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Abstract

We develop a computational agent-based model to study cancer immune dy-
namics in a spatially structured environment. In this framework, individual tumor
and immune cells are modeled as discrete agents that move, divide, die, and interact
locally over time.

Immune cells can recognize and kill nearby tumor cells. The model also in-
cludes periodic immune cell injections to simulate immunotherapy. By incorporat-
ing spatial heterogeneity and local interactions, the model allows exploration of how
treatment timing and immune influx influence tumor progression. This model en-
ables exploration of tumor–immune interactions and the potential effects of immune
cell–based therapies.

1 Introduction

Cancer is a disease that causes millions of deaths worldwide each year [1]. One of
the main challenges in cancer treatment is that the effectiveness of therapies can vary
greatly from person to person [2]. Over the past few decades, several advanced treatment
approaches have been developed, among which immunotherapy stands out as a major
breakthrough [3]. Immunotherapy is now used to treat a variety of cancers, including
bladder, breast, liver, and lung cancers [4, 5].

Despite this progress, cancer remains one of the leading causes of mortality worldwide
and continues to be a primary focus of medical research [6]. Recent advances have revealed
that cancer is not a single disease, but rather a complex set of conditions involving
intricate multiscale interactions within the tissue environment [7, 8]. Tumor growth is
powered by specific oncogenic drivers [9], and identifying these drivers remains a critical
challenge for effective therapies.

To unravel this complexity and guide therapeutic development, mathematical on-
cology has become a well-established field in both the mathematical and biomedical sci-
ences. Mathematical models of cancer generally fall into two categories: continuous and
discrete frameworks. Classical continuous models, based on ordinary or partial differen-
tial equations, are powerful tools for quantitatively capturing tumor growth kinetics at
the macroscopic level [10]. Discrete approaches, such as cellular automaton models and
agent-based modeling, provide a more detailed, per-cell description of cancer dynamics
[11].
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Both approaches, however, have important limitations. Continuous models are often
restricted to population-level behavior and can suffer from irreproducibility due to differ-
ences in parameter estimation [10]. Discrete models, while capable of simulating cell-level
interactions, can struggle to provide quantitative predictions, and frameworks like cellu-
lar automata may not smoothly capture chemical gradients or complex cell movements
[12].

Agent-based modeling (ABM) in particular has become increasingly popular for ex-
ploring tumor–immune dynamics, but many existing ABMs focus on only one cancer type
[13] or a specific treatment [14, 15], or simulate basic cellular behavior without considering
how therapies influence tumor–immune interactions [16]. Furthermore, there is a lack of
agent-based models that systematically address three-dimensional (3D) cancer–immune
interactions with treatment interventions, using transparent and biologically meaningful
rules.

In this research, we develop a three-dimensional (3D) agent-based model of the can-
cer–immune system that incorporates basic cellular behaviors and T-cell injection therapy
[17]. We introduce simple yet biologically meaningful rules for simulating cancer–immune
interactions, present key results from our model, and discuss how these findings can in-
form the development of more rigorous and robust modeling approaches in the future.

2 Methods

Our agent-based model (ABM) is implemented under a three-dimensional on-lattice
framework, providing a straightforward ground base for tracking individual cellular be-
havior [18] and visualizing clearly. Each lattice site can hold a cancer cell and an immune
cell.

Fig. 1 is a schematic diagram of our ABM workflow. We use uniform time steps ∆t
to set the frequency of cellular phenotype behaviors and update the lattice, as a small
time step helps lower the relative errors [19]. The total simulation run time T can be
chosen freely as desired to demonstrate behavior in different time scales; the number of
steps in a single trial is s = T / dt.
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Figure 1: A flowchart describing the simulation algorithm

The Gillespie Stochastic Simulation Algorithm [20] provides a rigorous framework for
discrete event implementation relying on the Poisson Process. This gives us a good insight
into describing k events occurring in a fixed interval by a probability mass function:

Pr
(
K) =

λk e−λ(x)

k!

with an event-specific rate parameter λ. For every small time interval ∆t, the probability
approximation of a single cell event occurring follows:

Pr
(
K = 1) = λ∆t

which implies that at most one cell event could take place during ∆t. This approximation
ensures simplified implementation and computation efficiency [21].

2.1 Cancer cell event

Our agent-based model primarily focuses on certain key hallmarks of cancer [7] and
describes them with discrete, rule-based behaviors.

2.1.1 Initialization

The cancer cells are initialized into the lattice with an initial population C0. A
single cell is placed at the geometric center of the grid. Remaining cells are then added
around it by selecting empty sites within the Moore neighborhood. This initialization
procedure generates a compact tumor mass, closely mimicking the real-life scenario of
tissue architecture.

2.1.2 Proliferate

Cancer proliferation event is modeled by the Poisson distribution with a base division
rate parameter αC . If a proliferation event is selected for a specific cancer cell, it will
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detect empty spaces in its Moore neighborhood that are not currently occupied by another
cancer cell, and a new cancer cell will be generated and randomly occupy one of the empty
spots. If there is no space in its Moore neighborhood, no cell proliferation would take
place.

2.1.3 Movement

Cancer cells’ movement is implemented as a stochastic process at a rate µC . While
executing movement events, the cell would check for sufficient spaces in its Moore neigh-
borhood. If one or more empty sites are available, the cell relocates to a randomly selected
spot; if no adjacent spaces are free, the cell remains in place.

2.1.4 Apoptosis

Cancer cells would undergo apoptosis events based on their natural death rate pa-
rameter δC as a Poisson process. When an apoptosis event occurs, the cell is immediately
removed from the lattice and is excluded from all subsequent events.

2.2 Immune cell event

2.2.1 Initialization

The initial immune cell population is specified by the parameter I0, which can be
set to zero to simulate a therapy-only scenario. While we could still consider some initial
immune behavior inside the grid, placed in random spaces. This randomized distribution
reflects the reality situation that immune cells patrol and may reside in any location
within the human body.

2.2.2 Proliferate

Immune proliferation event is decided by a Poisson distribution using the base rate
parameter αI as its division rate. If a proliferation event is selected for a given immune
cell, the cell scans its Moore neighborhood for empty lattice sites (not occupied by any
immune or tumor cells) and, if at least one is found, generates a daughter immune cell in
one randomly chosen empty spot. If no empty site exists, no proliferation occurs.

2.2.3 Apoptosis

Immune cells undergo apoptosis events based on their natural death rate parameter
δI . When an apoptosis event occurs, the cell is immediately removed from the lattice and
is excluded from all subsequent events.
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2.2.4 Movement

Immune movement is a key determinant of immune functionality, since it directly
governs the frequency and efficiency of immune–cancer interaction. To systematically
investigate its impact on therapeutic performance, we implemented three distinct move-
ment algorithms, each callable on demand, to explore how alternative rules affect killing
efficiency.

Random Movement The first immune movement function is simply moving randomly
using the rate parameter µI . The immune cell will detect all possible empty spots without
an existing immune cell and move to one of the spots. If the spot is occupied by a cancer
cell, the immune cell will try to kill it with its natural killing rate parameter κI [22].

Random Movement with Hunting The second movement function provides a hunt-
ing option; each immune cell will first search for adjacent cancer cells in its Moore neigh-
borhood. If one or more cancer cells are detected, the cell executes hunting action based
on the killing parameter κI . If there is no cancer cell present in the immune neighbor-
hood, the immune cell will choose to move randomly using the rate parameter µI , as the
first movement function indicates.

Search Movement with Hunting The final movement strategy implements a more
advanced and realistic algorithm that conducts both searching and hunting. At each time
step, every immune cell in the lattice will search for the cancer cell within the closest
distance, and move towards it with the searching rate parameter ξI . Once an immune cell
has moved into the Moore neighborhood of cancer, it will search for cancer cells locally,
and execute hunting action based on the killing rate κI . This strategy provides a solution
to long-range targeting along with close-range killing efficiency.

2.3 Therapy Implementation

The primary objective of this agent-based model is to quantify and assess how im-
munotherapy alters tumor dynamics. We emulate CAR T-cell treatment by periodically
injecting immune cells into the spatial lattice and examining the population dynamics.
Two dosing protocols, fixed-dose and tumor-burden-proportional, are applied under oth-
erwise identical conditions to compare their effects on treatment efficacy.

Fixed-dose Injections A constant quantity of immune cells, Ninj, is administered at
uniform time intervals of length ∆I . At each injection time Tinj = t ∆I , Ninj cells are
injected into randomly selected, unoccupied lattice sites. Immediately upon injection,
these agents participate in all immune events based on the given rules and parameters.

Tumor-adaptive Injections At each injection time Tinj = t ∆I , the number of im-
mune cells injected Ninj(t) is scaled proportionally to the current cancer burden. Let
NC(t) denote the cancer cells population at time t and the proportional injection rate by

5



RI , then
Ninj(t) = ⌈RI ×NC(t)⌉

Immune cells are injected into random empty sites.

3 Results

3.1 Experimental design

We aim to systematically explore how therapeutic dosing impacts cancer–immune
dynamics. Specifically, for each of the three immune movement algorithms, we evaluate
two dosing options with different dosing sizes: fixed-dose and proportional-dose, which
are administered every two days. All other model parameters remain strictly identical to
those listed in Table 1.

Name Description Value Source/Notes

C0 Initial cancer cell count 100 Assumption

αC Cancer proliferation rate (min−1) 2 / 1440 Talkington and Durrett (2015)

µC Cancer movement rate (min−1) 2 / 1440 Bergman et al. (2024)

δC Cancer apoptosis rate (min−1) 0.005 / 1440 Bergman et al. (2024)

I0 Initial immune cell count 50 Assumption

∆I Immune dose schedule (min) 2× 1440 Chosen

αI Immune proliferation rate (min−1) 0.5 / 1440 Bergman et al. (2024)

µI Immune movement rate (min−1) 2 / 1440 Bergman et al. (2024)

ξI Immune search rate (min−1) 6 / 1440 Assumption

κI Immune kill rate (min−1) 6 / 1440 Bhat and Watzl (2007)

δI Immune apoptosis rate (min−1) 0.5 / 1440 Bergman et al. (2024)

∆t Time step (min) 15 Bergman et al. (2024)

T Total simulation time (min) 35× 1440 Chosen

N Grid size (µm) 35 Assumption

Table 1: Fixed parameters for the agent-based model

3.2 Random Move

We begin by characterizing the intrinsic stochastic dynamics of the immune com-
partment in the absence of any directed targeting: immune cells execute unbiased random
walks and only eliminate tumor cells upon chance spatial overlap.

In our first experiment, we deliver periodic injections of 3000 immune cells, which
produces the saw-tooth-like pattern indicating the exact size oscillation of the immune cell
count (Fig.2). The transient rises of immune cell counts would increase the possibility
of immune cancer contact and thus reduce the cancer population. Therefore, there is a
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small attenuation of cancer cells after each injection. We observe that shortly after each
decrease, the cancer rebounds to the equilibrium at the carrying capacity. The narrow
95% confidence interval around the cancer trajectory reflects very low inter-run variability
in tumor growth. These phenomena indicate that only higher dosing would enhance the
immune efficacy.

Figure 2: Periodic injections of 3000 immune cells every two days produce a saw-tooth
pattern in the immune cell population, yet tumor cells continue to dominate, indicating
treatment failure.

In the next set of simulations, we increased the periodic dosing to 5000 immune cells.
As shown in Fig.3, this higher injection dramatically altered the outcome: after the fifth
injection, the cancer started to decline rapidly and was completely eradicated within 3
weeks. We could notice that the interval between the second and third week displayed a
wider 95% confidence interval, indicating the randomness of immune movement leads to
varied cancer clearance times. Despite this heterogeneity, the overall trajectory retains
the same saw-tooth structure. We could conclude that with a sufficiently large dose, the
cancer treatment would work.

A remaining concern is that, under our current protocol, immune-cell injections
continue even after the tumor has been cleared—an excess that could be deleterious in
vivo. To mitigate this risk, we introduce a proportional dosing therapy in which each
injection size is dynamically adjusted to the prevailing tumor population.
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Figure 3: Periodic injections of 5000 immune cells every two days boosted the immune
cell population and achieved complete tumor elimination by the third week.

We then implement a proportional-dosing, administering immune cells equal to 10%
of the prevailing tumor burden every two days. The resulting trajectories still exhibit the
saw-tooth-like oscillations in both immune and cancer cell counts (Fig.4). Crucially, after
each injection, the tumor never rebounds fully to the carrying capacity; instead, it declines
incrementally with each dose. This adaptive strategy dynamically scales the infusion to
tumor size and produces a cumulative reduction in cancer burden, demonstrating clear
advantages over fixed-dose regimens.
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Figure 4: Proportional dosing at a rate of 0.1 produces high-amplitude saw-tooth oscilla-
tions in the immune cell population, while the tumor remains near its carrying capacity.

We further raised the dosing rate to 15%. As a result, the saw-tooth profile in the
immune trajectory (blue) now features even higher peaks and steadily elevated troughs
(Fig.5). From the second week, the cancer population decreased drastically until extinc-
tion, meaning the treatment has exhibited a robust outcome. The transient widening of
the 95% confidence band during this collapse reflects stochastic variability in the exact
clearance time, whereas the narrow CI before and after indicates highly reproducible
dynamics. These results demonstrate that a proportional rate of 0.15 not only avoids
post-clearance overshoot but also reliably tips cancer–immune balance toward extinction
under purely random immune motility.
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Figure 5: Proportional dosing at a rate of 0.15 achieved complete tumor elimination by
30 days while avoiding immune overshoot.

3.3 Random Hunt

We now discuss therapy under Moore’s neighbor hunting combined with random
movements. We still assess the same per-injection dosing of 3000 immune therapy. As
shown in Fig.6, the cancer-immune dynamics showed identical behavior as results from
random movement cases. Although Moore’s neighbor hunting yields slightly larger post-
injection peaks in the immune population (blue) compared with pure random motility, it
does not materially improve tumor control at this dose.
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Figure 6: Periodic injections of 3000 immune cells still produce a saw-tooth pattern in
the immune cell population under hunting rules, yet tumor cells continue to dominate.

We then increased the per-injection dosing to 4000 immune cells, and effective cancer
eradication was achieved between the third and fourth week (Fig.7). It is noticeable that
the decreasing cancer trajectory displayed a wide 95% confidence band, indicating a high
uncertainty of the timing of effective treatment.
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Figure 7: Utilizing the random move and hunting algorithm, dosing of 4, 000 immune cells
achieves comparable tumor clearance to the non-hunting one with reduced total dosing,
resulting in complete elimination within three weeks.

The proportional-dosing that administers immune cells equal to 10% of the prevailing
tumor burden in a hunting situation (Fig.8) didn’t show a significant difference from the
previous results in Fig.4. This indicates that for cancer dominance scenarios, different
killing efficiencies don’t make a great difference. The dosing would need to be increased
for effective treatment.
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Figure 8: Proportional dosing at a rate of 0.1 produces high-amplitude saw-tooth os-
cillations in the immune cell population under the hunting algorithm, while the tumor
remains near its carrying capacity.

We further raised the dosing rate to 15%. As expected, the therapy effectively killed
cancer within the third week (Fig.9). It is notable that, compared to the simple random
movement case in Fig.5, there doesn’t exist any significant upward turning point after
two weeks. The treatment worked efficiently with a monotonic decrease in the cancer
population. The transient widening of the 95% confidence band during this clearance
window reflects variability in the exact eradication time, whereas the narrow 95% confi-
dence band before and after indicates the reproducibility of both the growth phase and
the post-clearance immune stage. These findings demonstrate that, under a hunting strat-
egy, a 0.15 proportional rate reliably tips the balance toward tumor extinction without
overshooting, thus avoiding unnecessary post-clearance dosing.
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Figure 9: Proportional dosing at a rate of 0.15 achieves complete tumor clearance by
18 days while preventing immune overshoot under random movement and hunting algo-
rithms, outperforming the pure random-movement function.

3.4 Search Hunt

In this final set of simulations, we endowed immune cells with an autonomous search
and hunt phenotype. At each time step, immune cells search for the closest cancer cell
rather than executing an unbiased random walk, and then hunt in Moore’s neighborhood.
This directed-search behavior markedly increases cancer-immune encounter rates, allow-
ing us to achieve effective tumor control with a relatively smaller dose. Accordingly, we
first tested a fixed-dose therapy of 1000 cells every two days.

As illustrated in Fig.10, this 1000 cells therapy with directed movement significantly
delays tumor progression. Prior simulations saw the cancer population reach its carrying
capacity within one week; here, it was only attained after approximately two weeks. The
immune trajectory retains its characteristic saw-tooth-like shape, and the cancer curve
exhibited only a very slight downward drift at late times. The wide 95% confidence
interval around the tumor trajectory reflects high stochastic variability in both growth
and incidental killing events at this low dose. However, there do exist some trials that
the immune system kills cancer cells over time, causing this wide 95% confidence interval.
But these sporadic successes don’t prove that the 1000 immune cells per dose treatment
are reliable. A higher per-dose injection is therefore required to ensure consistent tumor
eradication.
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Figure 10: Periodic injections of 1000 immune cells using the search-and-hunt algorithm
delay tumor progression toward carrying capacity but fail to eliminate the tumor.

We doubled the dose to 2000 immune cells per injection. As in Fig.11, cancer
rises to a peak of around 3000 cells but then undergoes a rapid, monotonic decline until
a thorough clean-out. Notice the continued dosing post-clearance leads to substantial
immune overshoot.
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Figure 11: Periodic injections of 2000 immune cells using the search-and-hunt algorithm
kept the tumor population below 3000 cells and achieved full clearance within two weeks,
but caused significant immune overshoot.

We next evaluated the 10% proportional-dosing under the search-and-hunt pheno-
type. The immune-cell trajectory retained its upward-going saw-tooth-like shape (Fig.12).
The cancer population followed exponential growth to carrying capacity within the first
week, then entered a sustained decline during weeks 2–3. Although it did not drive the
tumor to extinction, the therapy produced a clear and positive outcome starting from
the third week. This therapy could eliminate cancer if the therapy were continued for
another few weeks.
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Figure 12: Proportional dosing at a rate of 0.1 with the search-and-hunt algorithm grad-
ually reduces the tumor after three weeks and shows a trend toward complete clearance.

To improve therapeutic efficacy, we increased the dosing rate up to 0.15%. A notable
difference, as shown in Fig.13, as soon as the cancer population reached the carrying
capacity, the curve displayed rapid, monotonic decline until complete eradication by the
fourth week.

Figure 13: Proportional dosing at a rate of 0.15 with the search-and-hunt algorithm
achieves complete tumor elimination within 25 days while avoiding immune overshoot.
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4 Discussion

In this report, we systematically evaluated how three key factors: immune-cell motil-
ity, treatment strategy, and dosing magnitude shape the spatial tumor–immune dynamics
model. By isolating each parameter and examining its impact, we identified clear princi-
ples for designing more effective immune therapies.

First, we found that the immune-cell movement phenotype critically determines
search efficiency. As shown in the figures and analysis in Part. 3, we can understand
that random movement, random movement with hunting, and search movement with
hunting displayed a gradual increase in efficiency.

The pure random movement was only designed to study how stochastic behaviors
are implemented in agent-based models. Under an unbiased random walk, immune cells
locate tumor cells only by chance, requiring either very high doses or prolonged treatment
to achieve any tumor suppression. Introducing a hunt behavior that each immune cell
thoroughly checks its Moore neighborhood before moving on could substantially improve
local clearance and resolve the inefficiency, reducing the fixed-dose threshold from 5000
to 4000 cells. The autonomous search-and-hunt strategy managed to let the immune cells
work most efficiently: always locate the nearest cancer cell. This is more realistic as the
receptor of T cells in an actual biological context would search for the closest cells and
try to kill them. The search and hunt movement yields the greatest efficiency, eradicating
the malignancy within two weeks with just 2000 cells per dose and inducing a net tumor
decline even at a 10% proportional rate over longer cycles.

Next, we compared two different treatment strategies: fixed-dose versus tumor-
adaptive dosing. We have experimented that both could work with enough dosing
amount, but they showed very distinct features.

Fixed-dose therapy produces predictable and reassuring dynamics that can cure if
the per-dose count exceeds a sharp threshold. But these results exhibit wide confidence
interval variability, indicating that the result of treatment would vary from time, and
different trials could even end up differently. This increases the uncertainty of the ther-
apy. Therefore, it will not be a good idea to stop the dose too early, which leads to
another remaining concern: continued dosing post-clearance leads to substantial immune
overshoot, generating a potential threat to health.

In contrast, proportional dosing scales each injection to tumor burden, yielding tight
confidence bands and avoiding unnecessary overshoot, indicating a very assured and repli-
cable treatment. However, because the injected fraction is small during early exponential
growth, the tumor still reaches carrying capacity within the first week. Allowing cancer
to grow to carrying capacity would be an undesirable scenario in vivo, as this implies
expanded tumor into the whole body in real-life cases.

Finally, the dosing magnitude is the most dominant factor in the research across all
scenarios, as it directly affects the equilibration of the tumor–immune system balance.
Only by exceeding a critical per-dose cell number or proportional rate—roughly 5000 cells
(random walk), 4000 cells (hunt), or 2000 cells (search-and-hunt), or a 15% rate—can
immune pressure consistently drive tumor extinction. While motility enhancements and
adaptive scheduling refine treatment safety and efficiency, they cannot replace the need
for sufficient dosing to achieve a reliable cure.
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5 Conclusion

We introduce a novel agent-based model of the cancer–immune dynamics, parame-
terized to capture diverse cell phenotypes and therapeutic schemes. By systematically
varying and studying immune-cell motility, treatment timing, and dosing magnitude,
we demonstrate that enhanced search efficiency lowers the minimum effective therapy
threshold and accelerates tumor clearance; that distinct dosing protocols yield markedly
different dynamical responses; and that only when the per-dose cell number or propor-
tional infusion rate exceeds a critical point can immune pressure successfully suppress
tumor growth.

These insights pave the way for a modular agent-based modeling framework that
enables interactive tuning of cellular behaviors and microenvironmental conditions and
offers quantitative guidance for immunotherapy design. By comparing with existing mod-
els in the field, we must, however, transparently acknowledge our model’s limitations.

As noted in Section 1, cancer is inherently a multi-scale disease. The future of
computational oncology lies in hybrid modeling that integrates discrete and continuous
frameworks with physics-based, data-driven, and optimization methods [16]. Our model
can integrate features from diverse models to present hybrid phenotypes, thereby improv-
ing predictive accuracy and capturing cellular mobility.

While lattice-based models offer straightforward implementation, they are suscepti-
ble to grid artifacts [23] and may inadequately capture biomechanical realism [18]. Off-
lattice simulations could serve as complementary approaches to validate model fidelity
and assess computational performance.

Our present model emphasizes general cellular and therapeutic behaviors; however,
to advance toward personalized medicine, it must be adapted to specific cancer types and
account for tumor heterogeneity [24]. Rigorous integration of lab data and quantitative
methods will be required for clinical translation [13].

Despite these limitations, our agent-based framework demonstrates significant poten-
tial for addressing the above challenges. Leveraging the inherent strengths of agent-based
approaches, this platform represents a powerful and robust tool for oncology research and
the development of novel therapeutic strategies.
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