# **From Physics to Finance**

## Ternary diagram of reasons to abandon academia



## Why do quants exist?

Some well-known quanty problems:

- Options pricing
- Modern portfolio theory
- Optimal execution
- Big data, huge complexity

## What kinds of quants are there?

#### Banks ("the sell side")

- desk quant, quant trader
- model validation
- risk analytics

#### Funds ("the buy side")

- alpha research
- risk analytics
- optimization, execution
- high frequency

#### Other:

• Bloomberg, MSCI Barra etc

## Why do physicists get hired?

applied math

data analysis

programming

back-of-the-envelope pragmatism

## Stuff that will help you get a job

Programming: C++, Java, Python, Perl, R, MATLAB, Excel and VBA

Math: stochastic processes, basic statistics, timeseries, regression analysis

**Gravy:** convex optimization, machine learning, dynamic programming, control theory, random matrix theory, statistical resampling methods

### **Statistics are different in finance**

Table 1. Power Law  $\Lambda$ CDM Model Parameters- WMAP Data Only

| Parameter       |                   | Mean ( $68\%$ confidence range)  | Maximum Likelihood |
|-----------------|-------------------|----------------------------------|--------------------|
| Baryon Density  | $\Omega_b h^2$    | $0.024 \pm 0.001$                | 0.023              |
| Matter Density  | $\Omega_m h^2$    | $0.14\pm0.02$                    | 0.13               |
| Hubble Constant | h                 | $0.72\pm0.05$                    | 0.68               |
| Amplitude       | A                 | $0.9\pm0.1$                      | 0.78               |
| Optical Depth   | au                | $0.166\substack{+0.076\\-0.071}$ | 0.10               |
| Spectral Index  | $n_s$             | $0.99\pm0.04$                    | 0.97               |
|                 | $\chi^2_{eff}/ u$ |                                  | 1431/1342          |

<sup>a</sup>Fit to WMAP data only



Take nothing for granted

### Some books I like

Serious: Øksendal, *Stochastic Differential Equations* Bouchaud and Potters, *Theory of Financial Risk and Derivative Pricing* 

For interviews: Crack, *Heard on the Street* 

#### Fun:

Lowenstein, *When Genius Failed* Derman, *My Life as a Quant*