the mass hanging from it and write r = `+ ε.]
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2. (Mechanics) A bead of mass m slides without friction (but under the
influence of gravity) on a wire that is bent in the shape of a curve described
by z = f(ρ) where f(ρ) is a function to be determined. The wire is spun with
constant angular velocity ω about the vertical axis (i.e., the ẑ axis). Here we
are using cylindrical coordinates (ρ, φ, z). Find the function f(ρ) (i.e., the
shape of the wire) so that the bead can be at equilibrium at any fixed value
of ρ. You do not have to check the stability of this equilibrium.

z

ω

ρ

m

Figure 1: A wire whose shape is described by the curve z = f(ρ) is spun
about the ẑ axis.
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3. (Mechanics) A simple pendulum (mass M and length L) is suspended
from a cart (mass m) that can oscillate on the end of a spring of force con-
stant k, as shown in the figure below.

(a) Assuming that the angle φ remains small, write down the Lagrangian
L for the system.
(b) Derive the Euler-Lagrange equations from the Lagrangian L.
(c) Assuming that m = 1, M = 1, L = 1, g = 1, and k = 2 (all in appropriate
units), find the normal frequencies and the corresponding normal modes for
the system.
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4. (Thermodynamics) If we raise the temperature from T to T + δT
(through a quasi-static process), the entropy of a system increases by

dS =
δQ

T
=
C(T )

T
dT (1)

where C(T ) is the heat capacity at temperature T . If we define the entropy
at T = 0 to be zero, using the formula above, we find that

S(T ) =
∫ T

0
dS =

∫ T

0

C(T ′)

T ′
dT ′ (2)

a) Prove that the heat capacity must vanish at T = 0, i.e. limT→0C(T ) = 0.
[Hint: Prove this conclusion by showing that the integral above diverges, if
limT→0C(T ) is nonzero.]

b) As proved in part a), limT→0C(T ) = 0 is a necessary condition for the
entropy (defined using the integral above) to converge. However, is this a
sufficient condition? Answer this question by considering C(T ) = 1/ lnT .
As T → 0, this C(T ) approaches zero. But does the integral for entropy
converge using this C(T )? [Hint: The integral can be evaluated by defining
x = lnT ′ and transferring

∫
dT ′ into

∫
dx.]
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5. (E&M) Two very thin concentric spherical conducting shells are sepa-
rated by vacuum as shown in the figure below. The inner shell with radius a is
held at potential Va, while the outer shell with radius b is held at potential Vb.

(a) Calculate the potential φ(r) between the inner and outer shells and ex-
press the solution in terms of a, b, Va and Vb.
(b) Calculate the charge qa on the outer surface of the inner conducting
spherical shell and the charge qb on the inner surface of the outer conducting
spherical shell.
(c) Calculate the coefficients of capacitance Cij and express it in terms of the
radii a and b of the two concentric spherical shells. [Hint: qi =

∑
j CijVj.]
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6. (E&M) A dipole p is situated a distance d above an infinite grounded
conducting plane as shown in the figure below. The dipole makes an agnle θ
with the perpendicular to the plane. Find the torque on the dipole p.
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7. (E&M) A line charge λ is glued onto the rim of a wheel of radius R, which
is then suspended horizontally as shown in the figure below, so that it is free
to rotate (the spokes are made of nonconducting material). In the central
region, out to radius a, there is a uniform magnetic field Bo, pointing up. If
the magnetic field is now switched off, calculate the total angular momentum
imparted to the wheel.
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8. (Optics) A beam of monochromatic (λ = 0.5893 µm) and linearly polar-
ized light moving along the ẑ axis, reaches normally the surface AB of a prism
of calcite (n0 = 1.6584 and ne =1.4864). The electric field subtends an angle
θ with the plane of incidence. The optical axis is along the x̂ axis, parallel
to the surface AB (see figure). Find what happens to the beam through the
prism and when it emerges from the surface BC.
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Optional (do 2 of of the final 4 problems)

9. (Mechanics) The Coriolis force can produce a torque on a spinning
object. To illustrate this, consider a horizontal hoop of mass m and radius
r spinning with angular velocity ω about its vertical axis at colatitude θ.
Calculate the torque on the spinning horizontal hoop produced by the Coriolis
force due to the earth’s rotation of angular velocity Ω. This torque is the
basis of the gyrocompass. [Hint: Let S be a non-inertial frame rotating
with constant angular velocity Ω relative to the inertial frame S ′, and let
the origin of the non-inertial frame coincide with that of the inertial frame.
Note: vS′ ≡ (dr/dt)S′ = (dr/dt)S + Ω × r = ṙ + Ω × r, A · (B × C) =
B · (C×A) = C · (A×B), and A× (B×C) = B(A ·C)−C(A ·B).]
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10. (E&M) A spherical linear dielectric medium of radius a and dielectric
constant ε/ε0 is placed at the origin of free space. A point electric dipole with
dipole moment ~p is then placed at the origin (centered inside the dielectric).
a) An observer outside the dielectric sphere will see a screened electric field.
Show that this field is a pure dipole field.
b) What is the value of the screened dipole moment seen by the outside
observer?
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11. (Thermodynamics) In a room at temperature 27◦ C, Bob uses a heat
pump to cook a dish (say, the main course for a meal) at a temperature of
127◦ C. The heat pump gathers the heat from the air and transfers it to the
dish. For every Joule of energy that the heat pump consumes, how much
heat can the dish obtain in the ideal limit?
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12. (Optics) A lens of refractive index n2 = 1.85 is covered on the top
surface with a very thin layer of a transparent substance, whose refractive
index is n1 and thickness is t. A beam of monochromatic light (λ= 0.4 µm)
is incident normally on the layer and the lens (see figure). Assuming that the
reflectivities are the same for the air-layer and layer-lens boundary surfaces,
find the values n1 and t for which the reflected ray is subject to destructive
interference.
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