Department of Mathematics, University of Michigan Complex Analysis Qualifying Review Exam

May 5, 2025, 9:00am-noon

Let an analytic function f : B_r(0) \ {0} → C have an essential singularity at 0.
(a) Prove that the function f(z) + f(z²) cannot have a removable singularity at 0.
(b) Can it happen that the function f(z) + f(z²) has a pole at 0?

2. Let a function $f: \overline{\mathbb{D}} \setminus \{0\} \to \mathbb{C}$ be analytic in the punctured unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and continuous in $\overline{\mathbb{D}} \setminus \{0\}$. Assume that f has a simple pole at 0 and that $\operatorname{Im} f(z) \ge 0$ for all for all $z \in \partial \mathbb{D}$ (i.e., for all $z \in \mathbb{C}$ with |z| = 1). Prove that there exists $z \in \mathbb{D}$ such that f(z) = -i.

3. Let $U \subsetneq \mathbb{C}$ be an open set such that $0 \in U$ and $f: U \to U$ be an analytic function such that f(0) = 0 and f'(0) = 1. Prove that f(z) = z for all $z \in U$ (a) assuming that U is simply connected;

(b) assuming that U is bounded (but not necessarily simply connected).

[*Hint:* consider iterations $f \circ f \circ \ldots \circ f$ of f.]

4. Let $f: \mathbb{D} \to \mathbb{C}$ be an analytic function in the unit disc \mathbb{D} such that f(0) = 1 and $|f(z)| \leq 2025$ for all $z \in \mathbb{D}$. Assume that this function has $n \geq 1$ zeroes z_1, \ldots, z_n (listed with multiplicities) in \mathbb{D} . Prove that $\prod_{k=1}^n |z_k| \geq \frac{1}{2025}$.

5. Compute the integral $\int_{-\infty}^{+\infty} \frac{x}{\sinh x} dx$ via residue calculus.