
Generating Tetrahedral Mesh for Solving Ion Channel
Simulation Problems Using Finite Element Methods - REU

Report
Yueyang Ding, Mentor: Zhen Chao

July 7, 2023

Abstract

This paper presents a thorough and effective strategy for the construction of ion channel protein
tetrahedral meshes.

When first construct a surface mesh for the ion channel -membrane structure. We transformed
the contours of box surface meshes and incorporated membrane surface mesh points. These steps
help shape tetrahedrons in the membrane region appropriately. We union such box surface with
the membrane’s Gaussian surface constructed by the TMSMesh software to get the surface mesh
of the whole structure. Next, we employ volume mesh generation software, particularly Tetgen,
to establish volume meshes. Afterwards, a crucial part of this project is extracting the membrane
and solvent labels in the membrane area, which we achieve through graph search algorithms. In
our study, we introduce three distinct yet related methods: Breadth First Search (BFS), Two-Step
BFS, and Two-Step BFS utilizing straight walk.

To effectively illustrate our approach, we provide a visual representation of the tetrahedral
mesh generated for three exemplary ion channel proteins.

Our approach, implemented in C++, serves as a valuable tool for addressing ion channel
simulation problems using the finite element method. This research was conducted as part of the
2023 Summer REU program at the University of Michigan.

1 Introduction
Different kinds of ions are an integral part of the microscopic cellular environment. For instance,
sodium, potassium, calcium, and chloride play an important role in many different physiological pro-
cesses, including hormone secretion, cell communication, muscle contraction, and neuron signaling.
[6] Ion channels are pore-forming proteins found in the plasma membrane. They control the small
voltage gradient across the membrane, allowing ions to pass through. Different types of ion channels
are involved in various crucial physiological processes. Studying ion channels and their behavior is im-
portant for understanding a wide range of biological functions and developing treatments for various
diseases.

While many models exist for the ion channel simulation problem, PBE (Poisson-Boltzmann equa-
tion) and PNP (Poisson-Nernst-Planck) equations are two widely used dielectric continuum models.
When solving those equations using numerical methods like finite element methods, a high qual-
ity tetrahedral mesh is required as a discrete representation of the domain, the ion channel protein
embedded in the membrane and immersed in some electrolyte fluid. For example, when solving the
following Poission dielectric equations, the domain should be partitioned into that three parts, protein,
membrane and solvent, corresponding to Dp, Dm, Ds where u(r) represents the [3]

− ϵp∆u(r) = α

np∑
j=1

zjδrj
, r ∈ Dp,

− ϵm∆u(r) = 0, r ∈ Dm,

− ϵs∆u(r) = β

n∑
i=1

Zici(r), r ∈ Ds,

1

There already exists many software regarding mesh generation of ion channels and labeling that into
three partitions. For Instance, the ICMPv1 and ICMPv2 [2] and also the algorithms presented by Liu
et al. which have utilize the straight walk algorithms during the membrane extraction stage. [5, 1] Most
of those applications varies in their methods of surface mesh generation and the membrane/solvent
tetrahedral extraction. In this research project, we aim to propose some algorithms with an emphasis
on efficiency. While previous methods may somehow rely on packages in python, we want to implement
them using mostly C++ which might be improving the cpu run time.

Generally, our methods would adopt the framework of ICMPv2 [2] and we will provide three
different approaches for membrane meshes extraction, including plain breath first search, two-step
breath first search, and two-step breath first search with the straight walk algorithm. Besides that,
we follow the framework of ICMPv2 on deciding the box domain, and generating surface meshes. Two
softwares were used as tools in our software, TMSMesh [4] and TetGen [7] with efficient functions of
generating the Gaussian Surface triangular mesh and volume mesh, respectively. Other substitutes for
protein surface generating software are NanoShaper or MSMS.

2 Surface Mesh Generation of Surface Box
Modeling the specific structure of the membrane would be too complicated and not realistic. So we
define a simplified model to place the membrane between the plane {(x, y, z) ∈ Ω | z = Z1} and
{(x, y, z) ∈ Ω | z = Z2} while Z1 and Z2 are the locations of membrane determined by the specific
ion channel protein. During this research, we use the protein PDB files from the OPM Database 1

The proteins in the database are well-organized with the membrane location Z1, Z2 symmetric around
Z = 0 by the value indicated as 1/2 of bilayer thickness in the PDB file.

We define Γs,h as the surface triangulation on the four sides and Γtb,h as the surface triangulation
on the top and bottom. The entire surface mesh can thus be expressed as

Γh = Γs,h ∪ Γtb,h

The membrane region is represented by a denser segment of the surface triangular mesh on Γs, h. This
configuration ensures that the membrane location information is integrated into the final tetrahedral
mesh while simultaneously satisfying the precision requirements of ion channel simulation. Between
the membrane area and the margin area, there is a connecting area where we connect mesh points
of different densities in a straightforward way. To simplify this connecting area, in our experimental
implementation, we let the surface mesh density in the membrane area be double that in the margin
area. i.e. Assume the surface mesh grids on the margin area have a side length of HS while those
surface mesh grids at the membrane area have a side length HM , we assume that:

HS = 2 ·HM

Note that:

ΓMembrane
tb,h = {r ∈ Γtb,h | r = (x, y, z) with Z1 ≤ z ≤ Z2}

ΓMargin
tb,h ∪ ΓConnecting

tb,h = {r ∈ Γtb,h | r = (x, y, z) with z < Z1} ∪ {r ∈ Ds,h | r = (x, y, z) with z > Z2}

More specifically, our surface mesh setting is the same as the setting used in ICMPV2 [2]
The top and bottom of the structure involve standard surface triangulation with mesh grids of

side length HS . This surface triangulation is represented in the poly format, specifically designed for
the volume mesh generation software, TetGen [7]. More precisely, we compose a list of vertices, each
followed by the components of their respective position vectors. Additionally, we include a list of
triangle components, each followed by the indices of their three vertices.

We have included this figure to provide a visual example of the surface mesh that was established
earlier in the paper. The figure is based on the poly file generated through a sample triangular mesh
that we created. We have used the python library pyplot to create this figure, which is a widely-used
tool for data visualization.

1the University of Michigan Orientations of Proteins in Membranes (OPM) database; https://opm.phar.umich.edu/

2

Figure 1: Surface triangular mesh partition on the sides used in ICMPV2 [2]

Figure 2: Visualisation of a sample box surface mesh

3 Surface Mesh Generation of Protein
In order to generate tetrahedral meshes using volume mesh generation software like Tetgen [7], a
surface mesh is required as input. We define the domain of our tetrahedral mesh, Ω ∈ R3, as an ion
channel protein situated within a box. Here, ∂Ω represents the surface mesh for the surface box, Γh,
which we generated in the previous section. Additionally, we require the surface triangulation for the
protein embedded within the box, ∂P. This is obtained via a triangular surface mesh of a molecular
surface. In this research project, we choose to employ a Gaussian surface, and the software TMSMesh
[4] to generate such surface triangulation from the PQR file that outlines the molecular structure of a
protein.

While there are several other molecular surfaces available, such as the van der Waals surface (VDW)
- which is the union of each molecule’s spherical domain with a certain radius - as well as solvent-
accessible surfaces (SAS) and solvent-excluded surfaces (SES) - both obtained from the path of a
spherical probe traversing the VDW surface, we opt to utilize the Gaussian surface in this research
project. The Gaussian surface, with its smooth characteristics, is especially suited for representing a
molecule’s electron density.

3

3.1 Gaussian Surface
Gaussian Molecular surface is defined as a level set of the sum of Gaussian kernel functions. [4] Where
the definition can be mathematically expressed as:{

x⃗ ∈ R3, ϕ(x⃗) = c
}

ϕ(x⃗) =
N∑

i=1
e−d(∥x⃗−x⃗i∥2−r2

i)

In these equations, x⃗i and ri represent the location vector and radius of the i-th atom, respectively.
The parameter d denotes the decay rate for the Gaussian surface. As the decay rate decreases, the
resulting surface becomes smoother and more inflated. The constant c is the isovalue that defines the
Gaussian surface as a level set, and it governs the volume enclosed by the surface.

3.2 Using TMSMesh [4]
TMSMesh gives us a triangular surface mesh of the Gaussian surface of a certain molecular structure.
It uses approximation and numerical method to calculate the Gaussian surface and then use a specific
algorithm to generate triangles based on points on the Gaussian surface. The software takes a pqr file
and three parameters h, d, c as input.

Here is a sample of a PQR file, it encodes information of a large molecular structure while each
row corresponds to an atom. It contains multiple features of atoms including atom name, residue
name, residue number, components of it’s position vector, charge and radius. TMSMesh will utilize
the position vector and radius when constructing triangular surface mesh.

Table 1: Exmaple of PQR File of the protein 1mag

1 N ALA 23 -16.378 6.310 -19.289 -0.3000 1.8500
2 CA ALA 23 -15.241 5.381 -19.555 0.2100 2.2750
3 C ALA 23 -15.333 4.149 -18.663 0.5100 2.0000
4 O ALA 23 -16.317 3.409 -18.705 -0.5100 1.7000
5 CB ALA 23 -13.914 6.100 -19.317 -0.2700 2.0600
6 H ALA 23 -17.218 5.781 -19.200 0.3300 0.2245

TMSMesh takes in three parameters, h, d, c. d, c are the same parameters defined in the Gaussian
Surface definition, while h relates to the triangulated mesh’s density. It generates the triangular surface
mesh of the protein ∂P also in the poly form.

4 Add Membrane Surface Meshpoints
To more accurately simulate the structure of an ion channel embedded in a membrane, we need to
refine our approach. In addition to densifying the membrane segment on the surface of the box, we aim
to incorporate mesh points within the meshes on the upper and lower surfaces of the membrane inside
the surface box. However, it’s important that these points do not intrude into the region enclosed by
the protein. This procedure ensures that the tetrahedral mesh associated with the membrane is planar
and well-shaped along the margins.

Following the idea of membrane surface mesh point used in ICMPV2 [2] We numerically define this
set of mesh points on the bottom surface of membrane Sb in the following way. The upper surface
does a similar way.

T = {(xi, yj) | xi = Lx1 + ihm, yj = Ly1 + jhm for i = 0, 1, . . . , m, j = 0, 1, . . . , n}
Sb = {(xi, yi, Z1) | (xi, yi) ∈ T ∩ E}

To find this set using an algorithm, we defined a numerical scheme, a lower and upper bound those
protein surface mesh points at the cross-section z = Z1 for x or y given y or x. That is:

4

Figure 3: Visualisation of membrane surface mesh points from [2]

L1
y (xi) = min {yi | (xi, yi, Z1) ∈ P} U1

y (xi) = max {yi | (xi, yi, Z1) ∈ P}
L1

x (yi) = min {xi | (xi, yi, Z1) ∈ P} U1
x (yi) = max {xi | (xi, yi, Z1) ∈ P}

L2
y (xi) = min {yi | (xi, yi, Z2) ∈ P} U2

y (xi) = max {yi | (xi, yi, Z2) ∈ P}
L2

x (yi) = min {xi | (xi, yi, Z2) ∈ P} U2
x (yi) = max {xi | (xi, yi, Z2) ∈ P}

Hereby we conclude:

{(xi, yi) | xi /∈ (Lx (yi) , Ux (yi))} ∪ {(xi, yi) | yi /∈ (Ly (xi) , Uy (xi))} ⊂ E

To translate this concept into an algorithm, we continuously track the lower and upper bounds in a
discrete manner using an array. This is achieved by iterating over all points in the cross-section of all
points in the protein’s surface mesh - that is, all vertices in the poly file obtained from the TMSMesh
step. Subsequently, we iterate over all potential mesh points, determining whether they should be
incorporated into the meshes using the expression above. The specific algorithm is defined here.

5 Volume Mesh Generation
The union ∂Ω ∪ ∂P ∪ Sb provides us with the surface mesh of the protein-membrane structure we
aim to simulate. Assuming the protein is well-situated within the membrane section, we can treat
this surface mesh as a boundary representation of a piece-wise linear complex (PLC), given that it
does not include internal intersections. This PLC boundary representation can be fed into the Tetgen
software, which in turn will generate a high-quality volume mesh. More specifically, it will produce a
Constrained Delaunay Tetrahedralization of this PLC structure. Delaunay property could make sure
the complexes tend to be distributed evenly through out the domain while keeping the boundary to
remain a certain structure. [7]

By adjusting certain parameters and supplying the surface mesh poly file as input, Tetgen generates
high-quality tetrahedral meshes. These are accompanied by a nodes file, which contains the position of
each node; an ele file, which lists the components (i.e., indices of the four nodes) of each tetrahedron;
and a neigh file, which includes the index of up to four neighbors for each tetrahedron. Additionally,
the ele file assigns a label to each tetrahedron, corresponding to the region to which the tetrahedron
belongs.

Since our surface mesh, as a PLC, demarcates two regions—namely, the protein and the non-protein
region within the box (encompassing solvent and membrane)—we need to ensure that these regions
are correctly labeled. Thus, we specify to Tetgen which label corresponds to a particular region.
To accomplish this, we identify a point p ∈ R3 that we know resides in the solvent and membrane
region, and assign a specific label to that region, i.e., add that point in the region section of the poly
input file with a specific label. In this project, we set p as (Px + ϵ, 0, 0), where Px is the maximum

5

Algorithm 1 Add Membrane Surface Mesh Points
1: procedure add surface mesh points
2: Initialize LZ1

x , UZ1
x , LZ1

y , UZ1
y , LZ2

x , UZ2
x , LZ2

y , UZ2
y , as 1D array with boundary value

3: Parse protein num nodes, protein num triangles from reading protein off file
4: Define Z1 = (Z1 − ϵ, Z1 + ϵ), Z2 = (Z2 − ϵ, Z2 + ϵ)
5: for each i from 0 to |N | do
6: Read line from N and parse it to get x, y, z
7: if z ∈ Z1 ∪ Z2 then
8: Assume z ∈ Zα for α ∈ {1, 2}
9: xi ← (x + HG

2 − Lx1)/HG

10: yi ← (y + HG

2 − Ly1)/HG

11: Update LZα
x [yi]← min(LZα

x [yi], xi) UZα
x [yi]← max(UZα

x [yi], xi)
12: Update LZα

y [xi]← min(LZα
y [xi], yi) UZα

y [xi]← max(UZα
y [xi], yi)

13: end if
14: end for
15: for each i from 0 to (Lx2 − Lx1)/HG do
16: for each j from 0 to (Ly2 − Ly1)/HG do
17: x← Lx1 + HG · i
18: y ← Ly1 + HG · j
19: if x /∈ (Lx (y) , Ux (y)) or y /∈ (Ly (x) , Uy (x)) then
20: Add grid nodes a⃗ij = (x, y, Zα)
21: end if
22: end for
23: end for
24: end procedure

max(x | (x, y, z) ∈ P), ϵ is a little value, and assign it label 1, resulting in the protein region being
assigned label 2. Of course, multiple methods can be used in this step.

6 Membrane Extraction Algorithms
In our framework, we aim to partition the entire domain into three distinct regions: solvent, protein,
and membrane, using a tetrahedral mesh. Currently, both the membrane and solvent regions are
labeled as 1, so we still need to differentiate between these two. In other words, we need to distinguish
between the ’pore’ region of the protein and the outer solvent. This step is critical in our project,
and there are various methods to achieve it. For instance, ICMPv2 [2] employs the Python package
trimmesh to conduct a ray test on each tetrahedron to determine whether it is enclosed by the protein-
membrane surface. Also, Liu’s team uses the graph search algorithm based on straight walk on six
directions. [5]

In the course of this project, we explored three efficient graph search algorithms. Given that the
neigh file contains information about neighboring nodes, we can represent the tetrahedral meshes as
a graph. In this graph, each tetrahedron is a vertex, and an edge exists between two vertices if their
corresponding tetrahedra are neighbors. These relationships enable us to conduct a graph search. We
will detail these three algorithms in the following sections of this report.

To begin, we label all tetrahedra within the solvent and membrane region (currently labeled as 1)
that fall within the frame [Lx1, Lx2] × [Ly1, Ly2] × [Z1, Z2] as membrane (designated by the label 3
in this project’s framework). This approach inevitably results in over-labeling within the pore region.
As a next step, we employ search algorithms to accurately identify the pore region and reassign these
over-labeled tetrahedra as solvent.

6.1 Sub Meshes Partition
ICMPV2 [2] uses a sub-mesh partition to partition a large enough search area, therefore, reducing the
number of tetrahedral we have to visit during the search process. Given a small value τ , and denoting
the tetrahedral mesh of the entire box domain as Dh, we define a frame of the search area S, and the

6

sub-mesh Sh as follows:

a = min {xi, | (xi, yi, zi) on P} − τ, b = max {xi, | (xi, yi, zi) on P}+ τ,

c = min {yi, | (xi, yi, zi) on P} − τ, d = max {yi, | (xi, yi, zi) on P}+ τ,

S = [a, b]× [c, d]× [Z1, Z2]

Sh = {σ ∈ Dh | σ ∩ S ≠ ∅}

Figure 4: Membrane Search Partition Visualization

Figure 4 provides a visualization of the search region partition through a cross-section along the
z-axis. The tetrahedral outside the search region are colored blue; those within the membrane portion
of the search region are depicted in yellow; the protein is shown in green; and the pore regions, which
are labeled as solvent, are represented in azure.

Since the search region enclosed the whole protein inside, we are confident that those not included
by the search region are membrane tetrahedral and there is no meaning to look through them.

6.2 Algorithm - Breadth First Search
The Breadth-First Search (BFS) algorithm is a popular tool for graph search tasks, and we incorporated
its central principles into this project. Given the well-structured nature of the ion channel protein, we
can safely assume that within the search frame, there are two connected regions when considering only
tetrahedral labeled as membrane (not protein). By conducting a BFS that begins from a randomly
selected tetrahedron, we are able to differentiate between the membrane and solvent regions. However,
as this initial tetrahedron may belong to either region, we must track the maximum x-value encountered
during the search process. This value is then compared with Px, the maximum x-value of the protein
surface mesh obtained in earlier stages of the project.

7

Algorithm 2 Membrane Solvent Extraction (BFS)
1: procedure Membrane Solvent Extraction(T, V, N, Dms,h, Px)
2: Q← empty queue
3: Mx ← Lowest Number
4: find a random tetrahedron s ∈ Dms,h

5: mark[s]← true
6: Q.enqueue(s)
7: while Q is not empty do
8: v ← Q.dequeue()
9: for each neighbor u of v in N(v) do

10: if mark[u] = false and u ∈ Dms,h and label(u) is not protein then
11: Mx ← max(Mx, getX(u))
12: mark[u]← true
13: Q.enqueue(u)
14: end if
15: end for
16: end while
17: for each tetrahedron t in Dms,h do
18: if Mx > Px then
19: if mark[t] = false then label t as solvent
20: end if
21: else
22: if mark[t] = true then label t as solvent
23: end if
24: end if
25: end for
26: end procedure

6.3 Algorithm - Two step Breadth First Search
Ion channels are proteins with distinct structures. Often, the solvent region within the pore region of
the protein is significantly smaller than the protein’s overall size. Therefore, during our BFS process,
initiating the search from a tetrahedron within the pore region results in fewer tetrahedrons to visit,
thereby improving our search efficiency.

In our two-step BFS approach, we first execute the BFS on one cross-section parallel to the Z-plane
within the search frame. This initial step assists us in locating a tetrahedron within the solvent region.
Then, in the second BFS step, we commence our search from the located solvent tetrahedron. As we
traverse through the graph, we adjust the labels of the visited tetrahedrons accordingly.

8

Algorithm 3 Membrane Solvent Extraction (Two Step BFS)
1: procedure Membrane Solvent Extraction(T, V, N, Dms,h, Dc

ms,h, Px)
2: Q← empty queue
3: Mx ← Lowest Number
4: find a random tetrahedral s ∈ Dc

ms,h

5: mark[s]← true
6: Q.enqueue(s)
7: while Q is not empty do
8: v ← Q.dequeue()
9: for each neighbor u of v in N(v) do

10: if mark[u] = false and u ∈ Dc
ms,h then

11: Mx ← max(Mx, getX(u))
12: mark[u]← true
13: s← u
14: Q.enqueue(u)
15: end if
16: end for
17: end while
18: if Mx > Px then
19: for each tetrahedron t in Dc

ms,h do
20: if mark[t] = false then
21: s← t
22: break
23: end if
24: end for
25: end if
26: Q.enqueue(s)
27: while Q is not empty do
28: v ← Q.dequeue()
29: label v as solvent
30: for each neighbor u of v in N(v) do
31: if mark[u] = false and u ∈ Dms,h then
32: mark[u]← true
33: Q.enqueue(u)
34: end if
35: end for
36: end while
37: end procedure

6.4 Algorithm - Utilizing the Straight Walk to Identify the Cross Section
In the two-step BFS process, identifying the cross section could potentially be a time-consuming task.
This is particularly the case if we continuously search through the lists of tetrahedrons and nodes to
determine if a tetrahedron intersects with a plane defined by z = C.

An alternative approach is to use the straight walk algorithm, which is designed to locate all
tetrahedrons that would intersect with a straight line drawn from point q to point p [1]. Leveraging
this algorithm allows us to start from an arbitrary tetrahedron and move along the x or y axis, thereby
constructing a contiguous submesh of the cross section.

With this submesh, we can then execute the BFS algorithm, leading to a more efficient identification
of the cross section compared to the traditional method.

9

Algorithm 4 Straight Walk
1: procedure Straight Walk(u, v, w, t, p, q)
2: Initialize T ← empty array
3: while orientation(u, w, v, p) > 0 do
4: append t to T
5: t← neighbor(t through uvw)
6: s← s ∈ V (t)− {u, v, w}
7: if orientation(u, s, q, p) > 0 then
8: if orientation(v, s, q, p) > 0 then
9: u← s

10: else
11: w ← s
12: end if
13: else
14: if orientation(w, s, q, p) > 0 then
15: v ← s
16: else
17: u← s
18: end if
19: end if
20: end while
21: Output T
22: end procedure

Algorithm 5 Use Straight Walk to Find Cross Section
1: procedure Find Cross Section(T, V, N, Dms,h,)
2: Q← empty queue
3: Dc

ms,h ← empty array of tetrahedra
4: find a random tetrahedral s ∈ Dms,h

5: mark[s]← true
6: Q.enqueue(s)
7: while Q is not empty do
8: v ← Q.dequeue()
9: v1 ← v.Node1

10: N(v) = {(v1.x− h, v1.y, v1.z), (v1.x + h, v1.y, v1.z), (v1.x, v1.y − h, v1.z)
, (v1.x, v1.y + h, v1.z), }

11: for each neighbor u in N(v) do
12: t← Straight Walk(v1, u)
13: t′ ← last element of t
14: mark[t]← true
15: Append t into Dc

ms,h

16: end for
17: end while
18: Output Dc

ms,h

19: end procedure

7 Numertical Results
We have run our program MeshGen on several ion channel proteins. In this section, we will present
the protein surface mesh, the cross-section, and two three-dimensional views of the tetrahedral mesh
that we have generated, respectively, for each ion channel protein.

10

7.1 Tetrahedral Meshes Generation Example Figures

Figure 5: Protein - 1mag, generated by MeshGen with parameter: Z1 = −11 Z2 = 6 tmsd = 0.5

Figure 6: Protein - 3emn, generated by MeshGen with parameter: Z1 = −11 Z2 = 11 tmsd =
0.2 tetgenq = 1.2

Figure 7: Protein - 3emn, generated by MeshGen with parameter: Z1 = −15 Z2 = 15 tmsd =
0.3 η = 25 tetgenq = 1.2

7.2 CPU Runtime and Stats
During this project, key performance metrics, such as CPU runtime for each step in the program, the
number of generated tetrahedra and vertices (or nodes) in the resulting mesh, as well as the count
of tetrahedra involved in the search area during the membrane extraction process, were meticulously
recorded.

11

Protein name 1mag 1ap9 3emn
TMSmesh 9.389 13.671 1.293
Box Surface Mesh 0.011 0.036 0.020
Add Membrane Surface vtx 0.009 0.071 0.023
Write Poly File 0.001 0.003 0.001
Mesh Generation (Tetgen) 7.303 42.548 19.126
BFS Search 0.520 4.075 1.652
2-Step BFS Search 0.490 3.684 1.470
Write XML File 0.208 1.264 0.54672
Tetrahedral 303925 1746826 765165
Vtxs 54991 302186 136900
Tetrahedral in Search 39330 279128 99557

8 Disscusion during this project
8.1 Use of Dynamic Memory Locating
This project is highly memory-intensive. Even the simple task of reading the results from the TMSMesh
software requires substantial memory. During our work on the program, we discovered that dynamic
memory allocation for vertices and complex data is necessary in most instances to prevent segmentation
faults. However, we believe that through careful implementation of dynamic memory management
techniques, we can effectively regulate our memory usage and prevent any related issues.

8.2 Irregular Surface Mesh Tetrahedralization
The q switch parameter for Tetgen [7] governs the maximum radius-edge ratio. We need this value
to be slightly larger than the separation distance of the membrane surface mesh points, Sb, that we
integrated into the surface mesh. This is due to our desire for all membrane tetrahedra;l on the surface
to include membrane surface mesh points, as well as to ensure that no tetrahedral penetrates the plane
z = Z1 or z = Z2. If we set the q switch too small, the Tetgen software might insert additional vertices
near the surface membrane mesh points, leading to irregular tetrahedral close to the membrane surface.

9 Appendix
The main source code for the mesh generation software introduced in this project, MeshGen can be
found on the following github page: https://github.com/dannydingx/mesh_generation.

10 Acknowledgement
I am very grateful for my mentor, Zhen Chao, who is also the author of the ICMPV2 paper [2] that
we referred to in this research. His expertise and insights were instrumental in shaping this study.
He provided a deep explanation of his previous paper and helped me to understand his purpose in
applying different methods. Thanks to his guidance, I found the content of computational biology to
be very appealing.

References
[1] Walking in a triangulation. Association for Computing Machinery, 2001.

[2] Zhen Chao, Sheng Gui, Benzhuo Lu, and Dexuan Xie. Efficient generation of membrane and solvent
tetrahedral meshes for ion channel finite element calculation, 01 2022.

[3] Zhen Chao and Dexuan Xie. An improved poisson-nernst-planck ion channel model and numerical
studies on effects of boundary conditions, membrane charges, and bulk concentrations. Journal of
Computational Chemistry, 42:1929–1943, 08 2021.

12

https://github.com/dannydingx/mesh_generation

[4] Minxin Chen and Benzhuo Lu. Tmsmesh: A robust method for molecular surface mesh generation
using a trace technique. Journal of Chemical Theory and Computation, 7:203–212, 11 2010.

[5] Tiantian Liu, Shiyang Bai, Bin Tu, Minxin Chen, and Benzhuo Lu. Membrane-channel protein sys-
tem mesh construction for finite element simulations. Computational and Mathematical Biophysics,
3, 11 2015.

[6] Christopher Maffeo, Swati Bhattacharya, Jejoong Yoo, David Wells, and Aleksei Aksimentiev.
Modeling and simulation of ion channels. Chemical Reviews, 112(12):6250–6284, 2012. PMID:
23035940.

[7] Hang Si. Tetgen a quality tetrahedral mesh generator and 3d delaunay triangulator version 1.6
user’s manual, 08 2020.

13

	Introduction
	Surface Mesh Generation of Surface Box
	Surface Mesh Generation of Protein
	Gaussian Surface
	Using TMSMesh chen2010tmsmesh

	Add Membrane Surface Meshpoints
	Volume Mesh Generation
	Membrane Extraction Algorithms
	Sub Meshes Partition
	Algorithm - Breadth First Search
	Algorithm - Two step Breadth First Search
	Algorithm - Utilizing the Straight Walk to Identify the Cross Section

	Numertical Results
	Tetrahedral Meshes Generation Example Figures
	CPU Runtime and Stats

	Disscusion during this project
	Use of Dynamic Memory Locating
	Irregular Surface Mesh Tetrahedralization

	Appendix
	Acknowledgement

