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Problem 1. Find the number of solutions (counted with multiplicities) of the
equation sin z = z+2025z3 that belong to the horizontal strip {z ∈ C : | Im z| < 1}.

Solution: Note that | sin z| ≤ e| Im z|≤e for all z ∈ C such that | Im z| ≤ 1. Hence,

2025|z|3 > |z|+ e ≥ |z − sin z| for all z ∈ C such that |z| ≥ 1 and | Im z| ≤ 1.

This allows one to apply the Rouché theorem to the functions f(z) := 2025z3 and
g(z) := z−sin z in this horizontal strip. Namely, let R ≥ 1 and consider a rectangle
{z ∈ C : | Im z| < 1, |Re z| < R}. One has |f(z)| > |g(z)| everywhere on the
boundary of such a rectangle and hence the functions f(z) and f(z)+g(z) have the
same number of zeroes, counted with multiplicities, inside it. It follows that the
equation 2025z3 + z − sin z = 0 has the same number of solutions in the horizontal
strip {z ∈ C : | Im z| < 1} as the equation 2025z3 = 0, i.e., three solutions.

Problem 2. Let A = {z ∈ C : 5 < |z| < 10} and f : A → C be an analytic

function such that |f(z)| ≤ 1 + 2025|z|−4 for all z ∈ A. Let f(z) =
∑+∞
n=−∞ anz

n

be the Laurent expansion of f in the annulus A. Prove that |a−2| ≤ 90.

Solution: For each 5 < r < 10 one has

|a−2| =

∣∣∣∣ 1

2πi

∮
|z|=r

f(z)zdz

∣∣∣∣ ≤ r2 max
|z|=r

|f(z)| ≤ r2 + 2025r−2.

Let us now optimize the right-hand side in r. It is easy to see that the minimum
is attained when r2 =

√
2025 = 45, which leads to the desired bound |a−2| ≤ 90.

(Note also that 5 <
√

45 < 10.)

Problem 3. Let fn : D → H be analytic functions, where D = {z ∈ C : |z| < 1}
stands for the unit disc and H = {z ∈ C : Im z > 0} is the upper half-plane. Assume
that the sequence fn(1/k) converges (to a finite number or to ∞) as n → ∞ for
each k ∈ N. Prove that the sequence fn(z) converges for each z ∈ D.

Solution: Recall that the upper half-plane H and the unit disc D are conformally
equivalent: Möbius mapping φ : H → D, z 7→ z−i

z+i is a bijection. Let us consider

the functions gn := φ ◦ fn : D→ D, it is clear that the sequence gn(1/k) converges
as n→∞ for each k ∈ N. The functions gn are uniformly bounded and hence form
a normal family due to Montel’s theorem. (In fact, a general form of this theorem
applies directly to fn but we do not use it here.)

Therefore, each subsequence of gn contains a sub-subsequence that converges to
an analytic function g in D. It is clear that g(1/k) = φ(limn→∞ fn(1/k)). Using
uniqueness theorem for analytic functions, this implies that all such subsequential
limits have to be the same. In particular, this implies that the sequence gn(z)
converges for each z ∈ D as otherwise, one could find two different subsequential
limits. It remains to note that the convergence of gn(z) implies the convergence (to
a finite number or to ∞) of fn(z) = (φ−1 ◦ gn)(z).

Problem 4. Let P (z) = c0+c1z+c2z
2+. . .+cnz

n be a polynomial of degree n with
real coefficients ck ∈ R and assume that P (i) = i. Denote by z1, z2, . . . , zn ∈ C the



2

zeroes of P (counted with multiplicity). Express
∑n
k=1

1
z2k+1

as a contour integral

and prove that this integral equals ReP ′(i).

Solution: Note that P (i) = i 6= 0 and P (−i) = P (i) = −i 6= 0. The logarithmic
derivative P ′(z)/P (z) has simple poles at each of the zeroes of P with the residues
equal to their multiplicities. Therefore, applying the Cauchy formula to the function
P ′(z)/(P (z)(z2 + 1)) one obtains the identity

n∑
k=1

1

z2k + 1
+ res
z=i

P ′(z)

P (z)(z2+1)
+ res
z=−i

P ′(z)

P (z)(z2+1)
=

1

2πi

∮
|z|=R

P ′(z)

P (z)(z2 + 1)
dz ,

provided that R is large enough so that all the poles are inside the circle |z| = R.
It is clear that P ′(z)/(P (z)(z2 + 1)) = O(|z|−3) as |z| → ∞, which implies that the
right-hand side tends to zero as R→∞. This gives the identity

n∑
k=1

1

z2k + 1
+ res
z=i

P ′(z)

P (z)(z2+1)
+ res
z=−i

P ′(z)

P (z)(z2+1)
= 0 .

(A slightly different way of proving this identity is to say that the residue of the
meromorphic function P ′(z)/(P (z)(z2 + 1)) at ∞ equals 0.) Finally, P (i) = i 6= 0
gives

res
z=i

P ′(z)

P (z)(z2+1)
=
P ′(i)

i · 2i
= −P

′(i)

2
and similarly res

z=−i

P ′(z)

P (z)(z2+1)
= −P

′(−i)

2
.

Therefore,
∑n
k=1

1
z2k+1

= 1
2 (P ′(i) + P ′(−i)) = 1

2 (P ′(i) + P ′(i)) = ReP ′(i).

Problem 5. Let S := {z ∈ C : | Im z| < 1} and f : S → D be an analytic function
such that f(0) = 0, where D stands for the unit disc. Prove that |f(1)| ≤ tanh π

4

(here, tanh a :=(ea − e−a)/(ea + e−a)).

Solution: Due to the Riemann uniformization theorem, the strip S is conformally
equivalent to the unit disc D. In order to construct a uniformization, one can, e.g.,
first apply the map z 7→ exp(π2 z), which maps S onto the right-half plane, and then

use a Möbius map z 7→ z−1
z+1 . The composition of these two maps reads as

φ : S → D, z 7→ e
π
2 z − 1

e
π
2 z + 1

= tanh(π4 z) .

We can now apply the Schwarz–Pick lemma to the function f ◦φ−1 : D→ D. (Note
that f(φ−1(0)) = f(0) = 0.) It gives

|f(1)| = |(f ◦ φ−1)(tanh π
4 )| ≤ tanh π

4 .


