
Convergence of the Deep Galerkin Method for the Mean Field

Control Problem

U(M) Math REU – Summer 2023

Jake Hofgard, mentored by Asaf Cohen

August 10, 2023

Abstract

We consider the convergence of the deep Galerkin method (DGM), a deep learning-based scheme for solving
high-dimensional nonlinear PDE, for Hamilton-Jacobi-Bellman (HJB) equations that arise from the study
of mean field control problems (MFCP). Based on a recent characterization of the value function of the
MFCP as the unique viscosity solution of an HJB equation on the simplex, we establish both an existence
and convergence result for the DGM. First, we show that the loss functional of the DGM can be made
arbitrarily small given that the value function of the MFCP possesses sufficient regularity. Then, we show
that if the loss functional of the DGM converges to zero, the corresponding neural network approximators
must converge uniformly to the true value function on the simplex. We also provide numerical experiments
demonstrating the DGM’s ability to generalize to high-dimensional HJB equations.

Contents

1 Introduction 2

2 The N-Agent Optimization and Mean Field Control Problems 4
2.1 N -agent Optimization Problem . 4
2.2 Mean Field Control Problem . 5
2.3 Assumptions for the MFCP . 6
2.4 Convergence, Existence, and Uniqueness results for the MFCP 7

3 Deep Galerkin Method (DGM) 8
3.1 Original Algorithm . 8
3.2 Modified Algorithm . 9

4 Universal Approximation with Two-Layer Feedforward Neural Networks 10

5 Convergence of the DGM 11
5.1 Approximation Via Two-Layer Neural Networks . 11
5.2 Convergence of Neural Network Approximators to Value Function 17
5.3 Equicontinuity of Neural Network Approximators . 20

6 Numerical Results 21

References 25

A Derivations of HJB Equations 27

1

1 Introduction

Mean field control problems (MFCPs) describe the limiting behavior of cooperative games with a finite number
of interacting agents attempting to minimize a common cost. The N -agent optimization problem, which limits
to the MFCP as N approaches infinity, is a continuous-time, finite state optimization problem with N agents
X = (X1, . . . , XN) belonging to the state space JdK := {1, . . . , d}. The agents follow the dynamics given by the
continuous-time Markov chain

P(Xk
t+h = j | Xt = x) = Qxk,j(t, βk(t,x), µ

N
x)h+ o(h), (1)

where µN is the empirical measure of the N agents and the agents choose feedback controls β = (β1, . . . , βN)
to minimize the common cost

JN (β) :=
1

N

N∑
k=1

E

[∫ T

0

f(t,Xk
t , βk(t,X

k
t), µ

N
t)dt+ g(XT

k , µ
N
T)

]
. (2)

As is standard, f denotes the running cost of the stochastic control problem while g denotes the terminal cost.
In practice, finding the optimal control in N -agent stochastic control problems quickly becomes intractable as
N grows. As a result, the MFCP is of theoretical and practical interest in stochastic control. More rigorously, as
N approaches infinity, the N -agent optimization problem resembles an optimization problem involving a single
agent that evolves via that process

P(Xt+h = j | Xt = i) = Qi,j(t, α
i(t),Law(Xt))h+ o(h), (3)

where α is now the feedback control of the single agent, and Law(X0) = m0 is predetermined. Similar to the
N -agent case, the single agent aims to minimize the cost

J(α) := E

[∫ T

0

f(t,Xt, α(t,Xt),Law(Xt))dt+ g(XT ,Law(XT))

]
. (4)

This problem can be considered as a deterministic control problem in terms of the Fokker–Planck equation for
µt := Law(Xt). In particular, µ solves the system

d

dt
µi
t =

∑
j∈JdK

(
µj
tQj,i(t, α

j(t), µt)− µi
tQi,j(t, α

i(t), µt)
)
,

µ0 = m0,

(5)

and the cost functional for the deterministic control problem becomes

J(α) :=

∫ T

0

∑
i∈JdK

f(s, i, αi(s), µs)µ
i
sds+

∑
i∈JdK

gi(µT)µ
i
T . (6)

By a standard optimal control argument via an appropriate dynamic programming principle, this gives rise to
an HJB equation on [0, T] × Sd, where Sd is the (d − 1)-dimensional simplex. Specifically, the value function
V : [0, T]× Sd → R for the MFCP solves the HJB equation

− ∂tV (t,m) +
∑
i∈JdK

miH
i(t,m,DiV (t,m)) = 0,

V (T,m) =
∑
i∈JdK

mig
i(m),

(7)

where DiV (t,m) denotes the vector (∂mj−miV (t,m))j∈JdK. Note that on the simplex, directional derivatives are

only permitted in the directions ej − ei, where ei denotes the ith standard basis vector in Rd. It is Equation (7)
that we focus on solving numerically due to the connection between the MFCP and the N -agent optimization
problem.

Importantly, recent work rigorously establishes the connection between the N -agent stochastic control problem

2

and the corresponding MFCP. While we restrict ourselves to the HJB equation that arises from the MFCP
with feedback controls, the case of open-loop controls is considered in [1], where a forward-backward system of
McKean-Vlasov SDEs is the primary object of interest. In the case of Markovian feedback controls, Lacker [2]
shows that the optimal control-state pairs of the MFCP, also referred to as control of McKean-Vlasov dynamics,
is the limit in distribution of near-optimal control-state pairs of the N -agent control problem.

Taking a slightly different approach, Cecchin [3] reformulates the MFCP in terms of the deterministic opti-
mal control of a Fokker–Planck equation as in Equations (5) and (6) above. The resulting deterministic control
problem yields a dynamic programming principle and Hamilton-Jacobi-Bellman (HJB) equation solved by the
value function of the MFCP. By formulating the N -agent optimization problem in a similar manner, one obtains
two HJB equations: one for the N -agent optimization problem and one for the MFCP. Both HJB equations
have unique viscosity solutions, as shown in [3]. In turn, [3] establishes an explicit rate of convergence between
V N , the value function for the N -agent problem, and V , the value function for the MFCP. In particular, a
convergence rate of 1/

√
N is established. In a similar vein, Kolokoltsov [4] obtains a convergence rate of 1/N

under additional regularity assumptions. Notably, [3] places no regularity assumptions on the value function V
(other than Lipschitz continuity), and in the most general case, does not require convexity of the running or
terminal costs of the MFCP.

We aim to construct a numerical scheme for efficiently solving the HJB equation associated with the MFCP.
In particular, as the dimension d increases, the so-called “curse of dimensionality” prevents standard numerical
schemes (e.g., Monte Carlo methods, mesh-based algorithms, etc.) from solving the HJB equation in a tractable
manner. However, recent advancements in deep learning present promising options for solving high-dimensional,
non-linear PDE such as the HJB equation in Equation (7).

Two leading methods have been presented for parabolic PDE that resemble the HJB equation: the deep
Galerkin method (DGM) and deep backwards stochastic differential equations (BSDE). The primary focus of
this paper is the DGM. This approach, first introduced in [5], models itself after classical finite element methods
for solving low-dimensional PDE. However, the DGM is a mesh-free method; instead of creating basis functions
that approximate the solution to a PDE from a mesh, the DGM utilizes neural network approximations that
only depend on the parameters, the architecture, and the activation function between layers of the network.
The loss functional of the original DGM attempts to minimize the L2-error of both the PDE and the terminal
condition during training, ultimately learning the parameters that best approximate the solution of the PDE.
In [5], the authors introduce the DGM, illustrate its ability to numerically solve high-dimensional nonlinear
PDE, and provide a convergence guarantee for second-order nonlinear parabolic PDE.

The second popular deep learning-based method for solving high-dimensional PDE, introduced in [6] and ex-
panded upon in [7, 8], exploits the connection between nonlinear parabolic PDE and backward SDEs can be
exploited via a so-called non-linear Feynman-Kac formula. In turn, the resulting backward SDE can be solved
numerically by recursively using a sequence of neural networks to solve the SDE along a specified discretiza-
tion of the time interval in question, starting with the terminal condition of the original PDE. Although this
method, often referred to as deep BSDE, is likely applicable to our context, we defer further consideration of
deep backward schemes to future work.

We show that the convergence guarantee provided in [5] extends to the class of HJB equations associated with
the MFCP, relying on the theory of viscosity solutions for HJB equations to obtain the desired convergence.
Importantly, our class of HJB equations does not fall into the class of second-order nonlinear parabolic PDE
considered in [5], so we require a different proof technique. We first show that a sequence of neural networks
taking the loss functional of the DGM to zero exists. Then, we prove that for such a sequence of networks, the
neural network approximators converge uniformly to the true value function for the MFCP on [0, T]× Sd.

We structure the remainder of the paper as follows. Section 2 introduces the MFCP and related HJB equation
in full detail and provides a connection between the N -agent optimization problem and the MFCP. Addition-
ally, we present the relevant assumptions placed upon the MFCP that ensure sufficient regularity of the value
function. Section 3 presents the DGM in both its original form and the modified version of the algorithm for
the HJB equation that we use in our numerical experiments and convergence proof. Before presenting the con-
vergence proof, we provide an overview of universal approximation theorems in Section 4, a key concept from
machine learning theory that we require in order to show convergence of the DGM. In Section 5 we present the

3

full convergence proof of the DGM for the HJB equation in addition to a discussion of neural networks with
bounded weights and equicontinuous families of neural networks. Finally, Section 6 presents selected numerical
results from a TensorFlow implementation of the DGM.

2 The N-Agent Optimization and Mean Field Control Problems

Below, we outline the N -agent optimization problem, the resulting MFCP, and the recent existence, uniqueness,
and convergence results for the MFCP proven in [3]. Derivations of the HJB equations for both the N -agent
problem and the MFCP can be found in Appendix A. We also present the relevant assumptions imposed upon
the MFCP. This section utilizes the background on stochastic control and HJB equations provided in [9].

2.1 N-agent Optimization Problem

In the N -agent problem, we assume that the dynamics in

P(Xk
t+h = j | Xt = x) = Qxk,j(t, βk(t,x), µ

N
x)h+ o(h) (8)

hold, and N agents aim to minimize the common cost

JN (β) =
1

N

N∑
k=1

E

[∫ T

0

f(t,Xk
t , βk(t,X

k
t), µ

N
t)dt+ g(XT

k , µ
N
T)

]
, (9)

where the running cost f and terminal cost g depend on the empirical distribution of the agents, with coordinates
given by

µN
i,t =

1

N

N∑
k=1

1Xk
t =i

for i ∈ {1, . . . , d}. Let AN denote the set of admissible controls, which we take to be measurable, Marko-
vian feedback controls. Then, the associated value function (which we aim to describe as the solution to an
appropriate HJB equation) is given by

vN (t,x) = inf
β∈AN

1

N

N∑
k=1

E

[∫ T

t

f(s,Xk
s , βk(s,X

k
s), µ

N
s)ds+ g(XT

k , µ
N
T)

∣∣∣∣ Xt = x

]
=: inf

β∈AN
JN (t,β,x), (10)

assuming that minimizing the cost in (2) is the goal of the agents. We make the same assumptions as [3],
discussed in detail below, so that the value function v belongs to C1,1([0, T] × Sd); see [3, Theorem 3.5]. In
particular, this ensures that the HJB equation for the N -agent optimization problem (and the MFCP) has a
classical solution.

At this point, we introduce some relevant notation used throughout the paper. In particular, let JdKN :=
{1, . . . , d}N . Then, given x ∈ JdKN , we define [x−k, j] ∈ JdKN for j ∈ JdKN by

[x−k, j]ℓ =

{
xℓ ℓ ̸= k,

j ℓ = k.

In turn, given u : JdKN → Rd, we define ∆ku ∈ Rd by ∆ku(x)j = u([x−k, j])− u(x).

We utilize the notation Qi,• to denote the ith row of the transition rate matrix (Qi,j)i,j∈JdKN . From this,

we define the pre-Hamiltonian Hi : [0, T]×A× Sd × Rd → R for each i ∈ JdK by

Hi(t, a,m, z) := −⟨Qi,•(t, a,m), z⟩ − f(t, i, a,m). (11)

In turn, the corresponding Hamiltonian is given by

Hi(t,m, z) = sup
a∈A
Hi(t, a,m, z) (12)

for each i ∈ JdK.

With this notation out of the way, we can state the HJB equation for the N -agent optimization problem.

4

Proposition 2.1. The value function vN defined in Equation (10) is C1 in time and uniquely solves the HJB
equation

− ∂vN

∂t
(t,x) +

1

N

N∑
k=1

Hxk(t, µN
x , N∆kvN (t,x)) = 0,

vN (T, x) =
1

N

N∑
k=1

g(xk, µ
N
x).

(13)

In [3], it is shown that the above N -agent optimization problem is in fact equivalent to a single optimization
problem in terms of the empirical distribution of the agents. This problem is given by a time-inhomogeneous
Markov chain with dynamics given by

P
(
µN
t+h = m+

1

N
(δj − δi)

∣∣∣∣ µN
t = m

)
= NmiQi,j(t, αN (t, i,m),m)h+ o(h), (14)

where m ∈ SN
d , i ̸= j ∈ JdK, and each αN (t, ·,m) ∈ Ad is now a control that depends only on the state of

each agent and the empirical distribution of the agents. The cost functional the problem is now given by the
expression

JN (αN , t,m) = E

∫ T

t

∑
i∈JdK

mi,tµ
N
i,sf(s, i, αN (s, i, µN

s), µN
s)ds+

∑
i∈JdK

µN
i,T g

i(µN
T)

 . (15)

Defining

DN,i
j v(m) := N

(
v(m+

1

N
(δj − δi))− v(m)

)
,

we have the following analogous proposition.

Proposition 2.2. The value function V N for the control problem described by Equations (14) – (15) is C1 in
time and uniquely solves the HJB equation

− ∂V N

∂t
(t,m) +

∑
i∈JdK

miH
i(t,m,DN,iV N (t,m)) = 0,

V N (T,m) =
∑
i∈JdK

mig
i(m).

(16)

As noted above and shown in [3, Proposition 2.6], the HJB equations in Proposition 2.1 and Proposition 2.2
are equivalent. Specifically, the original N -agent optimization problem and the reformulated problem in which
the agents only interact through their empirical distribution are equivalent control problems.

2.2 Mean Field Control Problem

In the case of the MFCP, we instead consider a single agent that follows that dynamics

P(Xt+h = j | Xt = i) = Qi,j(t, α
i(t),Law(Xt))h+ o(h),

with Law(X0) = m0. The associated cost functional is then

J(α) = E

[∫ T

0

f(t,Xt, α(t,Xt),Law(Xt))dt+ g(XT ,Law(XT))

]
(17)

As in [3], this can be considered as a deterministic control problem, where we aim to minimize the cost

J(t, α, µ) =

∫ T

t

∑
i∈JdK

f(s, i, αi(s), µs)µ
i
sds+

∑
i∈JdK

gi(µT)µ
i
T , (18)

5

where f is the running cost and g is the terminal cost exactly as above. Additionally, µ satisfies the dynamics

d

dt
µi
t =

∑
j∈JdK

(
µj
tQj,i(t, α

j(t), µt)− µi
tQi,j(t, α

i(t), µt)
)
,

µ0 = m0,

(19)

which arise from the Fokker-Planck equation for the process (Xt)t∈[0,T]. From a standard control argument, we
have the following proposition for the MFCP.

Proposition 2.3. Under the assumptions presented in Section 2.3 below, the value function V ∈ C1,1([0, T]×Sd)
for the MFCP is the unique classical solution of the HJB equation

− ∂tV (t,m) +
∑
i∈JdK

miH
i(t,m,DiV (t,m)) = 0,

V (T,m) =
∑
i∈JdK

mig
i(m).

(20)

All three HJB equations presented in Propositions 2.1 – 2.3 are derived in Appendix A.

2.3 Assumptions for the MFCP

Under the assumptions presented in [3], Equation 7 has a unique classical solution V ∈ C1,1([0, T] × Sd). In
particular, we start by assuming the following, drawing upon some of the notation introduced throughout the
preceding section.

Assumption A. (A1) The action space A forms a compact metric space when equipped with some metric ρ.

(A2) The transition rate Qi,j is continuous on [0, T]× A× Sd and Lipschitz in (t,m), with Lipschitz constant
C > 0 that doesn’t depend on a:

|Qi,j(t, a,m)−Qi,j(s, a, p)| ≤ C(|t− s|+ |m− p|).

(A3) The functions F and G, defined by

F (t, a1, . . . , ad,m) :=
∑
i∈JdK

mif(t, i, a
i,m)

and

G(m) =
∑
i∈JdK

mig
i(m),

are such that F is continuous on [0, T]×A× Sd and

|F (t, a,m)− F (s, a, p)| ≤ C(|t− s|+ |m− p|)
|G(m)−G(p)| ≤ C|m− p|.

Assumption B. In addition to Assumption (A), we have that:

(B1) A = [0,M]d for some constant M > 0.

(B2) The transition rate is homogeneous and given by Qi,j(t, a,m) = aj.

(B3) For each i ∈ JdK, the running cost f is continuously differentiable in a, ∇af is Lipschitz continuous with
respect to m, and there exists λ > 0 such that

f(t, i, b,m) ≥ f(t, i, a,m) + ⟨∇af(t, i, a,m), b− a⟩+ λ|b− a|2.

Assumption C. In addition to both Assumption (A), and Assumption (B), we have that:

(C1) F (·, a, ·) ∈ C1,1([0, T]× Sd) and G ∈ C1,1(Sd).

6

(C2) The function

[0, T]× [0,∞)d×d × Int(Sd) ∋ (t, w,m) 7→
∑
i∈JdK

mif

(
t, i,

(
wi,j

mi

)
j ̸=i

,m

)

is convex in (w,m).

(C3) G is convex in m.

2.4 Convergence, Existence, and Uniqueness results for the MFCP

Under the above assumptions, Cecchin [3] derived a series of useful results for the MFCP. We begin with a
uniqueness result for solutions to the above HJB equations, from [3, Theorem 2.9].

Theorem 2.4. Let V be the value function for the deterministic control problem in (6). Then, if:

(1) Assumption (A) holds, V is the unique viscosity solution of Equation (7) on Sd and V is Lipschitz
continuous in (t,m).

(2) Assumptions (A) and (B) hold, there exists an optimal control to the deterministic MFCP.

(3) Assumptions (A) – (C) hold, then V ∈ C1,1([0, T]×Sd) is the unique classical solution of the HJB equation
in Equation (7).

Although the above theorem is the most important result from [3] for our work, Cecchin also presents several
convergence results connecting the MFCP to the N -agent optimization problem. In particular, we have, from [3,
Theorem 2.10] the following result concerning convergence of the value function V N for theN -agent optimization
problem in (1) to the value function V for the MFCP. Note that this result only requires the standard stochastic
control assumptions from Assumption (A).

Theorem 2.5. Under Assumption (A), we have that

max
(t,m)∈[0,T]×Sd

∣∣V N (t,m)− V (t,m)
∣∣ ≤ C√

N

for all N ∈ N.

Next, [3, Theorem 2.11] contains a similar convergence result for the cost obtained by the optimal control for
the MFCP.

Theorem 2.6. Let ε > 0 and N ∈ N. Then, under Assumption (A), if α : [0, T]→ Ad is an ε-optimal control
for the MFCP,

JN (α) ≤ inf
αN∈A

JN (αN) +
C√
N

+ ε,

where JN is the cost functional for the N -agent optimization problem in (2).

Finally, Cecchin also presents a propagation of chaos of result, describing the connection between the optimal
trajectory of the N -agent optimization problem and the MFCP in [3, Theorem 2.13].

Theorem 2.7. If Assumption (B) holds V ∈ C1,1([0, T]× Sd), then

E

[
sup

t∈[0,T]

|µN
t − µt|

]
≤ C

N1/9
,

where µN is the process in (14) and µ is the optimal trajectory of the MFCP, satisfying (19).

7

3 Deep Galerkin Method (DGM)

3.1 Original Algorithm

In this section, we present the deep Galerkin method (DGM) algorithm, first proposed by [5], in the context of
the HJB equation for the MFCP. Specifically, consolidating the discussion in the previous section, we aim to
approximate solutions to the following first-order, nonlinear PDE:

− ∂tV (t,m) +
∑
i∈JdK

miH
i(t,m,DiV (t,m)) = 0,

V (T,m) =
∑
i∈JdK

mig
i(m).

(21)

The DGM aims to efficiently approximate a solution to the above equation using a deep learning-based approach.
Specifically, the method learns model parameters θ ∈ RK , where K depends on the dimension d of the simplex
Sd, the number of layers in the neural network used, and the number of nodes in each layer. The DGM learns
the model parameters θ by minimizing an objective functional, given by

L(φ) :=

∥∥∥∥∥∥−∂tφ(t,m; θ) +
∑
i∈JdK

miH
i(t,m,Diφ(t,m; θ))

∥∥∥∥∥∥
2

2,[0,T]×Sd,ν1

+ ∥φ(T,m; θ)−
∑
i∈JdK

mig
i(m)∥22,Sd,ν2

.

(22)

Above, ν1 and ν2 are taken to be probability measures on [0, T]× Sd and Sd respectively. Below, we typically
refer to this objective as the L2-error of the neural network approximator φ(t,m; θ). Analytically minimizing
the objective functional with respect to the model parameters θ is computationally intractable in higher dimen-
sions, as numerically integrating over Sd requires the generation of a mesh.

Instead, the method proposed in [5] suggests utilizing stochastic gradient descent (SGD), a common tech-
nique in machine learning that involves sampling to minimize an objective such as the one in (22). Thus, we
obtain a mesh-free algorithm for minimizing (22) with respect to the model parameters θ as follows:

(1) Initialize model parameters θ(0) ∈ RK . These may be initialized randomly or according to some heuristic.

(2) At each step, sample points (t(n),m(n)) ∈ [0, T] × Sd and p(n) ∈ Sd from the corresponding densities ν1
and ν2.

(3) Calculate the squared error

G(t(n),m(n), p(n), θ(n)) =

−∂tφ(t(n),m(n); θ(n)) +
∑
i∈JdK

miH
i(t(n),m(n), Diφ(t(n),m(n); θ(n))

2

+

φ(T, p(n); θ(n))−
∑
i∈JdK

p
(n)
i gi(p(n))

2

(4) Update the model parameters θ(n) from the sampled point (t(n),m(n), p(n)) ∈ [0, T] × Sd × Sd according
to the update rule

θ(n+1) = θ(n) − α(n)∇θG(t(n),m(n), p(n), θ(n)).

(5) Repeat steps (2) – (4) until a convergence criterion, such as G(·, θ(n)) < δ for some small δ > 0, is satisfied.

Note that the derivative of the squared error with respect to the model parameters θ can be computed via the
standard machine learning algorithm of backpropagation. Additionally, at each step, the stochastic gradient
∇θG(t(n),m(n), p(n), θ(n)) is an unbiased estimate of the gradient ∇θL(φ(·; θ(n))). Specifically, we have that

E
[
∇θG(t(n),m(n), p(n), θ(n)) | θ(n)

]
= ∇θL(φ(·; θ(n))).

8

This ensures that, in expectation, step (4) above will update the model parameters according to a descent
direction. In step (4), the learning rate α(n) is selected according to a schedule that is decreasing in n; the
authors in [5] present a heuristic schedule that they found to work particularly well. The above algorithm
guarantees that as n→∞,

|∇θL(φ(·; θ(n)))| → 0,

meaning that the L2-error will converge to a critical point with respect to the model parameters. Deep neural
networks typically possess local minima, so the above convergence guarantee does not ensure that φ(t,m; θ) =
V (t,m) upon convergence. In Section 5 below, we present a more comprehensive overview of the theoretical
guarantees that the DGM provides when applied to Equation (7).

3.2 Modified Algorithm

Although the above algorithm, using the L2-error as defined in [5], seems to work quite well in practice, the
structure of the PDE in Equation (7) prohibits us from using the same argument as [5] to prove convergence of
the original DGM algorithm. Instead, by slightly changing the loss function used to train the neural network
approximation in DGM, we are able to prove convergence of a modified DGM algorithm to the unique value
function of the MFCP. Specifically, by utilizing a loss function that approximates the uniform norm of the
PDE and terminal condition rather than the squared error of the PDE and the terminal condition, we are able
to leverage the theory of viscosity solutions for first-order HJB equations from [10] in our convergence proof.
Consequently, the loss function for the modified algorithm is given by

L̃(φ) = max
(t,m)∈[0,T]×Sd

∣∣∣∣∣∣−∂tφ(t,m; θ) +
∑
i∈JdK

miH
i(t,m,Diφ(t,m; θ))

∣∣∣∣∣∣+ max
m∈Sd

∣∣∣∣∣∣φ(T,m; θ)−
∑
i∈JdK

mig
i(m)

∣∣∣∣∣∣ . (23)

The maxima over [0, T]×Sd and Sd are approximated by sampling, as demonstrated in the following algorithm.
As with the original DGM algorithm, we utilize stochastic gradient descent (SGD) to find the parameter θ ∈ RK

that minimizes the above loss. Note that in the following algorithm, the architecture of the neural network is
fixed, and only the parameter θ is updated by SGD. As a proxy for the true loss functional, given a set of M
samples (t(j),m(j), p(j))j=1,...,M ∈ [0, T]× Sd, we define

G̃((t(j),m(j), p(j))j=1,...,M , θ) := max
j=1,...,M

∣∣∣∣∣∣−∂tφ(t(j),m(j); θ) +
∑
i∈JdK

m
(j)
i Hi(t(j),m(j), Diφ(t(j),m(j); θ))

∣∣∣∣∣∣
+ max

j=1,...,M

∣∣∣∣∣∣φ(T, p(j); θ)−
∑
i∈JdK

p
(j)
i gi(p(j))

∣∣∣∣∣∣ .
(24)

Algorithm 1 Uniform DGM

Initialize parameters θ(0) ∈ RK

Initialize tolerance δ ∈ (0, 1)
n← 0
while G̃(θ(n)) ≥ δ do

Sample (t(j),m(j), p(j))j=1,...,M ∈ [0, T]× Sd.

θ(n+1) ← θ(n) − α(n)∇θG̃((t(j),m(j), p(j))j=1,...,M , θ(n))
n← n+ 1

end while

In practice, the performance of the above algorithm may vary depending on the sample size M at each step.
Additionally, the learning rate schedule α(n) may determine the convergence rate of the algorithm as before.
Using an optimizer such as AdaGrad or Adam may help speed up convergence. Finally, instead of using a
tolerance δ ∈ (0, 1) to determine the convergence of the algorithm, one may instead specify a fixed number of
SGD iterations to carry out.

9

Remark 3.1. As noted above, we approximate that maxima over [0, T]× Sd and Sd respectively by uniformly
sampling M points in each region. Now, denote

(t⋆,m⋆
1) := argmax

(t,m)∈[0,T]×Sd

∣∣∣∣∣∣−∂tφ(t,m; θ) +
∑
i∈JdK

miH
i(t,m,Diφ(t,m; θ))

∣∣∣∣∣∣
and

m⋆
2 := argmax

m∈Sd

∣∣∣∣∣∣φ(T,m; θ)−
∑
i∈JdK

mig
i(m)

∣∣∣∣∣∣ ,
Similarly, let

j⋆1 := argmax
j=1,...,M

∣∣∣∣∣∣−∂tφ(t(j),m(j); θ) +
∑
i∈JdK

m
(j)
i Hi(t(j),m(j), Diφ(t(j),m(j); θ))

∣∣∣∣∣∣
and

j⋆2 := argmax
j=1,...,M

∣∣∣∣∣∣φ(T, p(j); θ)−
∑
i∈JdK

p
(j)
i gi(p(j))

∣∣∣∣∣∣ ,
By the law of large numbers, we have that

E
∣∣t⋆ − tj⋆1

∣∣+ E|m⋆
1 −mj⋆1

|+ E|m⋆
2 −mj⋆2

| = O(M−1).

Thus, by taking the sample size M larger, we can approximate the maximizers of (23) via (24).

4 Universal Approximation with Two-Layer Feedforward Neural
Networks

In this section, we provide a brief, non-comprehensive review of universal approximation theorems, with the
goal of summarizing results relevant to the DGM. By a “two-layer” feedforward neural network, we refer to
a neural network with one input layer and one hidden layer as defined by (25). Although such networks are
relatively simple compared modern deep neural networks, their universal approximation power is sufficient for
the purposes of the convergence result in Section 5. Theorem 5.1 is just one of many results that describe
the approximation power of this class of neural networks; see [11] for a similar survey, albeit with a focus on
implementation.

Universal approximation results relevant to this paper fall broadly into two categories: approximations in
Lp spaces for p <∞ (or in W k,p spaces if the approximation of derivatives is also desired) and approximations
in Ck for k ≥ 0. We also discuss bounds on the weights of neural networks and the impact that this has on their
approximation power. Indeed, in order to establish equicontinuity as in Theorem 5.12, we require approximation
by a sequence of neural networks with bounded, summable weights. In the case of bounded neural networks,
however, approximation of a function and its derivatives does not seem to be covered by the current literature.

Modern universal approximation results largely stem from those established by Hornik, Stinchcombe, White,
and Cybenko in the early 1990s. In particular, the former three authors first showed that neural networks with
(possibly discontinuous) “squashing function” activations are uniformly dense on compact sets in C(R), with
respect to the uniform norm [12]. Cybenko then showed that neural networks with sigmoidal activations share
the same approximation power [13]. Hornik, Stinchombe, and White then extended the result of Cybenko to
neural networks with non-sigmoidal (indeed, bounded and nonconstant) activations, also providing estimates
of the derivatives of an unknown function f ∈ W k,p(Ω) for k ≥ 1 and p ≥ 1, with Ω ⊂ Rn compact [14].
Theorem 5.1 is due to Hornik [15], who subsequently showed that functions with k continuous derivatives can
be uniformly approximated on compact sets in Ck-norm in addition to the standard norm on W k,p [15]. Out of
the universal approximation theorems shown in the early 1990s, Hornik’s result is the most general. However,

10

his proof, relying on the Hahn–Banach theorem, is not constructive and does not extend to neural networks with
bounded weights. Conversely, Stinchcombe and White showed that continuous functions can be approximated,
in uniform norm, by neural networks with bounded weights using an argument based on the Stone–Weierstrass
theorem [16].

Although the vast majority of results concerning universal approximation by feedforward neural networks were
stated and proved in the early 1990s, several authors have made recent attempts to extend classical results
to more complicated architectures, more general convergence guarantees, and provide explicit constructions of
universal approximators. For instance, Mhaskar and Micchelli show in [17] that functions and their derivatives
can be uniformly approximated in Lp([−1, 1]d) for p ≥ 1 using a constructive, Fourier-analytic approach via
approximation by periodic functions.

Additionally, there has been recent interest in exploring the approximation power of neural networks with
specific activation functions such as hyperbolic tangent neural networks. For example, [18] considers the ap-
proximation power of tanh neural networks in the standard norm on W k,p(Ω) for a compact domain Ω ⊂ Rd,
deducing asymptotic bounds on the weights of the neural network and much more explicit bounds on the ap-
proximation power of a network with a fixed number of hidden units. In a similar vein, [19] derive promising
results for networks with piecewise quadratic activations (specifically ReQU neural networks), demonstrating
that ReQU networks with bounded weights can approximate functions and their derivatives in Hölder norms.
In particular, [19] shows that if f ∈ C2,α([0, 1]d) for α ∈ (0, 1], then for any ε > 0, there exists a deep neural
network φf with weights in [−1, 1] such that ∥f−φf∥C2,α([0,1]d) < ε. This construction, however, is not currently
considered in the proof in Section 5, as we limit ourselves to smooth activation functions here.

5 Convergence of the DGM

This section aims to establish the following two results in the context of the HJB equation for the MFCP. We
employ the following outline to obtain our existence and convergence results.

(1) By an appropriate version of the universal approximation theorem, we can arbitrarily approximate V ∈
C1,1([0, T]× Sd) with neural network approximators; see Theorem 5.1. Moreover, there exists a sequence
of neural network approximators {φn(t,m; θ)}n∈N such that both L(φn) and L̃(φn) → 0 as n → ∞; see
Theorem 5.2

(2) If L̃(φn) → 0 as n → ∞ for a sequence of neural network approximators {φn(t,m; θ)}n∈N, then φn → V
uniformly on [0, T]× Sd; see Theorem 5.8.

5.1 Approximation Via Two-Layer Neural Networks

In this section, we utilize the universial approximation result shown by Hornik in [15]. For some context, we
operate in the setting of a two-layer feedward network with real-valued outputs. Specifically, denote any set
of weights by θ := (β1, . . . , βn, α1,1, . . . , αd+1,n, c1, . . . , cn) ∈ R2n+n(d+1). The class of such networks with n
hidden units and common activation function σ, aiming to approximate an arbitrary mapping f : Rd+1 → R, is
denoted by:

C
(n)
d+1(σ) :=

φ : Rd+1 → R
∣∣∣∣ φ(t, x; θ) = n∑

i=1

βiσ

α1,it+

d∑
j=1

αj+1,ixj + ci

 , θ ∈ R2n+n(d+1)

 . (25)

Each network in the above class has weights given by θ = (β1, . . . , βn, α1,1, . . . , αd+1,n, c1, . . . , cn) ∈ R2n+n(d+1).
As in [15], we then denote

Cd+1(σ) :=

∞⋃
n=1

C
(n)
d+1(σ).

With the above notation in mind, we can apply the universal approximation theorem [15, Theorem 3], stated
as follows:

11

Theorem 5.1. If σ ∈ Cm(R) is nonconstant and bounded, then Cd+1 is uniformly m-dense on compact sets
in Cm(Rd+1). In particular, for all f ∈ Cm(Rd+1), all compact subsets K ⊂ Rd+1, and any ε > 0, there exists
φ = φ(f,K, ε) ∈ Cd+1 such that ∥f − φ∥Cm(K) < ε.

As is standard, we use the definition

∥f∥Cm(K) := max
|α|≤m

sup
x∈K
|Dαf(x)|.

In the implementation in Section 6, we take σ(y) = tanh(y), a typical choice of activation function that is
smooth, nonconstant, and bounded and therefore satisfies all the criteria of Theorem 5.1. Note also that with
this choice of σ, any element of Cd+1(σ) is smooth (as a linear combination of smooth functions), ensuring that
any φ ∈ Cd+1(σ) has Lipschitz-continuous first derivative. See [18] for further justification of this choice of
activation function in terms of the approximation guarantees that it brings.

With the above background in mind, we move towards approximating solutions to the HJB equation for the
MFCP using the DGM. Recall that we aim to approximate solutions to the following HJB equation, which
describes the value function for the MFCP.

− ∂tV (t,m) +
∑
i∈JdK

miH
i(t,m,DiV (t,m)) = 0,

V (T,m) =
∑
i∈JdK

mig
i(m),

where (DiV (t,m))j = ∂mj−miV (t,m) as above. Throughout this section, we use the notation C1,1([0, T]× Sd)
to denote (continuously-differentiable) functions that have Lipschitz-continuous first derivatives; see [3] for a
more thorough discussion of this class of functions as they relate to the HJB equation in Equation (7). Through
assumptions (A) – (C) in [3], we have the following useful properties for proving convergence of DGM to the
solution of the HJB equation.

(1) Under assumption (A) in [3], the Hamiltonian in Equation (7) is Lipschitz continuous in all three argu-
ments. Specifically, we have that∣∣∣∣∣∣

∑
i∈JdK

miH
i(t1,m1, z1)−

∑
i∈JdK

miH
i(t2,m2, z2)

∣∣∣∣∣∣ ≤ L|(t1 − t2,m1 −m2, z1 − z2)|

≤ L(|t1 − t2|+ |m1 −m2|+ |z1 − z2|)

for some constant L > 0, where | · | denotes the Euclidean norm. In fact, we only need the following,
which also follows from the assumptions presented in [3]: for each i ∈ JdK and fixed (t,m) ∈ [0, T] × Sd,
the map p 7→ Hi(t,m, p) is Lipschitz continuous with common Lipschitz constant L > 0.

Proof. By the definition of the Hamiltonian provided in [3], we have that

Hi(t,m, p)−Hi(t,m, p′) = max
a∈A

(−⟨Qi,•(t, a,m), p⟩ − f(t, i, a,m))−max
a∈A

(−⟨Qi,•(t, a,m), p′⟩ − f(t, i, a,m))

≤ max
a∈A
|−⟨Qi,•(t, a,m), p⟩+ ⟨Qi,•(t, a,m), p′⟩|

= max
a∈A
|⟨Qi,•(t, a,m), p′ − p⟩|

≤ max
a∈A
|Qi,•(t, a,m)||p′ − p|

≤ C|p′ − p|

by applying the Cauchy–Schwarz inequality in the penultimate line. In the last line, we note that under
assumption (A), the transition rate Qi,j : [0, T] × A × Sd → R is uniformly continuous and bounded so
that for all i ∈ JdK,

|Qi,•(t, a,m)| =

 d∑
j=1

Qi,j(t, a,m)2

1/2

≤
√
d max
i,j∈JdK

max
(t,a,m)∈[0,T]×A×Sd

Qi,j(t, a,m) := C

is bounded above uniformly for all i ∈ JdK by some constant C > 0. Switching the roles of p and p′ above
completes the proof.

12

(2) By [3, Theorem 9], Equation (7) admits a unique classical solution V ∈ C1,1([0, T]× Sd).

Finally, recall that the original DGM algorithm aims to minimize the L2-error of the approximate solution to
the PDE in question. Specifically, DGM learns an approximator φ(t,m; θ), parametrized by θ, by minimizing
the L2-error of the HJB equation:

L(φ) :=

∥∥∥∥∥∥−∂tφ(t,m; θ) +
∑
i∈JdK

miH
i(t,m,Diφ(t,m; θ))

∥∥∥∥∥∥
2

2,[0,T]×Sd,ν1

+ ∥φ(T,m; θ)−
∑
i∈JdK

mig
i(m)∥22,Sd,ν2

.

Above, ν1 and ν2 are probability densities on [0, T]×Sd and Sd respectively. Furthermore, we show below that
by utilizing the uniform error, given by

L̃(φ) = max
(t,m)∈[0,T]×Sd

∣∣∣∣∣∣−∂tφ(t,m; θ) +
∑
i∈JdK

miH
i(t,m,Diφ(t,m; θ))

∣∣∣∣∣∣+ max
m∈Sd

∣∣∣∣∣∣φ(T,m; θ)−
∑
i∈JdK

mig
i(m)

∣∣∣∣∣∣ ,
we can obtain the desired convergence result. With the ultimate goal of showing that a two-layer neural
network can approximate the value function V (t,m) on [0, T] × Sd arbitrarily well in the uniform norm by
taking n sufficiently large, we first show that following intermediate result, which holds for both the original
and the modified DGM loss functions. For simplicity below, we define the operator L by

L[φ](t,m) := −∂tφ(t,m) +
∑
i∈JdK

miH
i(t,m,Diφ(t,m; θ)).

The following theorem presents our main existence result, establishing the existence of a sequence of two-layer
neural networks that can make either the original or modified DGM loss arbitrarily small.

Theorem 5.2. Let σ ∈ C1(R) be bounded and nonconstant. For every ε > 0, there exist constants K =
K(d, T, C) > 0 and K̃ = K̃(d, T, C) > 0, where d is the dimension of the simplex Sd, T is the finite time
horizon of the mean field control problem, and C is the Lipschitz constant of the Hamiltonian in Equation (7),
such that for some φ ∈ Cd+1(σ), the L2-error satisfies L(φ) ≤ Kε2 and L̃(φ) ≤ K̃ε.

Proof. Note that ΩT := [0, T] × Sd is a compact set in Rd+1. Thus, by Theorem 5.1 above, we know that for
the unique solution V ∈ C1,1(ΩT) to Equation (7) and any ε > 0, there exists φ ∈ Cd+1(σ) such that

sup
(t,m)∈ΩT

|V (t,m)− φ(t,m; θ)|+ sup
(t,m)∈ΩT

|∂tV (t,m)− ∂tφ(t,m; θ)|+ sup
(t,m)∈ΩT

|∇mV (t,m)−∇mφ(t,m; θ)| < ε

(26)

For such φ ∈ Cd+1(σ), the Lipschitz continuity of the Hamiltonian in Equation (7), we observe that

∫
ΩT

∣∣∣∣∣∣
∑
i∈JdK

miH
i(t,m,Diφ(t,m; θ))−

∑
i∈JdK

miH
i(t,m,DiV (t,m))

∣∣∣∣∣∣
2

dν1(t,m)

=

∫
ΩT

∣∣∣∣∣∣
∑
i∈JdK

mi(H
i(t,m,Diφ(t,m; θ))−Hi(t,m,DiV (t,m)))

∣∣∣∣∣∣
2

dν1(t,m)

≤ d
∑
i∈JdK

∫
ΩT

∣∣mi(H
i(t,m,Diφ(t,m; θ))−Hi(t,m,DiV (t,m)))

∣∣2 dν1(t,m)

≤ dC2
∑
i∈JdK

∫
ΩT

|Diφ(t,m; θ)−DiV (t,m)|2dν1(t,m). (27)

Above, we apply the Cauchy–Schwarz inequality in the second-to-last line above and note that |mi| ≤ 1 for
any m ∈ Sd. Now, for each i ∈ JdK and any (t,m) ∈ ΩT , observe that by denoting the standard basis of Rd by
{ei}i∈JdK, we have that

|Diφ(t,m; θ)−DiV (t,m)|2 =
1

2

d∑
j=1

|(∇mφ(t,m; θ)−∇mV (t,m)) · (ej − ei)|2

13

≤ 1

2

d∑
j=1

|∇mV (t,m)−∇mφ(t,m; θ)|2|ej − ei|2

≤ d|∇mV (t,m)−∇mφ(t,m; θ)|2,

again by applying the Cauchy–Schwarz inequality. In turn, we can bound (27) by

dC2
∑
i∈JdK

∫
ΩT

|Diφ(t,m; θ)−DiV (t,m)|2dν1(t,m) ≤ d3C2

∫
ΩT

|∇mV (t,m)−∇mφ(t,m; θ)|2dν1(t,m)

≤ Kε2

for some positive constant K = K(d, T, C) > 0 by the construction of φ. Finally, because the value function V
satisfies L[V](t,m) = 0 for all (t,m) ∈ ΩT (in addition to the terminal condition of Equation (7)), this allows
us to conclude that

L(φ) = ∥L[φ](t,m)∥22,ΩT ,ν1
+ ∥φ(T,m; θ)−

∑
i∈JdK

mig
i(m)∥22,Sd,ν2

= ∥L[φ](t,m) − L[V](t,m)∥22,ΩT ,ν1
+ ∥φ(T,m; θ)− V (T,m)∥22,Sd,ν2

≤ 2

∫
ΩT

∣∣∣∣∣∣
∑
i∈JdK

miH
i(t,m,Diφ(t,m; θ))−

∑
i∈JdK

miH
i(t,m,DiV (t,m))

∣∣∣∣∣∣
2

dν1(t,m)

+ 2

∫
ΩT

|∂tV (t,m)− ∂tφ(t,m; θ)|2 dν1(t,m)

+

∫
Sd

|φ(T,m; θ)− V (T,m)|2dν2(m)

≤ Kε2

by applying the Cauchy–Schwarz inequality yet again, taking K larger if necessary, and noting that the estimate
in (26) provides bounds on the two remaining terms in the above expression.

On the other hand, the same estimate as in (27) shows that

max
(t,m)∈ΩT

∣∣∣∣∣∣miH
i(t,m,Diφ(t,m; θ))−

∑
i∈JdK

miH
i(t,m,DiV (t,m))

∣∣∣∣∣∣ ≤ C max
(t,m)∈ΩT

|Diφ(t,m; θ)−DiV (t,m)||

≤ K̃|∇mV (t,m)−∇mφ(t,m; θ)|

for some K̃ = K̃(d, T, C) > 0. Consequently, we observe that

L̃(φ) = max
(t,m)∈ΩT

|L[φ](t,m)|+ max
m∈Sd

∣∣∣∣∣∣φ(T,m; θ)−
∑
i∈JdK

mig
i(m)

∣∣∣∣∣∣
= max

(t,m)∈ΩT

|L[φ](t,m) − L[V](t,m)|+ max
m∈Sd

|φ(T,m; θ)− V (T,m)|

≤ max
(t,m)∈ΩT

∣∣∣∣∣∣miH
i(t,m,Diφ(t,m; θ))−

∑
i∈JdK

miH
i(t,m,DiV (t,m))

∣∣∣∣∣∣
+ max

(t,m)∈ΩT

|∂tV (t,m)− ∂tφ(t,m; θ)|

+ max
m∈Sd

|φ(T,m; θ)− V (T,m)|

≤ K̃ε

by applying the approximation result from (26) and taking K̃ > 0 larger if necessary.

14

Remark 5.3. In the case of the original DGM L2-error, the measures ν1 and ν2, regardless of the densities
that they correspond to, are defined as probability measures on [0, T]×Sd and Sd respectively. Thus, the above
result is independent of the choice of densities ν1 and ν2, as we simply use the bounds∫

ΩT

|∂tV (t,m)− ∂tφ(t,m; θ)|2 dν1(t,m) ≤ ε2ν1(ΩT) = ε2

and ∫
Sd

|φ(T,m; θ)− V (T,m)|2dν2(m) ≤ ε2ν2(Sd) = ε2

respectively.

The following proposition, which also relates to the existence of an approximating sequence of neural networks,
utilizes the same universal approximation theorem as Theorem 5.2. In particular, we can obtain a sequence of
neural networks that satisfies a corresponding sequence of PDE with a measurable error term that uniformly
converges to zero.

Proposition 5.4. There exists a sequence of neural networks φn ∈ C1,1([0, T]×Sd) such that φn → V uniformly
as n→∞, where V is the unique classical solution to Equation (7). Additionally, each φn satisfies

− ∂tφ
n(t,m) +

∑
i∈JdK

miH
i(t,m,Diφn(t,m)) = εn(t,m),

φn(T,m) =
∑
i∈JdK

mig
i(m) + εn(T,m).

(28)

for some measurable εn : [0, T]× Sd → R such that ∥εn∥∞ → 0 as n→∞.

Proof. From Theorem 5.1, we know that for any n ∈ N, there exists a neural network φn ∈ Cd+1(σ) ⊂
C1,1([0, T]× Sd) such that (26) holds for ε = n−1. Thus, it immediately follows that ∥φn − V ∥C([0,T]×S)d) → 0
as n → ∞, yielding a sequence φn of neural networks that converges uniformly to V , the classical solution to
Equation (7). Now, for (t,m) ∈ [0, T)× Sd, define εn : [0, T]× Sd → R by

εn(t,m) := −∂tφn(t,m) +
∑
i∈JdK

miH
i(t,m,Diφn(t,m)). (29)

For m ∈ Sd, instead define

εn(T,m) := φn(T,m)−
∑
i∈JdK

mig
i(m).

By construction, φn satisfies the PDE in (28). Furthermore, because each εn : [0, T]×Sd → R is continuous on
both [0, T)× Sd and {T} × Sd, it is evidently measurable.

Finally, to see that ∥εn∥∞ → 0 as n → ∞, we reuse many of the estimates from the proof of Theorem 5.2. In
particular, we can write

εn(t,m) = −∂tφn(t,m) +
∑
i∈JdK

miH
i(t,m,Diφn(t,m))

= ∂tV (t,m)− ∂tφ
n(t,m) +

∑
i∈JdK

mi

[
Hi(t,m,Diφn(t,m))−Hi(t,m,DiV (t,m))

]
,

for (t,m) ∈ [0, T) × Sd, using the fact that V solves Equation (7). By the fact that m ∈ Sd and the Lipschitz
continuity of Hi for each i ∈ JdK, we again have that∣∣∣∣∣∣
∑
i∈JdK

mi

[
Hi(t,m,Diφn(t,m))−Hi(t,m,DiV (t,m))

]∣∣∣∣∣∣ ≤
∑
i∈JdK

∣∣Hi(t,m,Diφn(t,m))−Hi(t,m,DiV (t,m))
∣∣

15

≤ C
∑
i∈JdK

|Diφn(t,m)−DiV (t,m)|

≤ 2dC|∇mV (t,m)−∇mφn(t,m)|

Thus, we have that for all (t,m) ∈ [0, T)× Sd

|εn(t,m)| ≤ 2dC|∇mV (t,m)−∇mφn(t,m)|+ |∂tV (t,m)− ∂tφ
n(t,m)| ≤ 2dC

n
+

1

n

by the construction of φn via (26). Similarly, at the terminal time t = T , observe that

|εn(T,m)| =

∣∣∣∣∣∣φn(T,m)−
∑
i∈JdK

mig
i(m)

∣∣∣∣∣∣ = |φn(T,m)− V (T,m)| ≤ 1

n
.

Thus, it follows that ∥εn∥∞ → 0 as n→∞ as claimed.

Remark 5.5. The above sequence of neural networks satisfies several properties based on its construction.
Specifically, note that by the converse of the Arzelà–Ascoli theorem, {φn}n∈N is uniformly bounded and equicon-
tinuous on [0, T]× Sd. In fact, the construction of φn implies that it is uniformly bounded with respect to the
standard norm on C1([0, T]× Sd).

Remark 5.6. Below, it will be useful to instead consider the HJB equation for x ∈ Ŝd, where

Ŝd :=

(x1, . . . , xd−1) ∈ Rd−1 : xj ≥ 0 for all j = 1, . . . , d− 1,

d−1∑
j=1

xj ≤ 1

 .

Then, the simplex Sd can be expressed as

Sd =

(x, x−d) : x ∈ Ŝd, x
−d = 1−

d−1∑
j=1

xj

 .

In turn, any function v ∈ C1(Sd) is such that v̂ ∈ C1(Ŝd), where v(x, x
−d) = v̂(x) and∇xv̂(x) = (∂xj v̂(x))

d−1
j=1 sat-

isfies ∂xj
v̂(x) = ∂mj−md

v(m). With this modification, the solution to Equation (7) can be written V (t, x, x−d) =

V̂ (t, x), where V̂ ∈ C1,1(Ŝd) is the unique solution to the modified HJB equation

− ∂tV̂ (t, x) +
∑

i∈Jd−1K

xiĤ
i(t, x,∇xV̂ (t, x)) + x−dĤd(t, x,∇xV̂ (t, x)) = 0,

V̂ (T, x) =
∑

i∈Jd−1K

xig
i(x, x−d) + x−dgd(x, x−d).

(30)

Above, the modified Hamiltonians take inputs in [0, T]× Ŝd × Rd−1 and are defined by

Ĥi(t, x, p) = Hi(t, x, x−d, p1 − pi, . . . , pd−1 − pi,−pi) and Ĥd(t, x, p) = Hd(t, x, x−d, p, 0).

As shown in [3], Equation (30) has a unique solution V̂ ∈ C1,1([0, T] × Ŝd). Additionally, Ŝd is a compact

subset of Rd−1, allowing us to apply the universal approximation theorem exactly as above, now on Ŝd. By the
definitions of the modified Hamiltonians (in terms of the original Hamiltonians), we can also apply the exact

same argument as above to obtain a result equivalent to Theorem 5.2 on Ŝd. In particular, observe that for all
i ∈ Jd− 1K and p, p′ ∈ Ŝd, we have that

|Ĥi(t, x, p)− Ĥi(t, x, p′)|2 = |Hi(t, x, x−d, p1 − pi, . . . , pd−1 − pi,−pi)−Hi(t, x, x−d, p′1 − p′i, . . . , p
′
d−1 − p′i,−p′i)|2

≤ C2

d−1∑
j=1

((pj − pi)− (p′j − p′i))
2 + (pi − p′i)

2

16

≤ C2

2

d−1∑
j=1

(pj − p′j)
2 + (2(d− 1) + 1)(pi − p′i)

2

≤ C2(2(d− 1) + 1)

d−1∑
j=1

(pj − p′j)
2 + (pi − p′i)

2

= D2|p− p′|2,

where D2 = 2C2(2(d − 1) + 1). This shows that Ĥi is Lipschitz continuous in p with Lipschitz constant
D ≥ C > 0 for i ∈ Jd− 1K, and we similarly observe that

|Ĥd(t, x, p)− Ĥd(t, x, p′)| = |Hd(t, x, x−d, p, 0)−Hd(t, x, x−d, p′, 0)| ≤ C|p− p′| ≤ D|p− p′|

so that Ĥi is Lipschitz continuous in p, with common Lipschitz constant D > 0, for all i ∈ JdK. From this, the

proof of a modified version of Theorem 5.2, now on [0, T] × Ŝd, can proceed exactly as before. Note that the

original value function defined on the simplex can be recovered via V (t, x, x−d) = V̂ (t, x) for x ∈ Ŝd.

For the remainder of the paper, we only consider the modified DGM algorithm with uniform loss.

5.2 Convergence of Neural Network Approximators to Value Function

We now discuss convergence of a sequence of neural network approximators φn to V , the unique classical solution
of the HJB equation in Equation (7). With the ultimate goal of establishing uniform convergence of the neural
network approximators φn to the value function V , we rely on the theory of viscosity solutions to first-order
nonlinear PDE. This powerful theory, developed by Crandall, Evans, and Lions in the 1980s for the explicit
purpose of approaching HJB equations (which often lack classical, differentiable solutions) [10], will allow us
to relate the neural network approximators φn(t,m; θ) to the value function V via a sequence of first-order
nonlinear PDE. Then, using a version of the comparison principle for viscosity solutions, we obtain the desired
convergence.

First, however, we must reframe the problem in terms of Equation (30), which possesses a unique classical

solution V̂ ∈ C1,1([0, T] × Ŝd). Recall that Ŝd ⊂ Rd−1 is the preimage of the simplex in Rd under the chart
introduced in Remark 5.6. Working with Equation (30) rather than Equation (7) allows us to cite results from

the theory of viscosity solutions that require the domain of the relevant PDE to be open; note that Int(Ŝd) is
an open subset of Rd−1 whereas Sd has empty interior in Rd. Additionally, the following result demonstrates
that the convergence result on Ŝd translates to Sd without any issues.

Proposition 5.7. Assume that V̂ ∈ C([0, T] × Ŝd) and φ̂n ∈ C([0, T] × Ŝd) are such that ∥V̂ − φ̂n∥∞ → 0 as

n→∞. Then, ∥V −φn∥∞ → 0 as n→∞, where V, φn ∈ C([0, T]×Sd) are given by V (t, x, x−d) = V̂ (t, x) and
φn(t, x, x−d) = φ̂n(t, x) for all (t, x, x−d) ∈ [0, T]× Sd and all n ∈ N.

Proof. This is a simple consequence of the definition of Ŝd. Indeed, if ∥V̂ − φ̂n∥∞ → 0 as n → ∞. Then, for
any ε > 0, we have that for all n ∈ N sufficiently large,

sup
(t,x)∈[0,T]×Ŝd

|V̂ (t, x)− φ̂n(t, x)| < ε.

Consequently for all n ∈ N sufficiently large, we have that

sup
(t,x,x−d)∈[0,T]×Sd

|V (t, x, x−d)− φn(t, x, x−d)| = sup
(t,x,x−d)∈[0,T]×Sd

|V̂ (x)− φ̂n(t, x)|

= sup
(t,x)∈[0,T]×Ŝd

|V̂ (t, x)− φ̂n(t, x)|

< ε.

This means precisely that ∥V − φn∥∞ → 0 as n→∞.

17

As a consequence of the above proposition, it suffices to show the uniform convergence of a sequence of neural
network approximators φ̂n to the unique classical solution V̂ of Equation (30) on Ŝd, as we can then recover

uniform convergence on the simplex. From Remark 5.6, we also know that Theorem 5.2 holds on Ŝd, yielding
the existence of a sequence of neural networks {φ̂n(t, x; θ)}n∈N such that L̃(φ̂n) → 0 as n → ∞. In turn, each
network φ̂n(t, x; θ) satisfies its own “perturbed” PDE, of the form{

L[φ̂n](t, x) = εn(t, x) (t, x) ∈ [0, T]× Ŝd,

φ̂n(T, x; θ) = Ĝn(x) x ∈ Ŝd,
(31)

where Ĝn(x) := φ̂n(T, x; θ) for all x ∈ Ŝd. For notational simplicity, we take

Ĝ(x) :=
∑

i∈Jd−1K

xig
i(x, x−d) + x−dgd(x, x−d)

in this section to denote the terminal condition of the HJB equation on Ŝd, and the operator L is given by

L[φ̂](t, x) := −∂tφ̂(t, x) +
∑

i∈Jd−1K

xiĤ
i(t, x,∇xφ̂(t, x)) + x−dĤd(t, x,∇xφ̂(t, x)).

Denoting Ω̂T := [0, T]× Ŝd as in the previous section, Theorem 5.2 above implies that Equation (31) satisfies

max
(t,x)∈[0,T]×Ŝd

|εn(t, x)|+ max
x∈Ŝd

∣∣∣Ĝn(x)− Ĝ(x)
∣∣∣→ 0

as n→∞. With this context in mind, we state the primary convergence result of this section.

Theorem 5.8. The family of neural network approximators {φ̂n(t, x; θ)}n∈N satisfying Equation (31) converges

uniformly to V̂ ∈ C1,1([0, T]× Ŝd), the unique classical solution of Equation (30), in the sense that

sup
(t,x)∈[0,T]×Ŝd

|φ̂n(t, x)− V̂ (t, x)| → 0

as n→∞.

To prove the above theorem, we argue via the comparison principle for viscosity solutions to (7) presented in

[3]. To this end, we require a suitable definition of viscosity solutions of Equation (30) on Ŝd.

Definition 5.9. A function v̂ ∈ C((0, T)× Int(Ŝd)) is:

(i) a viscosity subsolution of Equation (30) if for any φ̂ ∈ C1((0, T)× Int(Ŝd)),

−∂tφ̂(t0, x0) +
∑

i∈Jd−1K

xiĤ
i(t0, x0,∇xφ̂(t0, x0)) + x−dĤd(t0, x0,∇xφ̂(t0, x0)) ≤ 0

for every local maximum (t0, x0) ∈ (0, T)× Int(Ŝd) of v̂ − φ̂ on (0, T)× Int(Ŝd).

(ii) a viscosity supersolution of Equation (30) if for any φ̂ ∈ C1((0, T)× Int(Ŝd)),

−∂tφ̂(t0, x0) +
∑

i∈Jd−1K

xiĤ
i(t0, x0,∇xφ̂(t0, x0)) + x−dĤd(t0, x0,∇xφ̂(t0, x0)) ≥ 0

for every local minimum (t0, x0) ∈ (0, T)× Int(Ŝd) of v̂ − φ̂ on (0, T)× Int(Ŝd).

(iii) a viscosity solution of Equation (30) if v̂ is both a viscosity subsolution and viscosity supersolution.

Remark 5.10. When viscosity solutions are introduced in [3], the author also allows for test functions on

[0, T) × Sd (resp. [0, T) × Ŝd), noting that [0, T) × Sd (resp. [0, T) × Ŝd) is no longer an open subdomain of
Rd+1 (resp. Rd). However, in order to utilize [10, Theorem 3.3], the standard comparison principle for viscosity
solutions, we must consider viscosity solutions on open subdomains of Rd. As noted in [3], it is also not imme-
diately clear that a classical solution to Equation (7) is a viscosity solution if the latter is defined on a closed set.

We could alternatively cite the comparison principle from [3, Theorem 3.4] that utilizes the definition of vis-
cosity solutions on closed sets presented therein. However, in order to utilize the clearly-presented stability
properties of viscosity solutions under uniform limits presented in [10, 20], we opt for the standard definition in
Definition 5.9.

18

In order to establish Theorem 5.8, we proceed using a standard comparison principle argument for viscosity
solutions that also leverages the fact that V̂ ∈ C1,1([0, T]× Ŝd) is the unique viscosity solution to Equation 30
from [3].

Proof of Theorem 5.8. For each n ∈ N, we may define an operator

Ln[φ̂](t, x) := −∂tφ̂(t, x) +
∑

i∈Jd−1K

xiĤ
i(t, x,∇xφ̂(t, x)) + x−dĤd(t, x,∇xφ̂(t, x))− εn(t, x),

corresponding to the sequence of PDE described in (31). Because Ln[φ̂] depends only on the derivatives of φ̂
(and not on φ̂ itself), we observe that Ln is proper in the sense of [10]. This fact also ensures that the technical
conditions preceding the comparison principle [10, Theorem 3.3] are satisfied.

Now, note that max(t,x)∈[0,T]×Ŝd
|εn(t, x)| → 0 as n → ∞, meaning that εn converges uniformly to zero on

[0, T]× Ŝd. Now, for each n ∈ N, define Tn : [0, T]× Ŝd × R× Rd−1 → R by

Tn(t, x, p0, p) := −p0 +
∑

i∈Jd−1K

xiĤ
i(t, x, p) + p−dĤd(t, x, p)− εn(t, x).

We then have that Tn converges uniformly on [0, T]× Ŝd × R× Rd−1 to

T (t, x, p0, p) := −p0 +
∑

i∈Jd−1K

xiĤ
i(t, x, p) + p−dĤd(t, x, p).

These definitions are motivated by the fact that Equation (7) can be written succinctly as

T (t, x, ∂tφ̂,∇xφ̂) = 0,

while Equation (31) is given by

Tn(t, x, ∂tφ̂,∇xφ̂) = 0

for each n ∈ N. Now, following [10, Remark 6.3], we note that because φ̂n is a classical solution (and therefore

a viscosity solution) to the equation Tn(t, x, ∂tφ̂,∇xφ̂) = 0 on (0, T)× Int(Ŝd), then

V (t, x) := lim
j→∞

sup{φ̂n(s, y) : n ≥ j, (t, x) ∈ [0, T)× Ŝd, |(s, y)− (t, x)| ≤ 1/j}

is a viscosity subsolution to the equation T (t, x, ∂tφ̂,∇xφ̂) = 0, as we have that

T (t, x, p0, p) = lim inf
n→∞

Tn(t, x, p, p0).

On the other hand, we also observe that

V (t, x) := lim
j→∞

inf{φ̂n(s, y) : n ≥ j, (t, x) ∈ [0, T)× Ŝd, |(s, y)− (t, x)| ≤ 1/j}

is a viscosity supersolution to the equation T (t, x, ∂tφ̂,∇xφ̂) = 0 by the same reasoning. By construction,

observe that V ≤ V on [0, T) × Ŝd. Note also that both V and V are well-defined on {0} × ∂Ŝd by their con-
struction. However, by the comparison principle presented in [10, Theorem 3.3], the fact that V is a viscosity

supersolution and V is a viscosity subsolution is sufficient to conclude that V ≤ V on [0, T) × Ŝd, observing

that the comparison principle still holds the closure of the domain (0, T)× Int(Ŝd).

In particular, V = V is a viscosity solution. As shown in [3, Theorem 9], Equation (7) has a unique vis-

cosity solution V̂ , showing that V = V = V̂ . Now, [10, Remark 6.4] implies that limn→∞ φ̂n(t, x) = V̂ (t, x)

uniformly on [0, T)× Ŝd.

Finally, note that we also have that

max
x∈Ŝd

∣∣∣Ĝn(x)− Ĝ(x)
∣∣∣ = max

x∈Ŝd

∣∣∣φ̂n(T, x)− V̂ (T, x)
∣∣∣→ 0,

from the construction of the modified DGM loss, allowing us to conclude uniform convergence of φ̂n → V̂ on
the entire region [0, T]× Ŝd as claimed.

19

Remark 5.11. At this point, we can clarify the reasons for the modification to the DGM algorithm made
in Section 3. The authors introducing the DGM algorithm in [5] formulated the L2-error in (22) because of
the natural connection between the class of equations that they considered and convergence in L2. A key
step in the proof of their analogue to Theorem 5.8 involves obtaining a uniform bound on {φn(t,m; θ)}n∈N in
L∞(0, T ;L2(Ω))∩L2(0, T ;W 1,2

0 (Ω)), where Ω is the open domain on which the PDE is considered. In turn, this
arises from an energy bound on quasilinear parabolic equations such as the one presented in [21], or in more
generality in [22]. However, such a bound only holds for equations of the form

∂tu− div(a(t, x, u,∇u)) = H(t, x,∇u) (t, x) ∈ (0, T)× Ω,

u = 0 (t, x) ∈ (0, T)× ∂Ω,

u(0, x) = u0(x) x ∈ Ω.

that satisfy the Leray-Lions conditions. Namely, there must exist α > 0 such that

α|ξ|p ≤ a(t, x, p, ξ) · ξ

for all ξ ∈ Rd and some 1 < p < d. Clearly, this fails if a is identically zero, even though our HJB equation
otherwise satisfies the structure conditions in [22]. Following the discussion in Section 4, it may be possible
to obtain a similar uniform bound by bounding the networks and their weights without losing any universal
approximation guarantees, but we do not currently consider this approach.

Translating the argument in [5] to our context is also complicated by the fact that the class of quasilinear
parabolic PDE for which they prove convergence of the DGM possesses a standard notion of weak solutions
that, via the dominated convergence theorem, cooperates with convergence in L2. In the case of HJB equa-
tions, however, viscosity solutions take the place of weak solutions and instead behave nicely with respect to
uniform convergence. Thus, we require that εn → 0 uniformly on [0, T]× Ŝd in Equation (31), but the original
formulation of the DGM with L2-error only implies convergence of the error term in L2.

Finally, [5] only concludes uniform convergence of the neural network approximators to the true solution of
the PDE after imposing additional assumptions of uniform boundedness and equicontinuity on the neural net-
works. Although this may be a reasonable assumption to include, we find that the modified DGM algorithm
and the theory of viscosity solutions provide a more direct route to uniform convergence; see Section 5.3 for a
more detailed discussion of the equicontinuity of neural network approximators and the potential issues with
such an approach.

5.3 Equicontinuity of Neural Network Approximators

This section presents necessary conditions for the equicontinuity of neural network approximators, which would
allow us to instead replicate the argument of [5] and obtain uniform convergence of the approximators to the
true value function using the original DGM algorithm with L2-error.

The primary condition that allows for equicontinuity is boundedness of the weights in the hidden layer(s)
of the neural network used to approximate some continuous function. As shown in [16], a general universal
approximation theorem for continuous, bounded functions such as Theorem 5.1 above still holds for neural net-
works with bounded weights. In particular, it is likely possible to approximate V ∈ C1,1([0, T]×Sd) (in C1) via a
sequence of neural networks with bounded weights. In turn, we may apply the equicontinuity results established
in [23], obtaining an equicontinuous sequence of neural network approximators to the value function V . Finally,
the argument of [5] provides for uniform boundedness, allowing us to apply the Arzelà–Ascoli theorem to obtain
uniform convergence. This modification is stated more precisely below.

Theorem 5.12. Take Cd+1(σ) as defined above and consider any function f ∈ Cm(K) for a compact set
K ⊂ Rd+1. Let M > 0 be such that supx∈K |f(x)| ≤ M . Now, let C′

d+1(σ) denote the subset of networks in

Cd+1(σ) with weights θ = (β1, . . . , βn, α1,1, . . . , αd+1,n, c1, . . . , cn) ∈ R2n+n(d+1) satisfying |αj,i| ≤M , |ci| ≤M ,
and |βi| ≤ M for all i = 1, . . . , n and j = 1, . . . , d+ 1. Then, for any m ∈ N, there exists a sequence of neural
networks {φ}k∈N with an increasing number of hidden units such that ∥f − φk∥Cm(K) < 1/k for all k ∈ N.
Furthermore, the sequence {φk(t,m; θ)}k∈N is equicontinuous with respect to the inputs (t,m) ∈ [0, T]× Sd.

Proof. As shown in [16], any continuous, bounded functions can be uniformly approximated by neural networks
with bounded weights. Assuming that we can in fact obtain a universal approximation result for a neural

20

networks in C′
d+1, [23, Proposition 8] shows that the weights of any network φ ∈ C′

d+1 with n hidden units such
that ∥f − φ∥C(K) < 1 must have weights satisfying∣∣∣∣∣

n∑
i=1

βi

∣∣∣∣∣ ≤M + 1.

In turn, the above condition allows us to apply [23, Theorem 20], which states that the subset of C′
d+1(σ)

satisfying the above summability condition is equicontinuous with respect to the input space. Specifically, this
implies that the sequence {φk(t,m; θ)}k∈N is equicontinuous with respect to the inputs (t,m) ∈ [0, T] × Sd as
claimed.

In order to utilize Theorem 5.12 in our context, however, we require a suitable version of the universal approx-
imation theorem for neural networks with bounded weights. For the time being, the modified DGM algorithm
and Theorem 5.8 provide a workaround for this issue, which we hope to resolve in a future work.

6 Numerical Results

In this section, we present numerical results for DGM applied to a simple example case of the MFCP, as
presented in [3, Example 2]. In particular, we consider the quadratic running cost

f(t, i, α,m) =
1

2

∑
j ̸=i

ci,jα
2
i,j + f i

0(m),

with f i
0(m) := mi and {ci,j}i,j∈JdK ∈ Rd×d a cost matrix that encodes the cost of transitioning from state i to

state j for i ̸= j. Finally, we consider the linear terminal condition given by

gi(m) = mi

for i ∈ JdK. With this choice of terminal cost, we obtain the terminal condition

V (T,m) = G(m) =
∑
i∈JdK

m2
i .

In this simple example, the Hamiltonian is explicitly given

Hi(t,m, z) =
∑
j ̸=i

(
−a∗(−zj)zj −

1

2
(a∗(−zj))2

)
− f i

0(m),

where

a∗(s) =

0 s ≤ 0,

s 0 ≤ s ≤M,

M s ≥M.

Recall from Assumption (B) that M > 0 is some constant such that A = [0,M]d, where A is the action space for
the MFCP. Under this construction, all of the convexity and Lipschitz continuity constraints in Assumptions (A)
– (C) are satisfied.

For this example setup, we compare the performance of DGM with the original L2-error from [5] and the
modified algorithm with a uniform error metric presented above. Additionally, we explore the dependence of
the performance of Algorithm 1 on the number of samples drawn from [0, T]×Sd×Sd. Finally, we demonstrate
that the modified DGM algorithm scales well with dimension, providing numerical tests up to dimension d = 500.

The plots in Figure 1 and Figure 2 below demonstrate the value functions approximated by DGM with L2

and uniform error respectively. Figures 3 and 4 contain the corresponding loss curves. Both the original and
modified DGM algorithms perform similarly, but both are susceptible to local minima using the LSTM architec-
ture outlined in [5]. In particular, after initially large decreases in training loss, both the original and modified

21

algorithms fall into local minima in their respective loss functions. However, given sufficient training time and
appropriate hyperparameter tuning of the SGD optimizer and learning rate schedule used, both algorithms can
closely approximate the true terminal condition of the example problem as demonstrated in Figure 5.

Time (t)

0.02.55.07.510.012.515.017.520.0m1

0.0
0.2

0.4
0.6

0.8
1.0

V(t,m
1 , 1−

m
1)

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Approxima e Value Func ion, Trained wi h L2 Loss

Figure 1: Approximate value function, L2-error.

Time (t)

0.02.55.07.510.012.515.017.520.0m1

0.0
0.2

0.4
0.6

0.8
1.0

V(t,m
1 , 1−

m
1)

6

8

10

12

14

16

18

20

App oximate Value Function, T ained with Unifo m Loss

Figure 2: Approximate value function, uniform error.

Figure 3: L2 training loss, d = 2. Figure 4: Uniform training loss, d = 2.

22

Figure 5: Approximate and true terminal conditions for both DGM algorithms.

In Figure 6 below, we see that the uniform DGM algorithm is far more stable as the number of samples M
increases as expected. Unless otherwise specified, all numerical tests are carried out with M = 100, as the
tradeoff between stability and runtime becomes worse as the number of samples exceeds M = 100.

Finally, in Table 1, we demonstrate the scalability of the DGM algorithm, implemented in TensorFlow and
run with TPU acceleration. By exploiting TensorFlow’s built-in vectorization and TPU acceleration function-
ality, the DGM algorithm scales well to dimension d = 500, with roughly linear increases in runtime past
dimension d = 100. By runtime, we refer to the time that it takes to train the DGM network with uniform loss
for 40 epochs, with 10 SGD steps in each epoch, and M = 100 samples at each step. All numerical experiments
were run a 2019 MacBook Pro 1.4 GHz Quad-Core Intel Core i5 with 8 GB RAM, and all code can be found
in the GitHub repository for this paper.

Dimension d Total Training Time (s) PDE Loss Terminal Loss Combined Loss

2 438.94 1.9422 2.3989 4.3411
5 432.13 0.3080 1.079 1.3874
10 427.05 0.1280 0.3490 0.4770
20 365.42 0.1882 0.1004 0.2887
50 429.75 0.0617 0.0323 0.0941

100 469.09 0.0220 0.0135 0.0355
200 610.24 0.0095 0.0039 0.0134
500 1621.6 0.0004 0.0011 0.0015

Table 1: Uniform DGM training times and losses as dimension d increases.

23

https://github.com/jakehofgard/mfcp

Figure 6: Dependence of loss on number of samples M for uniform DGM.

24

References

[1] René Carmona and François Delarue. Forward-backward stochastic differential equations and controlled
McKean-Vlasov dynamics. Ann. Probab., 43(5):2647–2700, 2015.

[2] Daniel Lacker. Limit theory for controlled McKean-Vlasov dynamics. SIAM J. Control Optim., 55(3):1641–
1672, 2017.

[3] Alekos Cecchin. Finite state N -agent and mean field control problems. ESAIM: COCV, 27:31, 2021.

[4] Vassili N. Kolokoltsov. Nonlinear markov games on a finite state space (mean-field and binary interactions),
Apr 2012.

[5] Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving partial
differential equations. Journal of Computational Physics, 375:1339–1364, 2018.

[6] Weinan E, Jiequn Han, and Arnulf Jentzen. Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations. Commun. Math.
Stat., 5(4):349–380, 2017.

[7] Huyên Pham. Feynman-Kac representation of fully nonlinear PDEs and applications. Acta Math. Vietnam.,
40(2):255–269, 2015.

[8] Côme Huré, Huyên Pham, and Xavier Warin. Deep backward schemes for high-dimensional nonlinear
PDEs. Math. Comp., 89(324):1547–1579, 2020.

[9] Huyên Pham. Continuous-time stochastic control and optimization with financial applications, volume 61
of Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin, 2009.

[10] Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions. User’s guide to viscosity solutions of second
order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27(1):1–67, 1992.

[11] Franco Scarselli and Ah Chung Tsoi. Universal approximation using feedforward neural networks: A survey
of some existing methods, and some new results. Neural Networks, 11(1):15–37, 1998.

[12] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366, 1989.

[13] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control Signals Systems,
2(4):303–314, 1989.

[14] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Universal approximation of an unknown mapping
and its derivatives using multilayer feedforward networks. Neural Networks, 3(5):551–560, 1990.

[15] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2):251–
257, 1991.

[16] M. Stinchcombe and H. White. Approximating and learning unknown mappings using multilayer feedfor-
ward networks with bounded weights. In 1990 IJCNN International Joint Conference on Neural Networks,
pages 7–16 vol.3, 1990.

[17] H. N. Mhaskar and Charles A. Micchelli. Degree of approximation by neural and translation networks with
a single hidden layer. Adv. in Appl. Math., 16(2):151–183, 1995.

[18] Tim De Ryck, Samuel Lanthaler, and Siddhartha Mishra. On the approximation of functions by tanh
neural networks. Neural Networks, 143:732–750, 2021.

[19] Denis Belomestny, Alexey Naumov, Nikita Puchkin, and Sergey Samsonov. Simultaneous approximation
of a smooth function and its derivatives by deep neural networks with piecewise-polynomial activations.
Neural Networks, 161:242–253, 2023.

[20] M. G. Crandall, L. C. Evans, and P. L. Lions. Some properties of viscosity solutions of Hamilton-Jacobi
equations. Transactions of the American Mathematical Society, 282(2):487–502, 1984.

25

[21] Maria Michaela Porzio. Existence of solutions for some “noncoercive” parabolic equations. Discrete and
Continuous Dynamical Systems, 5(3):553 – 568, 1999.

[22] Martina Magliocca. Existence results for a Cauchy–Dirichlet parabolic problem with a repulsive gradient
term. Nonlinear Analysis, 166:102–143, 2018.

[23] P. Chandra and Y. Singh. Feedforward sigmoidal networks - equicontinuity and fault-tolerance properties.
IEEE Transactions on Neural Networks, 15(6):1350–1366, 2004.

[24] Olav Kallenberg. Foundations of modern probability. Probability and its Applications (New York). Springer-
Verlag, New York, second edition, 2002.

[25] W.H. Fleming and H.M. Soner. Controlled Markov Processes and Viscosity Solutions. Stochastic Modelling
and Applied Probability. Springer New York, 2006.

26

A Derivations of HJB Equations

In this appendix, we present the derivations of the HJB equations for both the N -agent optimization problem
and the MFCP, first introduced in Section 2. We begin with the HJB equation in Proposition 2.1, corresponding
to the standard N -agent optimization problem.

Proof of Proposition 2.1. Recall the definition of the generator of a continuous-time Markov chain; if φ :
{1, . . . , d}N → R and Tt,hφ(x) := E[φ(Xt+h) | Xt = x] denotes the Feller semigroup of the process, then
we define the infinitesimal generator of the process by

LN,β
t φ(x) := lim

h↓0

Tt,hφ(x)− φ(x)

h
. (32)

We can now explicitly compute the limit in (32) given the dynamics in (1). In particular, we observe that

Tt+hφ(x) = E[φ(Xh) | Xt = x] =

N∑
k=1

∑
j ̸=xk

[
Qxk,j(h, βk(h,x), µ

N
x)h+ o(h)

]
φ([x−k, j]).

Assuming that φ : {1, . . . , d}N → R is bounded, the fact that o(h)/h→ 0 as h ↓ 0 now implies that

LN,β
t φ(x) = lim

h↓0

Tt,hφ(x)− φ(x)

h
=

N∑
k=1

∑
j ̸=xk

Qxk,j(t, βk(t,x), µ
N
x)
[
φ([x−k, j])− φ(x)

]
=

N∑
k=1

⟨Qxk,•(t, βk(t,x, µ
N
x)),∆kφ(x)⟩

=
1

N

N∑
k=1

⟨Qxk,•(t, βk(t,x, µ
N
x)), N∆kφ(x)⟩.

From Assumption (A), we have that the transition rate Qi,j is continuous on [0, T] × A × Sd, allowing us to
pass the limit inside the transition rate above.

The next step is the key step that allows us to apply Itô’s formula, or rather, Dynkin’s formula. In par-
ticular, recall that if (Xt)t∈[0,T] is a Feller process (as is the case here) and LN,β

0 φ is well-defined, then the
process given by

Mφ
t := φ(Xt)− φ(X0)−

∫ t

0

LN,β
0 φ(Xs)ds.

is a martingale adapted to the canonical filtration of the process (Xt)t∈[0,T]; see [24, Chapter 17], for instance.
Now, if vN denotes the value function of the N -agent stochastic control problem, we can now apply Dynkin’s

formula (noting that (MvN

t)t∈[0,T] is now a martingale even if (Xt)t∈[0,T] may not be) to see that

vN (t+ h,Xt+h) = vN (t,Xt) +

∫ t+h

t

(
∂vN

∂t
+ LN,β

t vN
)
(s,Xs)ds.

Taking conditional expectations, we find that

E[vN (t+ h,Xt+h) | Xt = x] = vN (t,x) + E

[∫ t+h

t

(
∂vN

∂t
+ LN,β

t vN
)
(s,Xs)ds

∣∣∣∣ Xt = x

]
. (33)

Here, we remark that the above expression from Itô’s formula may also contain a local martingale that disap-
pears upon taking expectations.

Now, define for any control β′, we observe that for all 0 ≤ t < r ≤ T ,

vN (t,x) = inf
β∈AN

JN (t,β,x) ≤ JN (t,β′,x)

27

=
1

N

N∑
k=1

E

[∫ T

t

f(s,Xk
s , β

′
k(s,X

k
s), µ

N
s)ds+ g(XT

k , µ
N
T)

∣∣∣∣ Xt = x

]

=
1

N

N∑
k=1

E

[∫ T

r

f(s,Xk
s , β

′
k(s,X

k
s), µ

N
s)ds+ g(XT

k , µ
N
T)

∣∣∣∣ Xt = x

]

+
1

N

N∑
k=1

E
[∫ r

t

f(s,Xk
s , β

′
k(s,X

k
s), µ

N
s)ds

∣∣∣∣ Xt = x

]

= E[JN (r,β′,Xr) | Xt = x] +
1

N

N∑
k=1

E
[∫ r

t

f(s,Xk
s , β

′
k(s,X

k
s), µ

N
s)ds

∣∣∣∣ Xt = x

]
by the Markov property and the tower property. Now, assume that the control β′ is after time r so that
JN (r,β′,Xr) = vN (r,Xr). We then obtain, with r = t+ h,

vN (t,x) ≥ E[vN (t+ h,Xt+h) | Xt = x] +
1

N

N∑
k=1

E

[∫ t+h

t

f(s,Xk
s , β

′
k(s,X

k
s), µ

N
s)ds

∣∣∣∣ Xt = x

]
. (34)

Applying the law of iterated expectation and plugging this inequality into the inequality in (33), we see that

E

[∫ t+h

t

1

N

N∑
k=1

f(s,Xk
s , β

′
k(s,X

k
s), µ

N
s) +

(
∂vN

∂t
+ LN,β

t vN
)
(s,Xs)ds

]
≥ 0.

Dividing by h and taking the limit as h ↓ 0 as in [9], we obtain via the mean value theorem that

0 ≥ −∂vN

∂t
(t,x) +

(
−LN,β

t vN (t,x)− 1

N

N∑
k=1

f(t, xk, βk(t,x), µ
N
t)

)

= −∂vN

∂t
(t,x) +

1

N

(
−

N∑
k=1

⟨Qxk,•(t, βk(t,x, µ
N
x)), N∆kvN (t,x)⟩ −

N∑
k=1

f(t, xk, βk(t,x), µ
N
t)

)
,

with equality when the optimal control β⋆ is chosen. As a result, we have that

0 = −∂vN

∂t
(t,x) + sup

β∈AN

(
−

N∑
k=1

⟨Qxk,•(t, βk(t,x, µ
N
x)), N∆kvN (t,x)⟩ −

N∑
k=1

f(t, xk, βk(t,x), µ
N
t)

)
.

Thus, by the preceding definition of the Hamiltonian, we therefore conclude that the value function vN satisfies

−∂vN

∂t
(t,x) +

1

N

N∑
k=1

Hxk(t, µN
x , N∆kvN (t,x)) = 0.

Additionally, because the terminal cost is given by 1
N

∑N
k=1 g(X

T
k , µ

N
T), the associated terminal condition for

the above system of ODEs must be

vN (T, x) =
1

N

N∑
k=1

g(xk, µ
N
x).

The above derivation yields the HJB equation for the N -agent optimization problem. Uniqueness and the stated
regularity then follow from [3, Proposition 2.3].

Next, we derive the HJB equation for reformulation of the N -agent problem, presented in Proposition 2.2.

Proof of Proposition 2.2. The generator of this Markov chain is instead given by

LN,αN

t v(m) = N
∑

i,j∈JdK

miQi,j(t, αN (t, i,m),m)

[
v(m+

1

N
(δj − δi)− v(m)

]
, (35)

28

but the HJB equation for the new value function V N (t,m) can be derived precisely as above. Consequently, the
same reasoning as in the proof of Proposition 2.1 (albeit with a different generator) yields the HJB equation

0 = −∂V N

∂t
(t,m) + sup

αN∈Ad

−LN,αN

t V N (t,m)−
∑
i∈JdK

mif(t, i, a
i,m)

= −∂V N

∂t
(t,m) +

∑
i∈JdK

miH
i(t,m,DN,iV N (t,m))

in terms of the Hamiltonian defined in [3]. Finally, we have the following terminal condition, coming from the
terminal cost term in (15):

V N (T,m) =
∑
i∈JdK

mig
i(m).

Again, uniqueness and the stated regularity are shown in [3, Proposition 2.6].

Finally, it remains to derive the HJB equation for the MFCP itself, as stated in Proposition 2.3.

Proof of Proposition 2.3. In Section 2, we reduced the MFCP to a deterministic control problem. Thus, we
may apply the dynamic programming principle (DPP) as usual. If the value function of the MFCP problem is
given by

V (t, µ) = inf
α

J(t, α, µ),

then the DPP (as stated and derived for the deterministic control problem in [25]) states that

V (t, µt) = inf
α

∫ t+h

t

∑
i∈JdK

f(s, i, αi(s), µs)µ
i
sds+ V (t+ h, µt+h)

 .

Above, the control α is such that α : [0, T] → Ad. Subtracting V (t, µt) from both sides and dividing by h, we
obtain

0 = inf
α

 1

h

∫ t+h

t

∑
i∈JdK

f(s, i, αi(s), µs)µ
i
sds+

V (t+ h, µt+h)− V (t, µt)

h

Taking the limit as h ↓ 0 then yields

0 = inf
a∈Ad

∑
i∈JdK

f(t, i, a, µt)µ
i
t +

∂V

∂t
(t, µt) +∇mV (t, µt) ·

d

dt
µt(t, a)

=

∂V

∂t
(t, µt) + inf

a∈Ad

∑
i∈JdK

µi
tf(t, i, a, µt) +

∑
i,j∈JdK

µi
tQij(t, a

i, µt)∂mj−miV (t, µt)

 ,

where in the last step, we utilize the dynamics of the system from above and recall that on the interior of the
simplex, only derivatives in the directions (ej − ei)i,j∈JdK are considered in [3]. This last step is justified in [3,

Section 2], where the simplex is represented as a (d − 1)-dimensional submanifold of Rd via the obvious local
chart. Rearranging and notationally replacing µt with m, we obtain the HJB equation

−∂V

∂t
(t,m) + sup

a∈Ad

−∑
i∈JdK

mif(t, i, a,m)−
∑

i,j∈JdK

miQij(t, a
i,m)∂mj−mi

V (t,m)

 = 0.

Finally, using more notation from [3], we write Di
jV (t,m) = ∂mj−miV (t,m) so that the we can write the second

term above in terms of the relevant pre-Hamiltonian:

−
∑
i∈JdK

mif(t, i, a,m)−
∑

i,j∈JdK

miQij(t, a
i,m)∂mj−mi

V (t,m) =
∑
i∈JdK

mi

(
−⟨Qi,•(t, a,m), DiV (t,m)⟩ − f(t, i, a,m)

)
.

29

In turn, we arrive at the final HJB equation for the MFCP, given by

−∂V

∂t
(t,m) +

∑
i∈JdK

miH
i(t,m,DiV (t,m)) = 0,

from the definition of the Hamiltonian associated with the above pre-Hamiltonian. As before, the associated
boundary condition comes directly from the terminal cost of the problem, and is given by

V (T,m) =
∑
i∈JdK

mig
i(m).

This concludes the derivation of the HJB equation for the MFCP. We now obtain uniqueness and the regularity
of V from Theorem 2.4.

30

	Introduction
	The N-Agent Optimization and Mean Field Control Problems
	N-agent Optimization Problem
	Mean Field Control Problem
	Assumptions for the MFCP
	Convergence, Existence, and Uniqueness results for the MFCP

	Deep Galerkin Method (DGM)
	Original Algorithm
	Modified Algorithm

	Universal Approximation with Two-Layer Feedforward Neural Networks
	Convergence of the DGM
	Approximation Via Two-Layer Neural Networks
	Convergence of Neural Network Approximators to Value Function
	Equicontinuity of Neural Network Approximators

	Numerical Results
	References
	Derivations of HJB Equations

