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Problem 1. Evaluate the series
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Solution 1. We observe that
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This is a telescoping series with the term n−1/2 tending to zero, so the value of the series is
2−1/2.

Problem 2. Show that 3n, with n ≥ 3 an integer, cannot have only odd digits in its decimal
representation.

Solution 2. Since 34 = 81 ≡ 1 (mod 20), it follows that the powers of 3 modulo 20 are
1, 3, 9, 7. Write 3k in its decimal expansion, 3k =

∑
dj10j. Since 20|102, it follows that

3k ≡ d110 + d0 (mod 20). In order that this should be one of the numbers 1, 3, 9, 7 modulo
20, it is necessary that d1 is even.

Problem 3. Suppose that a, b, c are positive real numbers with
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What is the largest possible value of a
b
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Solution 3. By the arithmetic-geometric mean inequality we see that
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Put x =
√
a/b. The inequality x2+2/x ≤ 5 is equivalent to x3−5x+2 ≤ 0. This polynomial

has roots −1−
√

2,−1 +
√

2, 2 in increasing order, so we deduce that x ≤ 2, which is to say
that a/b ≤ 4. On the other hand, the triple (a, b, c) = (4, 1, 2) is admissible, so the largest
possible value of a/b is 4.

Problem 4. In a magical isosceles triangle 4ABC we have |AC| = |BC|. Let D be the
midpoint between A and B. The inscribed circle of ABC intersects the line segment CD
in a point E that is in the interior of the triangle. Suppose that |AB| = 15 and |CE| = 8.
Determine |AC|.

Solution 4. We let x = |AC|, and r the radius of the inscribed circle. We further let O
be the center of the inscribed circle and F the intersection of the inscribed circle with the
segment BC. We note that the right triangle ODB is congruent to the right triangle OFB.
Since |DB| = 15/2, it follows that |FB| = 15/2, and hence that |CF | = x − 15/2. The
smaller right triangle OFC is similar to the larger right triangle BDC. Hence
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=
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|CD|

=
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.

That is,
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On cross-multiplying the first and second fractions above, we find that
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On cross-multiplying the first and third fractions in (1), we find that rx = 15
2

(r + 8), which
is to say that
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To eliminate x, we multiply both sides of (2) by r, and both sides of (3) by 15/2, and subtract
the one equation from the other. This gives r3+4r2−225 = 0. This cubic polynomial factors
as (r− 5)(r2 + 9r+ 45). Here the quadratic factor has no real root, so we deduce that r = 5.
On substituting this into (3) we deduce that |AC| = x = 39/2.

Problem 5. We have a set D of N Associate Deans, and we form m different committees
whose members are in D, with the cardinalities of the committees being k1, k2, . . . , km, and
no committee is a subcommittee of any other. Show that

m∑
i=1

ki!(N − ki)! ≤ N ! .

Solution 5. Let Si denote the set of Associate Deans in the ith committee. For each i,
arrange the Deans linearly, with members of Si in the first ki places, and the other Deans
in the remaining N − ki places. The Deans in the committee can be ordered in ki! different
ways, and the Deans not in the committee can be ordering in (N−ki)! different ways, making
ki!(N − ki)! orderings altogether. To see that these collections of permutations are pairwise
disjoint, suppose that i 6= j and that ki ≤ kj. In a listing corresponding to Si, the first ki
entries are the members of Si. However, in a listing for Sj, the first j entries are all members
of Sj, and if the first i of these were all members of Si, then we would have Si ⊆ Sj, which we
know is not the case. Since these various collections of permutations are pairwise disjoint,
the sum of their cardinalities is at most the total number of permutations, N !.

One may carry the reasoning further: We note that ki!(N − ki)! ≥ bN/2c!(N − bN/2c)!.
Hence the left hand side of the identity is ≥ DbN/2c!(N − bN/2c)!, and so

D ≤
(

N

bN/2c

)
.

This is a result in combinatorics known as Sperner’s Lemma.

Problem 6. Suppose that a1, a2, . . . , a2n+1 are real numbers such that when any one of the
is removed, the remaining 2n of them can be partitioned into two collections of n terms with
equal sums. Show that the ai must all be equal.

Solution 6. We rephrase the hypothesis by saying that for each i there is a linear form Li

in the a′s that vanishes. The coefficient of ai in this linear form is 0, while for j 6= i, n of
the aj have coefficient 1, and n of them have coefficient −1. Let C be the (2n+ 1)× (2n+ 1
matrix whose ith row is a listing of the coefficients of Li. We know that Ca = 0. Let x be
the vector all of whose coordinates are 1. We note that Ax = 0. In order to show that a
lies in the subspace generated by x, it suffices to show that C has rank at least 2n, since
rank + nullity = 2n + 1. Let D = [dij] be the (2n) × (2n) matrix formed from the first 2n
rows and columns of C. We show that D is nonsingular by showing that its determinant is
odd. Let E = [eij] be the matrix with eij = |dij|. Thus all off-diagonal elements of E are 1,
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and all diagonal elements are 0. The determinant of a matrix is a polynomial in its entries
with integer coefficients, and eij ≡ dij (mod 2), so detD ≡ detE (mod 2). To complete the
solution it suffices to show that detE is odd. This may be done in several ways. For example,
with suitable elementary row and column operations we may reduce E to triangular form,
and thus show that detE = −(2n − 1). Alternatively, it suffices to observe that E2 ≡ I
(mod 2).

Problem 7. For a given positive real number r and real x, y let Nr(x, y) be the number of
pairs of integers (m,n) satisfying (x−m)2 + (y − n)2 ≤ r2. Evaluate∫ 1

0

∫ 1

0

Nr(x, y) dx dy

as a function of r.

Solution 7. Let I(x, y) = 1 if x2 + y2 ≤ r2, and I(x, y) = 0 otherwise. Thus

Nr(x, y) =
∑

(m,n)∈Z2

I(x−m, y − n),

and hence ∫ 1

0

∫ 1

0

Nr(x, y) dx dy =
∑

(m,n)∈Z2

∫ 1

0

∫ 1

0

I(x−m, y − n) dx dy

=
∑

(m,n)∈Z2

∫ −m+1

−m

∫ −n+1

−n
I(x, y) dx dy .

The squares [−m,−m+ 1]× [−n,−n+ 1] tile the plane R2, so the above is

=

∫ ∞
−∞

∫ ∞
−∞

I(x, y) dx dy = πr2.

Problem 8. Let a and b be relatively prime positive integers, and let S be the set of those
nonnegative integers n that can be written n = ua + vb where u and v are nonnegative
integers. Show that ∑

n∈S

zn =
1− zab

(1− za)(1− zb)
for |z| < 1.

Solution 8. Suppose that n, u, v are integers such that n = ua+vb. For a given n there will
be infinitely many pairs (u, v) for which this equation holds, but in all such pairs, the number
u satisfies the congruence ua ≡ n (mod b). Since (a, b) = 1, this congruence has exactly
one solution u0 with 0 ≤ u0 < b. If n = ua + vb is a representation of n with nonnegative
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u, v, and u ≥ b, then u = u0 + kb for some positive integer k. Thus n = u0a + (v + ka)b
and we see that any integer n that can be represented with nonnegative u, v has a unique
representation n = u0a+ v0b with 0 ≤ u0 < b. Thus

∑
n∈S

zn =
b−1∑
j=0

∞∑
k=0

zja+kb =
( b−1∑

j=0

zja
)( ∞∑

k=0

zkb
)

=
1− zab

1− za
· 1

1− zb

for |z| < 1.
Alternatively, let r(n) denote the number of representations of n in the form n = ua+ vb

with nonnegative u, v. Thus
∑

n r(n)zn = (1− za)−1(1− zb)−1. One can show that r(n) = 0
or 1 if 0 ≤ n < ab. Also, if n ≥ ab, then r(n) = r(n − ab) + 1. Hence

∑
n∈S z

n =∑
n(r(n)− r(n− ab))zn, which gives a second proof of the identity.

Problem 9. Let f be a continuously differentiable map from the unit interval I = [0, 1] to
the unit square J = [0, 1] × [0, 1], and suppose that the boundary ∂J is in the image of f .
Prove that there exist 0 ≤ s < t ≤ 1 such that f(s) = f(t), and the arc length of f |[s,t] is
greater or equal to 2.

Solution 9. Assume the conclusion is false. Then if f(s), f(t) belong to one side J of the
square, there does not exist a s < u < t such that f(u) belongs to the opposite side J ′.
(Otherwise, the set {f(x) ∈ J |x < u} is both open and closed.) Thus, thee must exist
two sides, J,K such that 0 ∈ f−1(U ∪ K) is connected (and thus equal to some [0, q], as
is1 ∈ f−1(J ′ ∪K ′) (where J ′, K ′ denote the opposite sides), and thus equal to [q, 1]. Thus
f(q) ∈ ((J ∪K) ∩ (J ′ ∪K ′)). Thus, the other point in (J ∪K) ∩ (J ′ ∪K ′) must be of the
form f(s) = f(t) for some s < q < t. These points satisfy the requirements of the problem
(which also is a contradiction).

Problem 10. Two prisoners must play the following game to save their lives. They learn
the rule of the game, can work on strategy, but once the game starts, they are unable to
communicate. The first prisoner is taken into a room, which contains a chessboard. Each of
the 64 fields of the chessboard has a coin, showing either heads or tails. The warden points
to one of the coins. The first prisoner turns over exactly one coin (which may or may not be
the one that the warden pointed to). The first prisoner is taken to his/her solitary cell. The
second prisoner is led in. Upon examining the coins on the board, the second prisoner must
identify the coin that the warden pointed to. Describe a strategy by which this can be done.

Solution 10. Let V be the vector space V = F 6
2 . For 0 ≤ n < 64 we write n =

∑5
i=0 bi2

i,
and put b(n) = (b0, b1, . . . , b5) ∈ V . Row by row, starting at the top left and ending at the
bottom right, we number the squares of the board 0, 1, . . . , 63. Let H be the set of those h,
0 ≤ h < 64 such that the coin in square h shows heads. Let w be the number of the square
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indicated by warden. Form the sum

b(w) +
∑
h∈H

b(h) .

This is a member of V , and there is a unique integer f , 0 ≤ f < 64, such that b(f) is equal
to the above. The first prisoner should turn over (‘flip’) the coin in square numbered f . Let
H′ denote the set of numbers of the squares now showing heads. If f /∈ H, then∑

h∈H′

b(h) = b(f) +
∑
h∈H

b(h).

If f ∈ H, then ∑
h∈H′

b(h) = −b(f) +
∑
h∈H

b(h) = b(f) +
∑
h∈H

b(h)

since −b(f) = b(f). Thus in either case,∑
h∈H′

b(h) = b(f) +
∑
h∈H

b(h) = b(w) + 2
∑
h∈H

b(h) = b(w).

The second prisoner should calculate the sum on the above left; this provides the binary
expansion of the number of the square that the warden identified.
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