Department of Mathematics, University of Michigan
 Complex Analysis Qualifying Exam
 August 15, 2023; Morning Session

Problem 1: Let f be an analytic function in the unit disc $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ such that $f(0)=0$ and $|f(z)|<2023$ for all $z \in \mathbb{D}$. Assume also that f satisfies the property $f(i z)=f(z)$ for all $z \in \mathbb{D}$. Prove that $\left|f\left(\frac{1}{7}\right)\right|<1$.

Problem 2: Let $\mathbb{H}=\{z \in \mathbb{C}: \Im z>0\}$ be the upper half-plane. Find a conformal mapping from the domain

$$
\mathbb{H} \backslash\left\{z \in \mathbb{H}: z=e^{i \theta}, \theta \in\left(0, \frac{\pi}{2}\right]\right\}
$$

(i.e., \mathbb{H} slit along a circular arc) back onto \mathbb{H}. You may write your solution as a composition of simpler maps.

Problem 3: Use contour integration to evaluate the integral

$$
\int_{-1}^{1} \sqrt{\frac{1+x}{1-x}} \cdot \frac{d x}{1+x^{2}}
$$

[Simplification: If you experience difficulties, you can first change the variable of integration to $t=(1+x) /(1-x)$ and use contour integration for the new integral.]
Problem 4: Let $\alpha \in \mathbb{C}$ satisfy $|\alpha|=1$. Consider the equation $\sin z=\frac{\alpha}{z^{2}}$ for $z \in \mathbb{C}$.
(a) Prove that for each $k \in \mathbb{Z} \backslash\{0\}$ this equation has exactly one solution inside the vertical strip $|\Re z-\pi k|<\frac{\pi}{2}$.
(b) How many solutions (counted with multiplicities) does this equation have inside the vertical strip $|\Re z|<\frac{\pi}{2}$?

Problem 5: Let $a_{k} \in \mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ for all $k \in \mathbb{N}$. Consider functions

$$
B_{n}(z):=\prod_{k=1}^{n} \frac{z-a_{k}}{1-\bar{a}_{k} z}, \quad z \in \mathbb{D}
$$

(a) Prove that the sequence $\left\{B_{n}\right\}_{n=1}^{\infty}$ contains a subsequence that converges uniformly on compact subsets of the unit disc \mathbb{D}.
(b) Assume that $\lim \sup _{n \rightarrow \infty}\left(1-\left|a_{n}\right|\right)>0$. Prove that each subsequential limit of the functions B_{n} is identically zero in \mathbb{D}.
(c) Prove that the same holds if $\sum_{n=1}^{\infty}\left(1-\left|a_{n}\right|\right)=+\infty$.

