
AIM Qualifying Review Exam in Differential Equations & Linear Algebra

January 2026

There are five (5) problems in this examination.

There should be sufficient room in this booklet for all your work. But if you use other sheets of paper, be
sure to mark them clearly and staple them to the booklet. No credit will be given for answers without

supporting work and/or reasoning.

Problem 1

Suppose A is a real n-by-n matrix with rank one.

(a) Show there exists a unique number c such that A2 = cA.

(b) Show that if c ̸= 1, then I−A has an inverse, where I is the n-by-n identity matrix.

Solution outline

(a) Since A has rank one, all the columns of A are multiples of a single nonzero vector a, and thus A = abT

with the multiples given in b. So A2 = (bTa)abT = cA where c = bTa.

(b) I−A has an inverse iff its nullspace is just the zero vector. We have c = bTa ̸= 1. Case 1: assume
c = bTa ̸= 0. Then the whole space Rn can be written as a direct sum of the n − 1 dimensional space
⟨b⟩⊥ and the 1-dimensional space ⟨a⟩. I−A is the identity on ⟨b⟩⊥ and is nonzero on nonzero multiples
of a (since c ̸= 1), so the nullspace is trivial. Case 2: assume c = bTa = 0. Then we decompose Rn into
⟨b⟩⊥ and the 1-dimensional space ⟨b⟩. Again, I−A is the identity on ⟨b⟩⊥. (I−A)b = b − a(bT b) ̸=0
since bTa = 0, so again the nullspace is trivial. Thus I−A has an inverse.

Problem 2

For the following matrices M1 and M2, find the corresponding Jordan forms J1 and J2. As a reminder, for
each k, Mk and Jk are similar matrices and Jk has only zero entries except possibly on the main diagonal
and the first diagonal above it, where ones may occur. Hint: think about the eigenvectors.

(a) M1 =

[
1 1
1 1

]
.
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(b) M2 =

 0 1 2
0 0 0
0 0 0

.
Solution outline

(a) This M1 is diagonalizable with eigenvalues 0 and 2 and corresponding eigenvectors (1,−1) and (1, 1).

Thus the Jordan form is J1 =

[
0 0
0 2

]
or

[
2 0
0 0

]
.

(b) By inspection, two eigenvectors are (1, 0, 0) and (0, 2, -1), both with eigenvalues 0. If there is a third
eigenvector, its eigenvalue must be nonzero, since a matrix with a full set of eigenvectors with zero
eigenvalues must be the zero matrix. M2 maps any vector to a multiple of (1, 0, 0). Therefore any
eigenvector with a nonzero eigenvalue would be proportional to (1, 0, 0), but we already know this
is an eigenvector with eigenvalue zero. Thus there are only two eigenvectors, so the Jordan form is

J2 =

 0 1 0
0 0 0
0 0 0

 or

 0 0 0
0 0 1
0 0 0

.

Problem 3

(a) Can y = t3 be a solution to y′′ + p(t)y′ + q(t)y = 0 on an interval that contains t = 0 and throughout
which p(t) and q(t) are continuous? Explain your answer.

(b) Assume that p and q are continuous and that the functions y1 and y2 are solutions of the differential
equation y′′ + p(t)y′ + q(t)y = 0 on an open interval I. Prove that if y1(x0) = y2(x0) = y′1(x0) = y′2(x0)
at some x0 in I, then {y1, y2} cannot be a fundamental set of solutions on I.

(c) Determine a positive lower bound for the radius of convergence of a series solution y =
∑∞

n=0 ant
n for

the ODE

(1 + cos t)y′′ + (sin t)y′ + et
2

y = 0. (1)

Solution outline

(a) The uniqueness theorem for linear equations tells us that for y and y′ given at a point in the interval,
we have a unique solution throughout the interval. y ≡ 0 throughout the interval is a solution with
y(0) = y′(0) = 0. y = t3 also obeys these initial conditions, so if it were a solution to the ODE also, we
would have nonuniqueness, a contradiction. Thus the answer is no, y = t3 cannot be a solution.

(b) If {y1, y2} were a fundamental set of solutions on I, we would have that the Wronskian W = y1y
′
2−y2y

′
1 ̸=

0 throughout I. But W (x0) = 0, so {y1, y2} cannot be a fundamental set of solutions on I.

(c) The radius of convergence is at least as large as the distance from the origin to the nearest zero of
1 + cos t, which occurs at t = ±π. So π is a lower bound.

Problem 4

(a) Compute eAt for A =

[
1 0
1 0

]
.
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(b) If B is a skew-symmetric matrix, i.e. BT = −B, show that eBt is an orthogonal matrix.

(c) Solve 2x2y′′ + 3xy′ − y = 0 for x > 0.

Solution outline

(a) We have A = A2 = A3 = . . .. We write the series eAt = I + At + A2t2

2 + . . . = I + A
(
t+ t2

2 + . . .
)
=

I +A(et − 1). Thus eAt =

[
et 0

et − 1 1

]
.

(b) (eBt)T = eB
T t using the series form of the exponential. eB

T t = e−Bt and e−BteBt = e−Bt+Bt = e0t = I
since −Bt and Bt commute. Thus eBt is an orthogonal matrix.

(c) Substitute y = xr, obtain r = 1/2 and -1, so y = c1x
1/2 + c2x

−1.

Problem 5

Solve the PDE

∂u

∂t
+ 4

∂2u

∂x2
+ u = cosx (2)

for u(x, t) with boundary conditions

u(0, t) = 0 ,
∂u

∂x
(2π, t) = 0

and initial condition

u(x, 0) = sin

(
5x

4

)
+

1

3
cos

(x
2

)
− 1

3
cosx.

.
Solution outline

We decompose the solution as u(x, t) = us(x) + u1(x, t) where us(x) is a steady solution to the inhomo-
geneous PDE and u1(x, t) solves the homogeneous PDE with the initial condition u1(x, 0) = u(x, 0)−us(x).

The first step is to solve 4u′′
s + us = cosx for us(x), such that us(0) = u′

s(2π) = 0. The homogeneous
ODE has solution uh = A sin

(
x
2

)
+B cos

(
x
2

)
. The method of undetermined coefficients gives the particular

solution up = − 1
3 cosx. The boundary conditions give A = 0 and B = 1/3. So us =

1
3 cos

(
x
2

)
− 1

3 cosx.
Now we solve for u1. We write u1(x, t) = X(x)T (t) and obtain

4
X ′′

X
= −T ′

T
− 1 = −4

(
2k + 1

4

)2

.

We have placed the constant -1 in the T equation, to simplify the X equation. It has sinusoidal eigen-
functions with quarter-integer wavenumbers (1/4, 3/4, 5/4, ...), which satisfy the boundary conditions

X(0) = X ′(2π) = 0. I.e. Xk = sin
(
2k+1

4 x
)
, k = 1, 2, 3, . . .. The corresponding Tk(t) = e(−1+4( 2k+1

4 )
2
)t. The

initial condition for u1 is u1(x, 0) = sin
(
5x
4

)
. In general we have a series solution u1(x, t) =

∑
k AkXk(x)Tk(t),

and we set the coefficients to match the initial condition. So we have A2 = 1 and all other coefficients zero.
Thus

u1 = e(
21
4 )t sin

(
5x

4

)
.
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