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This	  is	  a	  closed	  book	  exam,	  but	  a	  number	  of	  useful	  quantities	  and	  formulas	  are	  provided	  

in	  the	  front	  of	  the	  exam.	  	  (Note	  that	  this	  list	  is	  more	  extensive	  than	  in	  past	  years.)	  	  If	  you	  
need	  to	  make	  an	  assumption	  or	  estimate,	  indicate	  it	  clearly.	  	  Show	  your	  work	  in	  an	  
organized	  manner	  to	  receive	  partial	  credit	  for	  it.	  	  Answer	  the	  questions	  directly	  in	  this	  
exam	  booklet.	  	  If	  you	  need	  more	  space	  than	  there	  is	  under	  the	  problem,	  continue	  on	  the	  
back	  of	  the	  page	  or	  on	  additional	  blank	  pages	  that	  the	  proctor	  will	  provide.	  	  Please	  clearly	  
indicate	  if	  you	  continue	  your	  answer	  on	  another	  page.	  	  	  Label	  additional	  blank	  pages	  with	  
your	  exam	  number,	  found	  at	  the	  upper	  right	  of	  this	  page	  (but	  not	  with	  your	  name).	  	  Also	  
clearly	  state	  the	  problem	  number	  and	  “page	  x	  of	  y”	  (if	  there	  is	  more	  than	  one	  additional	  
page	  for	  a	  given	  question).	  
You	  must	  answer	  the	  first	  8	  required	  questions	  and	  2	  of	  the	  4	  optional	  questions.	  	  

Indicate	  which	  of	  the	  latter	  you	  wish	  us	  to	  grade	  (e.g.	  by	  circling	  the	  question	  number).	  	  We	  
will	  only	  grade	  the	  indicated	  optional	  questions.	  	  Good	  luck!!	  

Some	  integrals	  and	  series	  expansions	  
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Some	  Fundamental	  Constants	  

	  

speed of light  c = 2.998×108  m/s

proton charge e =1.602×10−19  C

Planck's constant  = 6.626×10−34  J·s = 4.136×10−15  eV·s
Rydberg constant R

∞
=1.097×107 m−1

Coulomb constant k = (4πε0 )−1 = 8.988×109  N·m2 / C2

vacuum permeability µ0 = 4π ×10−7 T·m/A

universal gas constant R = 8.3 J / K·mol

Avogadr !o s number NA =6.02×1023mol-1

Boltzman !n s constant kB =R/NA =1.38×10-23J/K=8.617×10-5eV/K

Stefan-Boltzmann constant σ = 5.67×10−8 W / m2K4

radius of the sun Rsun = 6.96×108 m

radius of the earth Rearth = 6.37×106 m

radius of the moon Rmoon =1.74×106 m

gravitational constant G = 6.67×10−11m3 / (kg·s2 )

	  	  

	  



Required (do all of the first 8 problems)

1. (Mechanics) A pendulum is made from a massless spring (with force
constant k and unstretched length `0) that is suspended at one end from a
fixed pivot O and has a mass m attached to its other end. The spring can
stretch and compress but cannot bend, and the whole system is confined to
a single vertical plane.

(a) Write down the Lagrangian L for the pendulum, using as generalized
coordinates the usual angle φ and the length r of the spring.
(b) Derive the Euler-Lagrange equations from the Lagrangian L.
(c) Find the solutions for small oscillations. [Hint: Let ` denote the equilib-
rium length of the spring with the mass hanging from it and write r = `+ ε.]
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2. (Mechanics) A bead of mass m slides without friction (but under the
influence of gravity) on a wire that is bent in the shape of a curve described
by z = f(ρ) where f(ρ) is a function to be determined. The wire is spun with
constant angular velocity ω about the vertical axis (i.e., the ẑ axis). Here we
are using cylindrical coordinates (ρ, φ, z). Find the function f(ρ) (i.e., the
shape of the wire) so that the bead can be at equilibrium at any fixed value
of ρ. You do not have to check the stability of this equilibrium.

z

ω

ρ

m

Figure 1: A wire whose shape is described by the curve z = f(ρ) is spun
about the ẑ axis.
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3. (Mechanics) A simple pendulum (mass M and length L) is suspended
from a cart (mass m) that can oscillate on the end of a spring of force con-
stant k, as shown in the figure below.

(a) Assuming that the angle φ remains small, write down the Lagrangian
L for the system.
(b) Derive the Euler-Lagrange equations from the Lagrangian L.
(c) Assuming that m = 1, M = 1, L = 1, g = 1, and k = 2 (all in appropriate
units), find the normal frequencies and the corresponding normal modes for
the system.
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4. (Thermodynamics) If we raise the temperature from T to T + δT
(through a quasi-static process), the entropy of a system increases by

dS =
δQ

T
=
C(T )

T
dT (1)

where C(T ) is the heat capacity at temperature T . If we define the entropy
at T = 0 to be zero, using the formula above, we find that

S(T ) =
∫ T

0
dS =

∫ T

0

C(T ′)

T ′
dT ′ (2)

a) Prove that the heat capacity must vanish at T = 0, i.e. limT→0C(T ) = 0.
[Hint: Prove this conclusion by showing that the integral above diverges, if
limT→0C(T ) is nonzero.]

b) As proved in part a), limT→0C(T ) = 0 is a necessary condition for the
entropy (defined using the integral above) to converge. However, is this a
sufficient condition? Answer this question by considering C(T ) = 1/ lnT .
As T → 0, this C(T ) approaches zero. But does the integral for entropy
converge using this C(T )? [Hint: The integral can be evaluated by defining
x = lnT ′ and transferring

∫
dT ′ into

∫
dx.]
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5. (E&M) Two very thin concentric spherical conducting shells are sepa-
rated by vacuum as shown in the figure below. The inner shell with radius a is
held at potential Va, while the outer shell with radius b is held at potential Vb.

(a) Calculate the potential φ(r) between the inner and outer shells and ex-
press the solution in terms of a, b, Va and Vb.
(b) Calculate the charge qa on the outer surface of the inner conducting
spherical shell and the charge qb on the inner surface of the outer conducting
spherical shell.
(c) Calculate the coefficients of capacitance Cij and express it in terms of the
radii a and b of the two concentric spherical shells. [Hint: qi =

∑
j CijVj.]
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6. (E&M) A dipole p is situated a distance d above an infinite grounded
conducting plane as shown in the figure below. The dipole makes an agnle θ
with the perpendicular to the plane. Find the torque on the dipole p.
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7. (E&M) A line charge λ is glued onto the rim of a wheel of radius R, which
is then suspended horizontally as shown in the figure below, so that it is free
to rotate (the spokes are made of nonconducting material). In the central
region, out to radius a, there is a uniform magnetic field Bo, pointing up. If
the magnetic field is now switched off, calculate the total angular momentum
imparted to the wheel.
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8. (Optics) A beam of monochromatic (λ = 0.5893 µm) and linearly polar-
ized light moving along the ẑ axis, reaches normally the surface AB of a prism
of calcite (n0 = 1.6584 and ne =1.4864). The electric field subtends an angle
θ with the plane of incidence. The optical axis is along the x̂ axis, parallel
to the surface AB (see figure). Find what happens to the beam through the
prism and when it emerges from the surface BC.
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Optional (do 2 of of the final 4 problems)

9. (Mechanics) The Coriolis force can produce a torque on a spinning
object. To illustrate this, consider a horizontal hoop of mass m and radius
r spinning with angular velocity ω about its vertical axis at colatitude θ.
Calculate the torque on the spinning horizontal hoop produced by the Coriolis
force due to the earth’s rotation of angular velocity Ω. This torque is the
basis of the gyrocompass. [Hint: Let S be a non-inertial frame rotating
with constant angular velocity Ω relative to the inertial frame S ′, and let
the origin of the non-inertial frame coincide with that of the inertial frame.
Note: vS′ ≡ (dr/dt)S′ = (dr/dt)S + Ω × r = ṙ + Ω × r, A · (B × C) =
B · (C×A) = C · (A×B), and A× (B×C) = B(A ·C)−C(A ·B).]
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10. (E&M) A spherical linear dielectric medium of radius a and dielectric
constant ε/ε0 is placed at the origin of free space. A point electric dipole with
dipole moment ~p is then placed at the origin (centered inside the dielectric).
a) An observer outside the dielectric sphere will see a screened electric field.
Show that this field is a pure dipole field.
b) What is the value of the screened dipole moment seen by the outside
observer?
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11. (Thermodynamics) In a room at temperature 27◦ C, Bob uses a heat
pump to cook a dish (say, the main course for a meal) at a temperature of
127◦ C. The heat pump gathers the heat from the air and transfers it to the
dish. For every Joule of energy that the heat pump consumes, how much
heat can the dish obtain in the ideal limit?

12



12. (Optics) A lens of refractive index n2 = 1.85 is covered on the top
surface with a very thin layer of a transparent substance, whose refractive
index is n1 and thickness is t. A beam of monochromatic light (λ= 0.4 µm)
is incident normally on the layer and the lens (see figure). Assuming that the
reflectivities are the same for the air-layer and layer-lens boundary surfaces,
find the values n1 and t for which the reflected ray is subject to destructive
interference.
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