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Abstract. Answering a question of Wright, we show that spheres
of any radius are always connected on the curve graph of surfaces
Σ2,0,Σ1,3, and Σ0,6, and the union of two consecutive spheres is
always connected for Σ0,5 and Σ1,2.

1. Introduction

1.1. Main results. Let Σ = Σg,n be a connected surface with genus g
and n punctures. We define the complexity of Σ to be ξ(Σ) = 3g−3+n.
We say Σ is

• exceptional if ξ(Σ) = 1, i.e. (g, n) ∈ {(1, 1), (0, 4)},
• low complexity if ξ(Σ) = 2, i.e. (g, n) ∈ {(1, 2), (0, 5)},
• medium complexity if ξ(Σ) = 3, i.e. (g, n) ∈ {(2, 0), (1, 3), (0, 6)},
• high complexity if ξ(Σ) ≥ 4.

Let CΣ be the curve graph of Σ. For any vertex c ∈ CΣ and radius
r, let

Sr = Sr(c) = {a ∈ CΣ : d(a, c) = r}
be the sphere of radius r about c in CΣ. We will say that a sphere is
connected if the induced subgraph is connected.

The main results to be proved in this paper are as follows:

Theorem 1.1. Let Σg,n be low complexity. Fix center c ∈ CΣ. Then
for all r > 0 we have that Sr(c) ∪ Sr+1(c) is connected.

Theorem 1.2. Let Σg,n be medium complexity. Fix center c ∈ CΣ.
Then for all r > 0 we have that Sr(c) is connected.

1.2. Previous results. The main contribution of this paper is to
strengthen the results of the following theorem from [Wri23].

Theorem 1.3 ([Wri23], Theorem 1.1). For all r > 0 and connected
surface Σ,

(1) If Σ has high complexity, then Sr is connected.
(2) If Σ has medium complexity, then Sr ∪ Sr+1 is connected.
(3) If Σ has low complexity, then Sr ∪ Sr+1 ∪ Sr+2 is connected.
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2 CONNECTIVITY IN LOW AND MEDIUM COMPLEXITY

Our results answer [Wri23, Question 1.7] and prove Theorem 1.1 and
Theorem 1.2. These results are now sharp, as Sr is never connected in
low complexity [Wri23, Corollary 6.12].

1.3. Organization of the proof. In both the low and medium com-
plexity cases, we utilize the same proof strategy and preliminary results
from [Wri23] about the connectivity of spheres. Then we modify the
paths in order to stay closer to Sr by using the Bounded Geodesic
Image Theorem from [MM00] as our primary tool.

Our main contribution in the low complexity case is to construct
improved “preliminary paths” (discussed in Section 3.4), and show this
adjustment allows the argument to ultimately yield paths contained in
two spheres instead of three.

In the medium complexity case, Wright’s argument included an in-
duction on radius, for which it was crucial to use essentially non-
separating curves. We assume Wright’s result and no longer need to
argue by induction, so we are able to use curves which fail to be es-
sentially non-separating to produce a variant of Wright’s paths which
stay in a single sphere.

1.4. Motivation. This paper continues the tradition of examining the
relationship between fine and coarse geometry on the curve graph. As
an example, the Bounded Geodesic Image Theorem uses coarse infor-
mation to deduce a precise result about the vertices on this geodesic.

In particular, we can also gain a better understanding of the coarse
geometry of the curve graph as a whole by understanding the fine re-
sults. This idea is exemplified in [Wri23] where the linear connectivity
of the Gromov boundary (coarse) follows from an analysis on the con-
nectivity of Sr (fine).

Our paper also develops techniques to perform constructions directly
in the curve graph rather than spaces of lamination or Teichmüller
space.

1.5. Acknowledgements. We would like to thank our mentor Alex
Wright for his guidance on this paper and acknowledge that this work
was supported by NSF grant DMS-2142712.

2. Subsurface projections and Bounded Geodesic Image
Theorem

In this section we introduce one of our key tools, the Bounded Ge-
odesic Image Theorem, and recall some basic facts about subsurface
projections.
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Let U be a subsurface of Σ and α ∈ CΣ. We say curve α cuts U if
it is not possible to isotope α out of U . We define C(Σ, U) to be the
subgraph of CΣ whose vertices are all essential non-peripheral curves
that cut U , and keeping all possible edges. Note that CU is contained
in C(Σ, U).

Given a subsurface U of Σ, there exists a subsurface projection map,
denoted ρU , from the set of curves cutting U to finite subsets of curves
on U . We will want to recall some key facts about ρU :

(1) The values of ρU are uniformly bounded in diameter.
(2) The map ρU is 6-Lipschitz i.e.

d(ρU(α), ρU(β)) ≤ 6d(α, β).

(3) Define

dU(α, β) = diam(ρU(α) ∪ ρU(β)).

It can easily be verified that dU satisfies the triangle inequality.

The following theorem is known as the Bounded Geodesic Image
Theorem:

Theorem 2.1. [MM00, Theorem 3.1] Let U be a subsurface of Σ.
There exists M > 0 such that if dU(α, β) ≥ M then every geodesic
from α to β in CΣ contains a curve not cutting U .

From here on, M will refer to the constant required for Theorem 2.1,
which can be taken independent of Σ and U [Web15].

3. Low complexity

Throughout this section, we deal with Σ = Σ0,5. Assume that a
center vertex c ∈ CΣ0,5 is fixed and let Sr = Sr(c).

3.1. Organization. The outcome of this section is to prove Theo-
rem 1.1. We do so by first taking arbitrary a ∈ Sr and b, b′ ∈ Sr+1 ∩
S1(a) and constructing a preliminary path, described in Proposition 3.7,
connecting b to b′. We then offer Lemma 3.20 to serve a similar function
as [Wri23, Lemma 6.16] to push this path up to Sr ∪ Sr+1 using Dehn
twists, by observing that vertices on this preliminary path only enter
S3(a) when they are close to Sr−1 ∪ Sr. This adjustment is sufficient
in proving the path stays within two consecutive spheres rather than
three.
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3.2. Definitions.

Definition 3.1. A vertex x ∈ Sr has unique backtracking if it has a
unique neighbour in Sr−1.

Definition 3.2. A vertex x ∈ Sr has no sidestepping if it does not
have any neighbour in Sr.

Definition 3.3. A vertex x ∈ Sr is forward facing if it has unique
backtracking and no sidestepping.

3.3. Pentagons in CΣ0,5. It is important to note that CΣ contains no
cycles of length 3 or 4 [Wri23, Lemma 6.1]. Thus we often study paths
on CΣ by using pentagons.

Definition 3.4. Label the 5 punctures of Σ with the elements of Z/5Z.
The 5 tuple of curves (a1, a2, a3, a4, a5) is a pentagon if for i ∈ Z/5Z:

(1) ai goes around punctures i and i+ 1,
(2) the intersection number between ai, ai+1 and ai, ai−1 is 2, and
(3) the intersection number between ai, ai+2 and ai, ai−2 is 2.

To obtain a 5-cycle from a pentagon with vertices (a1, a2, a3, a4, a5),
we can traverse the curves in the following order: (a1, a3, a5, a2, a4). We
use the following lemmas to find pentagons in CΣ0,5.

Lemma 3.5. [Wri23, Lemma 6.5] Suppose a1, a3 ∈ Sr−1 are adjacent.
Then there are curves a2, a3, a5 ∈ Sr ∪ Sr+1 such that (a1, a2, a3, a4, a5)
is a pentagon.

Lemma 3.6. [Wri23, Lemma 6.6] Suppose a1 ∈ Sr−1 and a3, a4 ∈
Sr ∩ S1(a1) have i(a3, a4) = 2. Then there exist a2, a5 ∈ Sr ∪ Sr+1 such
that (a1, a2, a3, a4, a5) is a pentagon.

3.4. Preliminary path construction.

Proposition 3.7. Suppose a ∈ Sr and b, b′ ∈ Sr+1∩S1(a). Then there
exists a path γ from b to b′ contained in S1(a)∪S2(a)∪S3(a) such that
the following hold for all vertices v on the path γ:

(1) If v ∈ S3(a), then d(v, (Sr−1 ∪ Sr) ∩ S1(a)) ≤ 2.
(2) If v ∈ S1(a), then v ∈ Sr+1.

First we recall the following lemmas:

Lemma 3.8. [Wri23, Lemma 6.10] For any a ∈ CΣ0,5 and x ∈ S1(a),
x is forward facing with respect to a.

Lemma 3.9. [Wri23, Lemma 6.13] For any a ∈ CΣ0,5, S1(a)∪ S2(a) is
connected.
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Lemma 3.10. [Wri23, Lemma 6.14] Suppose x ∈ Sr is forward facing
and y, y′ ∈ S1(x) ∩ Sr+1. Then there exists a path from y to y′ in
(Sr+1 ∪ Sr+2) ∩B2(x).

Lemma 3.10 gives us the following corollary.

Corollary 3.11. Suppose xj−1, xj, xj+1 is a path in S1(a)∪S2(a) with
xj ∈ S1(a). Then there exists a path from xj−1 to xj+1 contained in
(S2(a) ∪ S3(a)) ∩B2(xj).

Proof. This statement is exactly the conclusion of Lemma 3.10 with a
as the center, x = xj, y = xj−1, and y′ = xj+1, so we only need to check
the conditions are satisfied.

First we see xj is forward facing with respect to a because xj ∈ S1(a)
by assumption and by Lemma 3.8, every vertex in S1(a) is forward
facing with respect to a.

Second we have xj−1, xj+1 ∈ S1(xj) because xj−1, xj, xj+1 is a path
by assumption.

Third we observe xj−1, xj+1 ∈ S1(a)∪ S2(a) and S1(a) is totally dis-
connected because CΣ0,5 has no triangles. Now xj−1, xj+1 are adjacent
to xj ∈ S1(a). Thus, xj−1, xj+1 ̸∈ S1(a) so xj−1, xj+1 ∈ S2(a). This
verifies the conditions of Lemma 3.10. □

Now we have the tools to construct the preliminary path as stated
in Proposition 3.7.

Proof of Proposition 3.7. By Lemma 3.9, S1(a) ∪ S2(a) is connected.
Since b, b′ ∈ S1(a) this implies there exists a path b = x0, ..., xl = b′

contained in S1(a)∪S2(a). Now for each xj ∈ (Sr−1∪Sr)∩S1(a) replace
the path segment xj−1, xj, xj+1 with the path xj−1 = x0

j , x
1
j , ..., x

k
j =

xj+1 for some k ≥ 0 given by Corollary 3.11. Call this path γ. First
we observe by construction that γ has no vertex in (Sr−1 ∪Sr)∩S1(a).

Now we check that γ satisfies the conclusions of Proposition 3.7 with
each following sublemma:

Sublemma 3.12. The path γ is contained in S1(a) ∪ S2(a) ∪ S3(a).

Proof. By construction the vertices in γ are either in S1(a) ∪ S2(a) or
in (S2(a) ∪ S3(a)) ∩B2(xj) for some j ≤ l. □

Sublemma 3.13. If v is a vertex in γ and v ∈ S3(a), then d(v, (Sr−1∪
Sr) ∩ S1(a)) ≤ 2.

This establishes part (1) of Proposition 3.7.

Proof. The original path b = x0, ..., xl = b′ is contained in S1(a)∪S2(a)
so if v ∈ S3(a), then v must have been obtained from replacing the
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segment xj−1, xj, xj+1 with the path xj−1 = x0
j , x

1
j , ..., x

k
j = xj+1 for

some k ≥ 0. In particular, v = xi
j for some i ≤ k. By Corollary 3.11,

v = xi
j ∈ (S2(a) ∪ S3(a)) ∩ B2(xj) so d(v, xj) ≤ 2. Additionally, xj ∈

(Sr−1 ∪ Sr) ∩ S1(a). Thus d(v, (Sr−1 ∪ Sr) ∩ S1(a)) ≤ 2. □

Sublemma 3.14. The only vertices in γ which are in S1(a) are also
in Sr+1.

This establishes part (2) of Proposition 3.7.

Proof. Let v be a vertex on γ such that v ∈ S1(a). Now a ∈ Sr so
v ∈ Sr−1 ∪ Sr ∪ Sr+1. But by construction γ has no vertices in (Sr−1 ∪
Sr)∩S1(a) because any such vertices in the original path were replaced
by a path in S2(a) ∪ S3(a). Thus, v ∈ Sr+1. □

Since we have verified the conclusions of Proposition 3.7 for arbitrary
a ∈ Sr and b, b′ ∈ S1(a) ∩ Sr+1, this finishes the proof. □

3.5. Pushing the path up. Now we will apply Dehn twists to the
path obtained in Proposition 3.7 to make sure it lies in Sr ∪ Sr+1.

We first fix some important notations.

Remark 3.15. Suppose a, b ∈ CΣ0,5. Let Ta(b) denote the left Dehn
twist of b around a. Henceforth, we will refer to left Dehn twists as
just Dehn twists.
In addition, we use da to denote the distance between the projections

to the curve graph of the annular subsurface associated to an element
a of CΣ0,5.

We will make use of the following basic fact.

Proposition 3.16. Suppose a, b are vertices in CΣ0,5 such that d(a, b) ≥
2. Then

(1) lim
N→∞

da(b, T
N
a (b)) = ∞.

Lemma 3.17. Suppose a ∈ Sr and d(b, a) ≥ 2. Then there exists
a positive integer N(a, b), such that for all N ′ ≥ N(a, b), we have
da(T

N ′
a (b), c) ≫ M .

Proof. For all integers m, we have

(2) da(T
m
a (b), c) ≥ da(T

m
a (b), b)− da(b, c),

where da(b, c) is a constant. Thus, the lemma follows from Proposi-
tion 3.16. □

Remark 3.18. For the rest of Section 3.5, we will continue to use
N(a, b) to denote the constant in Lemma 3.17. Note that N(a, b) de-
pends on a, b.
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Corollary 3.19. Suppose a ∈ Sr and d(b, a) ≥ 2. If N ′ ≥ N(a, b),
then

(3) d(c, TN ′

a (b)) ≥ r.

Proof. By Lemma 3.17 and Theorem 2.1, any geodesic from TN ′
a (b) to c

must contain a vertex that lies inB1(a). This implies that d(TN ′
a (b), c) ≥

r. □

3.6. Main lemma.

Lemma 3.20. Suppose a ∈ Sr and b, b′ ∈ Sr+1 ∩ S1(a). Then there
exists a path b, x1, · · · , xl, b

′ with four properties:

(1) 1 ≤ d(xi, a) ≤ 3.
(2) r ≤ d(xi, c) ≤ r + 2.
(3) If d(xi, c) = r, then d(xi, a) = 2, there exists a unique vertex

z adjacent to both xi and a, z ∈ Sr−1, and z is the unique
backtrack of xi.

(4) If d(xi, c) = r and if a has unique backtracking, then xi has no
sidestepping.

Remark 3.21. This lemma improves [Wri23, Lemma 6.16] in that our
lemma also shows that d(xi, c) ≤ r + 2.

Proof. We first construct a path and then prove that it satisfies the
four listed properties.
We begin by considering the path α that Proposition 3.7 gives us.

Let b, y1, · · · , yl, b′ be the vertices of the path. By Lemma 3.17, for all i
such that d(yi, a) ≥ 2, there exists a positive integer N(a, yi) such that
if N ′ ≥ N(a, yi), then da(T

N ′
a (yi), c) ≫ M . Take N = maxi(N(yi, a)).

Let γ be the path obtained by applying TN
a to α. The vertices of γ are

then

(4) b, TN
a (y1), · · · , TN

a (yl), b
′.

Let xi = TN
a (yi) for all 1 ≤ i ≤ l.

Proposition 3.7, as well as the fact that Dehn twists preserve distance
(Remark 3.15), verifies property (1) above.

Now we verify property (2). We first claim that for all i, d(xi, c) ≥ r.
Let us fix some i. If d(yi, a) ≥ 2, then Corollary 3.19 implies that
d(xi, c) = d(TN

a (yi), c) ≥ r. On the other hand, if d(yi, a) ≤ 1, then
the assumptions on the path α imply that yi ∈ Sr+1. So d(xi, c) =
d(TN

a (yi), c) = d(yi, c) ≥ r.
Next, we claim that for all i, d(xi, c) ≤ r + 2. This follows from

the observation that if yi ∈ S3(a), then by assumptions on the path α,



8 CONNECTIVITY IN LOW AND MEDIUM COMPLEXITY

there exists zi ∈ S1(a) ∩ (Sr ∪ Sr−1) such that d(yi, zi) ≤ 2. But since
Dehn twists preserve distances,

(5) d(xi, zi) = d(TN
a (yi), T

N
a (zi)) = d(yi, zi).

And so d(xi, zi) ≤ 2. So

(6) d(xi, c) ≤ d(xi, zi) + d(c, zi) ≤ r + 2.

This finishes the verification of property (2).
To verify property (3), we suppose d(xi, c) = r. Recall that by

definition, xi = TN
a (yi). If d(yi, a) = 1, then by construction of α,

we have yi ∈ Sr+1. Since TN
a fixes yi, we conclude that xi = TN

a (yi)
belongs to Sr+1. This contradicts the assumption that d(xi, c) = r. So
we must have d(yi, a) ≥ 2.

And so by Lemma 3.17 and Theorem 2.1, every geodesic from xi =
TN
a (yi) to c must pass through B1(a). Let ζ be one such geodesic and

z be one vertex in ζ ∩B1(a). Since d(xi, a) ≥ 2, z must belong to Sr−1,
implying that d(xi, a) = 2. By construction, z is a vertex adjacent
to both xi and z. It is the unique such vertex because CΣ0,5 has no
quadrilaterals.

To finish verifying property (3), it remains to show that z is the
unique backtrack of xi. Let z

′ be a backtrack of xi. There is a geodesic
ζ̃ connecting z to c that passes through z′. By the Bounded Geodesic
Image Theorem, ζ̃ must intersect B1(a). Since z′ ∈ Sr−1(c), z

′ must
in fact belong to B1(a). Because Σ0,5 has no quadrilaterals, z and z′

must coincide. This verifies property (3).
To verify property (4), assume a has unique backtracking and xi ∈

Sr(c). Suppose for the sake of contradiction that s is a sidestep of xi.
We note that s is not adjacent to a because otherwise xi, s, a, z would
form a quadrilateral, a contradiction. s is also not equal to a, since
otherwise xi, a, z form a triangle, a contradiction.
Let z be the unique neighbor of xi and a constructed during the

verification of property (3). During the verification of property (3), we
proved that d(yi, a) ≥ 2. So by Lemma 3.17, da(xi, c) ≫ M . Addition-
ally, since d(xi, s) = 1, by the coarse-Lipschitz property of da, we have
da(xi, s) is bounded. So by the triangle inequality, da(s, c) ≫ M . By
Theorem 2.1, we know that every geodesic from s to c passes through
B1(a).

Let η be one such geodesic. Since s ∈ Sr and s is not adjacent
or equal to a, we have η ∩ B1(a) ⊂ Sr−1. But since a has unique
backtracking, the only vertex in B1(a) ∩ Sr−1 is z. This shows that η
must pass through z. But then s, z, xi form a triangle, a contradiction.
This proves property (4). □
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3.7. Proving Theorem 1.1. Before we begin the proof of Theorem 1.1,
we will need to make use of the following lemmas.

Lemma 3.22. Suppose a ∈ Sr has unique backtracking and b, b′ ∈ Sr+1

are both adjacent to a. Then there exists a path from b to b′ entirely
in (Sr+1 ∪ Sr+2) ∩B4(a).

Proof. Consider the path from b to b′ given by Lemma 3.20. Each
vertex on this path that lies in Sr is forward facing and also in B2(a).
Forward facing vertices have no side stepping, so this path has no
adjacent vertices in Sr. Thus we can apply Lemma 3.10 to each vertex
in Sr to obtain the appropriate path in (Sr+1 ∪ Sr+2) ∩B4(a). □

Lemma 3.23. Suppose a ∈ Sr and b, b′ ∈ Sr+1 are both adjacent to a.
Then there exists a path from b to b′ entirely in (Sr+1 ∪ Sr+2)∩B6(a).

Proof. Lemma 3.20 gives a path from b to b′ in (Sr ∪ Sr+1 ∪ Sr+2) ∩
B3(a) such that each vertex on this path that lies in Sr has unique
backtracking and is in B2(a). By Lemma 3.5 we can modify the path
at each pair of adjacent vertices that lie in Sr to obtain a new path
in (Sr ∪ Sr+1 ∪ Sr+2) ∩ B4(a) with the additional assumption that no
two adjacent vertices are in Sr. Now we can apply Lemma 3.22 to each
vertex in Sr to obtain the appropriate path in (Sr+1∪Sr+2)∩B6(a). □

Next, we want to recall [Wri23, Lemma 2.1] for the sufficient condi-
tions for connectivity of spheres:

Lemma 3.24. [Wri23, Lemma 2.1] Let Γ be an arbitrary graph and
fix c ∈ Γ. Fix w > 0, and let r > 0 be arbitrary. Suppose the following
conditions hold:

(1) For every z ∈ Sr(c) and x, y ∈ Sr+1(c) ∩ B1(z) there exists a
path

x = x0, x1, . . . , xl = y

with
xi ∈ Sr+1(c) ∪ · · · ∪ Sr+w(c)

for 0 ≤ i ≤ l.
(2) For every adjacent pair x, y ∈ Sr(c) there exists a path

x = x0, x1, . . . , xl = y

with
xi ∈ Sr+1(c) ∪ · · · ∪ Sr+w(c)

for 0 < i < l.

Then Sr(c) ∪ Sr+1(c) ∪ · · · ∪ Sr+w−1(c) is connected.

Lemma 3.25. In CΣ0,5, for all r ≥ 0 the following hold:
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(1) For every z ∈ Sr and x, y ∈ Sr+1 ∩B1(z) there exists a path

x = x0, . . . , xl = y

with
xi ∈ (Sr+1 ∪ Sr+2) ∩B6(z)

for 0 ≤ i ≤ l.
(2) For every adjacent pair x, y ∈ Sr there exists a path

x = x0, x1, x2, x3, x4 = y

with
xi ∈ Sr+1 ∪ Sr+2

for 0 < i < 4.

Proof. The first claim is Lemma 3.23 and the second claim is Lemma 3.5.
□

Proof of Theorem 1.1. Since the curve graphs CΣ0,5 and CΣ1,2 for the
low complexity surfaces are isomorphic, it suffices to prove Theorem 1.1
for CΣ0,5. The result follows immediately from combining Lemma 3.24
and Lemma 3.25. □

4. Medium complexity

Throughout this section we assume Σ is medium complexity. Again
we fix a center vertex c and let Sr = Sr(c). In this section we upgrade
the results from [Wri23, Theorem 1.1] to prove Theorem 1.2: Sr is
connected for medium complexity surfaces.

4.1. Organization. We use [Wri23, Theorem 1.1 (2)] that Sr∪Sr+1 is
connected and begin with a path in Sr∪Sr+1. Then we use the definition
O(z), introduced by Wright, as a tool to push the path into Sr+1 by
allowing the path to contain vertices which need not be essentially
non-separating.

4.2. Essentially non-separating curves.

Definition 4.1. A curve on Σ is called a pants curve if it bounds a
genus 0 subsurface with 2 punctures.

Definition 4.2. A curve on CΣ is essentially non-separating if it is
non-separating or a pants curve. A two-component multi-curve α ∪ β
is essentially non-separating if α and β themselves are essentially non-
separating, and either

(1) α ∪ β is non-separating,
(2) at least one of α or β is a pants curve, or
(3) α ∪ β bounds a genus 0 subsurface with 1 puncture.
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For c ∈ CΣ, we can define CcΣ as the subgraph of CΣ whose vertex
set is {c} union all essentially non-separating curves on CcΣ. Disjoint
curves α and β are joined by an edge if either α ∪ β is essentially
non-separating or they have different distances to c.

To fix notation, let Sc
r = Sr ∩ CcΣ.

Remark 4.3. [Wri23, Lemma 5.2] Wright showed that Sc
r coincides

with the sphere of radius r in CcΣ.
We now recall the following results:

Lemma 4.4. Sc
r ∪ Sc

r+1 is connected.

Proof. [Wri23, Proposition 5.4] verifies that the sufficient conditions for
the connectivity of spheres in Lemma 3.24 hold in CcΣ with w = 2. □

Lemma 4.5. [Wri23, Lemma 5.3] Suppose Σ has medium complexity.
For all x ∈ Sr, then either x ∈ Sc

r or there exists x′ ∈ Sc
r ∩ S1(x).

4.3. Definition and properties of O(z). In order to prove Theo-
rem 1.2, we make use of the following definition and prove several of
its properties.

Definition 4.6. For any z ∈ Sc
r , define

O(z) = {a ∈ S1(z) ∩ CcΣ : dU(a, c) > M}
where U is the unique component of Σ−z that is not a pants. Observe
that O(z) ⊆ Sc

r+1.

Recalling [Wri23, Lemma 7.2], we know we can connect any essen-
tially non-separating curve to O(z):

Lemma 4.7. [Wri23, Lemma 7.2] Let z ∈ Sc
r and U = Σ−z. Then for

all N > 0, any x ∈ S1(z)∩Sc
r+1 can be connected to some e ∈ O(z) by a

path in S1(z)∩Sc
r+1. Moreover, e can be taken such that dU(e, c) > N .

Additionally, we will make use of the following lemma:

Lemma 4.8. Let z ∈ Sc
r and a, b ∈ O(z). Then a, b can be connected

by a path contained entirely in Sr+1.

Proof. Let U = Σ − z be the unique connected component that is
not pants. Observe that the subsurface projection ρU(c) is a finite set
with diameter bounded by some constant k (see section 2). Thus there
exists c′ ∈ ρU(c) such that dCΣ(c, c

′) ≤ k. Since a, b ∈ O(z), both
dU(a, c), dU(b, c) ≥ M + 1, so by the triangle inequality,

(7) a, b ∈
∞⋃

r′=M+1+k

Sr′(c
′),
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where each Sr′(c
′) is a sphere in CU . This union is a subgraph of CU .

It is connected because U is low complexity, and so Theorem 1.1 gives
that SM+1+k(c

′)∪SM+2+k(c
′) is connected. Thus we can find a path in

CU
a = p0, . . . , pl = b

such that each dU(pi, c
′) ≥ M +1+ k. Then by the triangle inequality,

dU(pi, c) > M.
Applying Theorem 2.1 for all 0 < i < l, every geodesic from pi to c

must go through z, as this is the only vertex not cutting U because z is
essentially non-separating. For all i, pi lies on U , so d(z, pi) = 1. Since
d(z, c) = r by assumption, d(pi, c) = r + 1 for all i, as desired. □

4.4. Proving Theorem 1.2.

Proof of Theorem 1.2. Suppose x, y ∈ Sr+1 are arbitrary. By Lemma 4.5
we can connect x, y to x′, y′ ∈ Sc

r+1 respectively, so it suffices to find a
path connecting x′, y′ inside Sr+1. By Lemma 4.4, Sc

r∪Sc
r+1 is connected,

so there exists a path x′ = x0, x1, ..., xk = y′ contained in Sc
r ∪ Sc

r+1.
We now make use of a sublemma:

Sublemma 4.9. The path from x′ to y′ above can be taken to have
no two consecutive vertices in Sc

r .

Proof. This follows from [Wri23, Lemma 5.4, part (2)] that for each
xi, xi+1 ∈ Sc

r , there exists a path xi = x0
i , x

1
i , x

2
i = xi+1 such that

x1
i ∈ Sc

r+1. □

By Sublemma 4.9, for each vertex xi in the path from x′ to y′, if
xi ∈ Sc

r , then both xi−1 and xi+1 must be in Sc
r+1. In particular, since

xi−1, xi, xi+1 is a path, we have xi−1, xi+1 ∈ S1(xi) ∩ Sc
r+1.

Now applying Lemma 4.7, to xi, there exists x′
i−1 and x′

i+1 in O(xi)
which can be connected to xi−1 and xi+1 respectively with paths con-
tained in S1(xi)∩Sc

r+1 such that dU(x
′
i−1, c) ≫ M and dU(x

′
i+1, c) ≫ M.

Applying Lemma 4.8, we can connect x′
i−1 and x′

i+1 by a path entirely
in Sr+1. Thus, for consecutive vertices xi−1, xi, xi+1 in the path from
x′ to y′ where xi−1, xi+1 ∈ Sc

r+1 and xi ∈ Sc
r , we can remove xi and

connect xi−1 to xi+1 by a path contained in Sr+1. By Sublemma 4.9
no two consecutive vertices in the path were in Sc

r , so this construction
eliminates all vertices in Sr and results in a path from x′ to y′ contained
in Sr+1 as desired. □
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