

AIM Qualifying Review Exam in Differential Equations & Linear Algebra

January 2026

There are five (5) problems in this examination.

There should be sufficient room in this booklet for all your work. But if you use other sheets of paper, be sure to mark them clearly and staple them to the booklet. No credit will be given for answers without supporting work and/or reasoning.

Problem 1

Suppose \mathbf{A} is a real n -by- n matrix with rank one.

- (a) Show there exists a unique number c such that $\mathbf{A}^2 = c\mathbf{A}$.
- (b) Show that if $c \neq 1$, then $\mathbf{I} - \mathbf{A}$ has an inverse, where \mathbf{I} is the n -by- n identity matrix.

Problem 1

Problem 1

Problem 1

Problem 2

For the following matrices M_1 and M_2 , find the corresponding Jordan forms J_1 and J_2 . As a reminder, for each k , M_k and J_k are similar matrices and J_k has only zero entries except possibly on the main diagonal and the first diagonal above it, where ones may occur. Hint: think about the eigenvectors.

(a) $M_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$

(b) $M_2 = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$

Problem 2

Problem 2

Problem 2

Problem 3

(a) Can $y = t^3$ be a solution to $y'' + p(t)y' + q(t)y = 0$ on an interval that contains $t = 0$ and throughout which $p(t)$ and $q(t)$ are continuous? Explain your answer.

(b) Assume that p and q are continuous and that the functions y_1 and y_2 are solutions of the differential equation $y'' + p(t)y' + q(t)y = 0$ on an open interval I . Prove that if $y_1(x_0) = y_2(x_0) = y'_1(x_0) = y'_2(x_0)$ at some x_0 in I , then $\{y_1, y_2\}$ cannot be a fundamental set of solutions on I .

(c) Determine a positive lower bound for the radius of convergence of a series solution $y = \sum_{n=0}^{\infty} a_n t^n$ for the ODE

$$(1 + \cos t)y'' + (\sin t)y' + e^{t^2}y = 0. \quad (1)$$

Problem 3

Problem 3

Problem 3

Problem 4

(a) Compute e^{At} for $A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$.

(b) If B is a skew-symmetric matrix, i.e. $B^T = -B$, show that e^{Bt} is an orthogonal matrix.

(c) Solve $2x^2y'' + 3xy' - y = 0$ for $x > 0$.

Problem 4

Problem 4

Problem 4

Problem 5

Solve the PDE

$$\frac{\partial u}{\partial t} + 4 \frac{\partial^2 u}{\partial x^2} + u = \cos x \quad (2)$$

for $u(x, t)$ with boundary conditions

$$u(0, t) = 0, \quad \frac{\partial u}{\partial x}(2\pi, t) = 0$$

and initial condition

$$u(x, 0) = \sin\left(\frac{5x}{4}\right) + \frac{1}{3} \cos\left(\frac{x}{2}\right) - \frac{1}{3} \cos x.$$

Problem 5

Problem 5

Problem 5